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Abstract

We prove that ♣ does not imply the existence of a Suslin tree, so
answering a question of I. Juhász. 1
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1 Introduction

In his paper [Ost], A. Ostaszewski introduced the combinatorial principle ♣.

The principle is a weaker simple relative of ♦, and it found many applications

in set-theoretic topology, see [KuVa].

Definition 1.1. ♣ means that there is a sequence 〈Aδ : δ limit < ω1〉 such

that

(i) Each Aδ is an unbounded subset of δ and

(ii) For every A ∈ [ω1]
ℵ1 , there is δ such that Aδ ⊆ A. (Equivalently: there

are stationarily many such δ).

It is clear that ♦ =⇒ ♣, and it was already noticed in [Ost] that ♣+CH

implies ♦ (as explained in [Ost], the argument is due to K. Devlin ( in [Sh 98]

also Burgess is credited)). For a while, it was open if ♣ and ♦ were actually

equivalent, but this was settled by S. Shelah in [Sh 98], where a model of ♣

is constructed in which CH does not hold. The proof starts with V = L (or

just V � CH + ♦(ω2)), and ℵ3 Cohen subsets of ω1 are added. Then ℵ1 is

collapsed, and it is shown that essentially, ♦(ω2)
V can serve as a ♣-sequence

in the final model.

Subsequently J. Baumgartner in an unpublished note gave a different

construction of a model of ♣+¬CH , in which ℵ1 is not collapsed. P. Komjáth

[Ko], continuing the proof in [Sh 98] proved it consistent to have MA for

countable partial orderings +¬CH , and ♣. Then S. Fuchino, S. Shelah and

L. Soukup [FShS 544] proved the same, without collapsing ℵ1.

Having concluded that the principles, ♦ and ♣, are different we still may

ask to which extent the consequences of ♦ may be obtained from ♣. So,

I. Juhász asks in [Mi]: “Does ♣ imply the existence of a Suslin tree?” This

question is very natural, as ♦ was formulated by Jensen in [Je] in order to

present his proof that there are Suslin trees in L. In addition, the existence

of a Suslin tree is a long established test problem for various combinatorial

principles to agree with.

Here we answer Juhász’s question negatively.
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The idea of the proof is to start with a model of ♦+2ℵ1 = ℵ2, and iterate

a forcing which specializes Suslin trees, in an iteration of length ω2. Our plan

is, similarly to [Sh 98], to witness ♣ by using ♦ from the ground model in an

essential way. Note that adding ℵ1 Cohen reals destroys any club sequence

from the ground model, which rules out finite support iterations.

Let χ be a large enough regular cardinal, and let <∗
χ be a fixed well order

of H(χ). The formulation of ♦ that we use is that there is a sequence

N̄∗ = 〈N̄ δ = 〈N δ
i : i < δ〉 : δ < ω1〉

where each N̄ δ is a continuously increasing sequence of countable elementary

submodels of A
def
= (H(χ),∈, <∗

χ) with N δ
i ∩ ω1 < δ for i < δ, and N̄∗ is

such that for every continuously increasing sequence N̄ = 〈Ni : i < ω1〉 of

countable elementary submodels of A, there is a stationary set of δ < ω1 such

that the isomorphism type of N̄ δ is the same as that of 〈Ni : i < δ〉.

Let P denote our forcing order. To show that ♣ holds in V P , we show

that for every condition p ∈ P , name τ
˜

such that p 
 “τ
˜
∈ [ω1]

ℵ1”, and a

sequence N̄ as above with p, τ
˜

∈ N0, there is a club of δ < ω1 for which

there is an unbounded sequence β̄N̄↾δ = 〈βk : k < ω〉 ∈ V of ordinals below

δ, and a condition r⊕ ≥ p such that r⊕ 
 “{βk : k < ω} ⊆ τ
˜
”. Moreover,

the choice of {βk : k < ω} and the fact that r⊕ exists, only depend on the

isomorphism type of 〈Ni : i < δ〉. Hence, if such a δ also has the property

that the isomorphism type of 〈Ni : i < δ〉 is the same as that of N̄ δ, then

{βk : k < ω} are definable from N̄ δ. So, the sequence 〈Aδ : δ limit < ω1〉

given by

Aδ
def
=

{

Rang(β̄N̄δ) if β̄N̄δ is defined
δ otherwise

is a ♣-sequence in V P . A typical consideration to make is the following.

Suppose that p and τ
˜

are as above, while N̄ = 〈Nn : n < ω〉 is an increasing

sequence of countable ≺ A, with Nn ∈ Nn+1 for n < ω and P, p, τ
˜

∈ N0,

and we wish to construct β̄
def
= β̄N̄ and r⊕ as above. Let Nω

def
=

⋃

n<ω Nn and

δ
def
= Nω ∩ ω1. We can find r∗ ≥ p and β∗ ∈ τ

˜
such that r∗ 
 “β∗ ∈ τ

˜
”. Now,

we can reflect r∗ and β∗ along N̄ , and so obtain sequences 〈rn : n < ω〉 and

〈βn : n < ω〉 such that rn 
 “βn ∈ τ
˜
”, while

⋃

n<ω βn = δ and each rn ≥ p.
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If we can then find r⊕ as a common upper bound to {rn : n < ω}, we are

done.

From what we said so far, our concerns are twofold: to have a forcing in

which a certain amount of completeness is present, and on the other hand,

to have a control of the way the reals are added (of course, we need to add

reals, as we need to violate ♦). In the direction of our second aim, we divide

the iteration in EV EN and ODD stages, and at the EV EN stages we add

a real which dominates all the reals in the previous model. In ODD stages

we do a forcing NNR(T ) which specializes an Aronszajn tree T , doing so

without adding reals. Our forcing at ODD stages is from S. Shelah’s [Sh -f, V

§6]. At EV EN stages, we use the forcing UM for adding a universal meager

set introduced by J. Truss in [Tr] (there it was called “amoeba forcing for

category”), and used in S. Shelah’s [Sh 176]. This forcing adds a dominating

real. The forcing is ccc in a strong way, and, as shown by Shelah in [Sh 176]

it has a strong completeness property, so called sweetness. This in particular

implies that there is a dense set D of conditions in UM on which there are

equivalence relations 〈En : n < ω〉, such that if a sequence p̄ = 〈pn : n ≤ ω〉

from D has the property that pnEn p
ω for all n, then there is an upper bound

to p̄. A forcing notion with this property is called a sweetness model (see §2

for a better definition, and [Sh 176] for a real discussion). Our problem with

completeness is then addressed by the way the iteration is done: we iterate

with countable supports, but allow a condition p1 to extend a condition p0

only if the set of EV EN coordinates in the Dom(p0) on which p1 differs from

p0 is finite (see [Sh -f, XIV] for a general treatment of such iterations and

further references. An example of a such an iteration used in connection with

♣ is in [DjSh 574]). Basically because at our EV EN stages we are doing

a ccc forcing, and adding a dominating real, we can afford to do such an

iteration and still end up with a proper forcing.

Now consider again p and r∗ from our above described scenario. Before

choosing r∗, we can construct increasing sequences p̄ = 〈pn : n < ω〉 and

〈qn : n < ω〉 which are sufficiently generic, in the following sense. We start

with p0 = p, and choose pn and qn by induction on n. We shall have that

pn+1 and pn agree on EV EN coordinates (we say pn ≤pr pn+1), while qn ≥ pn
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and they agree on the ODD coordinates, and Dom(pn) = Dom(qn) (we say

pn ≤apr qn). During the induction, we make sure that for every formula ϕ

with parameters in Nω, there are infinitely many n such that, given pn, if we

could have chosen pn+1 and qn+1 so that ϕ(pn+1, qn+1) holds and the above

description is not violated, then we have done so. We can also make sure

that pn’s don’t increase too much (for this we need to use dominating reals

added by UM ’s along the way, and the way the iteration is defined), and

thanks to a completeness-style property of NNR(T )-forcing this allows us

to, at the end of this induction define pω as the limit of all pn. Now we can

take r∗ ≥ pω. We can find a condition p∗ such that pω ≤pr p
∗ ≤apr r

∗, and

we can arrange so that the only odd coordinates on which p∗ and r∗ differ,

are those in Dom(pω).

The set v0 of EV EN coordinates in the domain of pω where r∗ and pω

differ is finite, so is contained in Nn0 for some n0 < ω. The idea now is that

〈rk : k < ω〉 will be a subsequence 〈qnk
: k < ω〉 of 〈qn : n < ω〉, constructed

by induction on k. By exhibiting at every stage k a suitable formula ϕk

with parameters in Nω, such that ϕ(x, y) densely holds for x ≥pr pnk
and

y ≥apr x, we shall be able to control various properties of rk’s. For example,

we’ll be able to say that qnk+1

 “βk+1 ∈ τ

˜
” for some βk+1 ≥ Nnk

∩ ω1. Due

to the nature of the NNR(T ) forcing and the preparations we made so far,

we reduce the problem of 〈rk : k < ω〉 having an upper bound, basically

to the problem of the projections of qk’s onto v0 having an upper bound.

However, this is not exactly what happens, because these projections are not

necessarily conditions in P .

Given any condition x in P , if we consider all the conditions y such that

y ≥apr x, we obtain a sweetness model, Rx (we really use a variation called

R+
x ). We shall aim at a condition r′ ∈ Rpω such that qnk

Ek r
′, where Ek

stands for the k-th equivalence relation in the sweetness model Rpω. Then

we can use sweetness to assure that there is an upper bound as desired. What

do we use as r′?

The condition we would really like to use as r′ is r∗ ↾ Dom(pω). However,

there are possibly coordinates of r∗ which are less than sup(Nω ∩ω2) and not

in Nω, and names of r∗(γ) for γ ∈ Dom(pω) might depend on these “ghost”
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coordinates. So r∗ ↾ Dom(pω) might not be a condition after all. Hence we

have a task of finding a r′ ∈ Rpω , which resembles r∗ sufficiently, and let rk’s

be more and more equivalent to this r′. However, we also have to be sure

that our rk’s will be able to say something about β∗, to deliver the goods we

implored them for.

We now place the entire situation in another countable elementary sub-

model of A, called M . We construct an increasing sequence s̄ = 〈sn : n < ω〉

sufficiently generic for M , starting with s0 = p∗, and requiring sn to only

differ from p∗ on the coordinates outside of Nω. We let r′ be whatever s̄

forces r∗ to be inside of the Dom(pω), i.e. r′ = r∗/s̄ (see §8 for a more precise

definition). As sn’s were chosen to be sufficiently generic, we’ll have that

the naturally defined join of sn and r′ will have the same n-th equivalence

class in Rp∗ as r′ does in Rpω , for all large enough n. In §6 we develop a

method of saying this through a first order formula. Note that this join still

contains the relevant information about β∗. So, using again the genericity of

〈pn : n < ω〉 we are done.

Swept under the rug in the above discussion is the fact that all the choices

that we make have to be made depending only on the isomorphism type on

N̄ , but this is easily arranged thanks to the well ordering of H(χ).

Taken with a grain of salt, as no proofs were given of our claims so far,

and as introductions are usually easier to understand once whatever they are

supposed to introduce is already understood, the above explanation might

have convinced the reader that what we do is sufficient to prove the desired

theorem. But is all this machinery really necessary? We can only say that

we tried several other approaches, and the difficulty that we would face in

general, is that some amount of completeness was missing. Such completeness

in the present proof is achieved through the use of sweetness. One could

presumably obtain a simpler proof that some different version of ♣ does not

imply the existence of a Suslin tree. Saharon Shelah has notes in which a

version of the order from [BMR] is iterated with supports similar to the ones

we are using, and the iteration shows that a weak version of ♣ does not

imply the existence of a Suslin tree. However, by the results in [DjSh 574],

this version of ♣ is strictly weaker than ♣.
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The paper is organized as follows. In §2 we give some background to

NNR(T ) and UM . In §3 we state the Theorem. In §4 we describe the

iteration and prove various facts about it. Section §5 contains the proof of

the properness of the forcing used. In §6 we give some definitions which are

used to adapt the notion of sweetness to our situation. However, the notions

from [Sh 176] have to be reformulated to fit our needs, hence in particular

our discussion is completely self-contained. In §7 we introduce some auxiliary

partial orders, and set ground for the proof in §8. The main point of the proof

is to obtain ♣ in V P . This argument is presented in §8.

2 Background

The forcing needed in Section 3 will be an iteration of two kinds of individual

forcings. The first is the forcing from [Sh -f, V§6], which specializes an

Aronszajn tree T without adding reals. We shall refer to this forcing as to

NNR(T ). The other individual forcing is UM (“universal meager”), the

forcing introduced in [Tr] and used in [Sh 176, §7]. In this section we review

some properties of these forcings that will be needed for the proof in §3-§8.

Notation 2.1. (1) For two sequences s̄ and t̄, we say that s̄∩ t̄ = ∅ whenever

the ranges of s̄ and t̄ are disjoint.

(2) Q stands for the rational numbers with their usual ordering.

(3) If T is a tree, then <T denotes the tree order of T . For x ∈ T , we let

htT (x)
def
= otp({y : y <T x}). We may omit T in this notation, if the T we

mean is clear from the context.

If T is an ω1-tree and i < ω1, then Ti denotes the i-level of T , i.e.

{x ∈ T : ht(x) = i}.

If x̄ and ȳ are two sequences of elements of T , then x̄ <T ȳ means that x̄

and ȳ have the same length, and for every l ∈ Dom(x), we have xl <T yl.

If Rang(x̄) ∩ Rang(ȳ) = ∅, we say that x̄ and ȳ are disjoint.

(4) If η and ρ are sequences, then η ⊳ ρ means that η is an initial segment

of ρ.

(5) Without loss of generality, all Aronszajn trees T that we mention will be

assumed to have the property that Tα ⊆ [ωα, ω(α+ 1)), for all α < ω1. In
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addition, we’ll assume |Tα| = ℵ0 for all α < ω1. As we might want to consider

subtrees of T , we do not assume necessarily that Tα = [ωα, ω(α+ 1)) for all

α.

(6) If T is an Aronszajn tree and α < ω1, then {xTα

l : l < ω} is the increasing

enumeration of Tα.

(7) Suppose that T is an Aronszajn tree and m < ω, while α < ω1. We define

wTα

m
def
= {xTα

l : l < m}.

(8) We often identify a node x ∈ Tδ for limit δ with the branch {y : y <T x}.

Also, if α < β and x ∈ Tβ, then x ↾ (α + 1) denotes the unique y ∈ Tα with

y <T x.

Definition 2.2. Given an Aronszajn tree T , we define

(1)

NNR1(T )
def
= { (f, C) : C is a closed subset of some α + 1 < ω1

with the last element α
def
= lt(C), and

f :
⋃

i∈C Ti → Q is monotonically increasing}.

For (f1, C1) and (f2, C2) in NNR1(T ), we say (f1, C1) ≤NNR1(T ) (f2, C2)

iff C1 = C2 ↾ (lt(C1) + 1) and f1 ⊆ f2.

(2) Γ is a T -promise iff there is a club C(Γ) of ω1 and n = n(Γ) < ω such

that:

(a) All elements of Γ have form 〈x0, . . . , xn−1〉 where 〈x0, . . . , xn−1〉 are such

that

(∃α ∈ C(Γ))[(∀i 6= j < n) (xi 6= xj) & (∀i < n) (xi ∈ Tα)].

(b) If α < β ∈ C(Γ) & x̄ ∈ Γ
⋂ nTα, then there are infinitely many pairwise

disjoint ȳ ∈ nTβ such that x̄ <T ȳ.

(c) Γ
⋂ n(Tmin(C(Γ))) 6= ∅.
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(3) (f, C) ∈ NNR1(T ) fulfills a promise Γ iff

(α) lt(C) ∈ C(Γ) and C(Γ) ⊇ C \ min(C(Γ))..

(β) For all α < β ∈ C(Γ)
⋂

C, and for all x̄ ∈ Γ
⋂ n(Γ)(Tα) the following

holds:

(⊕) For all ǫ > 0, there are infinitely many pairwise disjoint ȳ ∈ n(Γ)Tβ

with x̄ <T ȳ and such that for all l < n(Γ) we have

f(xl) < f(yl) < f(xl) + ǫ.

The intention of fulfilling a promise is that f is guaranteed not to grow too much along the relevant

branches.

(4)

NNR(T )
def
= { (f, C,Ψ) : (f, C) ∈ NNR1(T ) and Ψ is a countable set

of promises which (f, C) fulfills}.

We let (f1, C1,Ψ1) ≤ (f2, C2,Ψ2) iff (f1, C1) ≤NNR1(T ) (f2, C2) and Ψ1 is

a subset of Ψ2, while C2 \ C1 ⊆
⋂

Γ∈Ψ1
C(Γ).

Notation 2.3. For p = (f, C,Ψ) ∈ NNR(T ), we write f p def
= f , Cp def

= C,

Ψp = Ψ and lt(p)
def
= lt(Cp).

Definition 2.4. [Sh -f, VIII §2] Given κ an infinite cardinal. A forcing

notion P is said to satisfy κ-pic∗ iff for all large enough χ and well orders <∗
χ

of H(χ), we have:

Suppose that i < j < κ, and Ni, Nj ≺ A = (H(χ),∈, <∗
χ) are countable

with κ, P ∈ Ni ∩ Nj , while Ni ∩ κ ⊆ j and Ni ∩ i = Nj ∩ j, and Nl is

the Skolem hull in A of (Ni
⋂

Nj) ∪ {l} for l ∈ {i, j}. Further suppose that

p ∈ P ∩ Ni, while h : Ni → Nj is an isomorphism with h ↾ (Ni ∩ Nj) being

the identity, and h(i) = j.

Then there is q ∈ P such that
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(a) p, h(p) ≤ q, and for every maximal antichain I ⊆ P with I ∈ Ni, we

have that I ∩Ni is predense above q.

(b) For every r ∈ Ni ∩ P and q′ such that q ≤ q′ ∈ P , there is q′′ ∈ P such

that

r ≤ q′ ⇐⇒ h(r) ≤ q′′.

Fact 2.5. [Sh -f, VIII, 2.5∗ and 2.9∗] Suppose that Q̄ = 〈Pα, Q
˜

α : α < α∗〉

is a countable support iteration and κ is regular. Further suppose that for

each α < α∗ we have 
Pα “Q
˜

α has κ-pic∗.” Then

(1) If α∗ < κ, then Pα∗ satisfies κ-pic∗.

(2) If α∗ ≤ κ and (∀µ < κ) (µℵ0 < κ), then Pκ satisfies κ− cc.

(3) If α∗ < κ and (∀µ < κ) (µℵ0 < κ), then


Pα∗
“(∀µ < κ) (µℵ0 < κ)”.

Fact 2.6. [Sh -f, V§6] Suppose V |= CH . Then NNR(T ) is a proper ℵ2-cc,

moreover ℵ2-pic∗, forcing which specializes T without adding reals.

Note that |NNR(T )| ≤ 2ℵ1 .

Fact 2.7. [Sh -f V, 6.7.] Suppose that χ is large enough and N ≺ (H(χ),∈)

is countable such that T ∈ N . Let δ
def
= N ∩ ω1 and ǫ > 0. Further suppose

that p ∈ NNR(T ) ∩N and for some n < ω we have b0, . . . , bn−1 are distinct

branches of Tδ, while I ∈ N is an open dense subset of P .

Then there is q ≥ p with q ∈ I ∩N , and such that for all i < n we have

fq(bi(lt(q))) < fp(bi(lt(p))) + ǫ.

The following is well known and follows from the above Fact 2.7:
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Claim 2.8. Suppose that χ is large enough and N ≺ (H(χ),∈) is countable

such that T ∈ N , while p ∈ NNR(T ) ∩ N . Then there is q ≥ p which is

(N,NNR(T ))-generic and lt(q) = N ∩ ω1.

Proof of the Claim. Let {In : n < ω} enumerate all open dense subsets of

NNR(T ) which are elements ofN . Using Fact 2.7, we can build an increasing

sequence 〈pn : n < ω〉 of conditions in NNR(T ) such that

(a) p0 = p.

(b) pn ∈ N .

(c) For every n < ω, for every x ∈ w
Tlt(pn+1)

n+1 we have

fpn+1(x) < fpn(x ↾ lt(pn)) + 1/2n.

(d) pn+1 ∈ In.

Now we can define q by letting lt(q)
def
= δ, Cq def

=
⋃

n<ω C
pn ∪ {δ}, while f q def

=

⋃

n<ω

f pn∪{(x, sup
n<ω

(f pn(x ↾ [lt(pn)+1])) : x ∈ Tδ & x ↾ [lt(pn)+1] ∈ Dom(f pn)},

and Ψq def
=

⋃

n<ω Ψpn. It is easily seen that q is as required. ⋆2.8

Definition 2.9. (1) T ⊆ <ω2 is a nowhere dense tree iff for all η ∈ T , there

is ρ ∈ <ω2 \ T with η ⊳ ρ.

(2) T ⊆ <ω2 is perfect iff for all η ∈ T , there are ρ1 6= ρ2 both in T and both

extending η.

(3)

UM
def
= { (t, T ) : T ⊆ <ω2 is a perfect nowhere dense tree

and for some n we have t = T ∩ n2 }.

For (t1, T1), (t2, T2) ∈ UM , we say (t1, T1) ≤ (t2, T2) iff for some n we have

t1 = t2 ∩
n2, and T1 ⊆ T2.
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Fact 2.10. [Tr] Suppose that G is UM-generic.

Then S
def
=

⋃

{T : (∃t) ((t, T ) ∈ G)} is a nowhere dense subtree of <ω2.

The following consequence of Fact 2.10 is also well known:

Claim 2.11. UM adds a real which dominates all the reals from the ground

model.

Proof of the Claim. Let S be the nowhere dense tree added by UM . We

define gS ∈ ωω by letting

gS(n)
def
= min{m : (∀η ∈ S ∩ n2)(∃ρ ∈ m2 \ S) (η ⊳ ρ)}.

Hence gS is well defined, and we shall now see that it dominates all f ∈ ωω

of the ground model. Fix such an f , and note that the set of all conditions

(t, T ) which satisfy

(∃n0)(∀n ≥ n0) [min{m : (∀η ∈ n2)(∃ρ ∈ m2 \ T ) (η ⊳ ρ)} > f(n)]

is dense in UM . ⋆2.11

Notation 2.12. For p = (t, T ) ∈ UM , we let tp
def
= t and T p def

= T .

Definition 2.13. [Sh 176, §7] (1) A forcing notion P is sweet if there is a

subset of D of P and equivalence relations En on D for n < ω, such that

(a) D ⊆ P is dense, En+1 refines En and En has countably many equivalence

classes.

(b) For every n < ω and p ∈ D, the equivalence class p/En is directed.

(c) If pi ∈ D for i ≤ ω, and piEi p
ω, then {pi : i ≤ ω} has an upper bound;

moreover, for each n < ω the set {pi : n ≤ i ≤ ω} has an upper bound

in pω/En.
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(d) For every p, q in D and n < ω, there is k < ω such that for every

p′ ∈ p/Ek,

(∃r ∈ q/En) (r ≥ p) =⇒ (∃r ∈ q/En) (r ≥ p′).

(2) If (1) above holds, we say that (P,D, En)n<ω is a sweetness model.

Definition 2.14. [Sh 176, §7] Suppose that B = (P,D0, E0
n)n<ω is a sweet-

ness model and Ā = 〈Ae : e < ω〉 enumerates {p/E0
n : n < ω & p ∈ D0}.

(1) For q ∈ D0 we define km(q) as the minimal k < ω such that for every

q′ ∈ q/E0
k we have that

(∃r ∈ Am) (r ≥ q) ⇐⇒ (∃r′ ∈ Am) (r′ ≥ q′).

(2) We define

D
def
= {(p, (t, T

˜
)) : p ∈ D0 & 
P “(t, T

˜
)” ∈ UM

˜
”}.

For n < ω and (pl, (tl, Tl
˜

)) ∈ P ∗ UM
˜

(l = 1, 2), we say that

(p1, (t1, T1
˜

))En (p2, (t2, T2
˜

))

iff the following conditions hold:

(α) p1E
0
np2,

(β) t1 = t2,

(γ) for every m < n, there is p ∈ Am with p ≥ p1 iff there is p ∈ Am

with p ≥ p2.

(δ) suppose that m < n and there is p ∈ Am such that p ≥ p1, and let

η ∈ <n2. Then there is p ∈ Am such that p 
 “η /∈ T
˜

1” iff there is

p ∈ Am such that p 
 “η /∈ T
˜

2”,

(ε) for all m < n we have km(p1) = km(p2) and for all m < n we have

p1E
0
km(p1) p2.
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Definition 2.15. [Sh 176, §7] Sweetness models B1
def
= (P 1,D1, E1

n)n<ω and

B2
def
= (P 2,D2, E2

n)n<ω are said to satisfy B1 < B2 iff

(a) P 1 is a complete suborder of P 2, while D1 ⊆ D2 and for each n we have

that E1
n is E2

n restricted to D1,

(b) For all p ∈ D1 and n < ω we have p/E2
n ⊆ P 1,

(c) If p ≤ q and q ∈ D1, while p ∈ D2, then p ∈ D1.

Notation 2.16. Suppose that B and P are as in the assumptions of Defi-

nition 2.14 and D and En (n < ω) are as defined in Definition 2.14. We say

that

BĀ ∗ UM
˜

def
= (P ∗ UM

˜
,D, En)n<ω

is the canonical sweetness model on P ∗ UM
˜

with respect to B and Ā.

Fact 2.17. [The Composition Claim, Sh 176, §7] If B is a sweetness model

and Ā is an enumeration of the equivalence classes of B, then BĀ ∗ UM
˜

is a

sweetness model and B < BĀ ∗ UM
˜

.

Fact 2.18. [Sh 176 ,§7] Suppose that for k < n we have that (P k,Dk, Ek
n)n<ω

is a sweetness model and

(P k,Dk, Ek
n)n<ω < (P k+1,Dk+1, Ek+1

n )n<ω.

Then (
⋃

k<ω P
k,

⋃

k<ω D
k,

⋃

k<ω E
k
n)n<ω is a sweetness model with the property

that for all k < ω we have

(P k,Dk, Ek
n)n<ω < (

⋃

k<ω

P k,
⋃

k<ω

Dk,
⋃

k<ω

Ek
n)n<ω.

Note 2.19. Any sweet forcing P is ccc, even is σ-centered.

[Why? Let {Am : m < ω} enumerate all q/En for q ∈ D and n < ω. For

m < ω, let Bm
def
= {q : (∃p ∈ Am) (p ≥ q)}, hence each Bm is directed and

P =
⋃

m<ω Bm.]
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3 ♣ does not imply the existence of a Suslin

tree

Theorem 3.1. Assume that V |= “♦(ω1) + 2ℵ1 = ℵ2”.

Then there is a proper ℵ2 − cc forcing notion P such that 
P “♣+ there

are no Suslin trees”.

The proof of this Theorem is presented in Sections §4–§8.

4 Forcing and Iteration

Notation 4.1. “T is NWD” means that T is a perfect nowhere dense sub-

tree of <ω2.

Definition 4.2. By simultaneous induction on α ≤ ω2, we define items (1)–

(3) and prove Claim 4.3 below.

(1)

Pα
def
=











p :
(I) Dom(p) is a countable ⊆ α
(II) For all i ∈ Dom(p) we have


Pi
“p(i) ∈ Q

˜
i”











.

(2) If α = 2i for some i, then 
Pα “Q
˜

α = UM
˜

”,

(3) If α = 2i + 1 for some i, then 
Pα “Q
˜

α = NNR(T
˜

α)”, where T
˜

α is

a P2i-name of an Aronszajn tree, handed to us by the bookkeeping

(see Claim 4.3 below.) (We emphasize that T
˜

α is a P2i-name, not a

Pα-name.)

(4) We say that p ≤ q for p, q ∈ Pα iff for all j ∈ Dom(p) we have

(a) j even =⇒ q ↾ j 
Pj
“p(j) ≤ q(j)” and

(b) {2i ∈ Dom(p) : ¬(q ↾ (2i) 
 “p(2i) = q(2i)”)} is finite.

(c) j odd =⇒
Pj
“p(j) ≤ q(j)”.

15



(Note that (Pα,≤) is a forcing notion).

Claim 4.3. If α = 2i+ 1 for some i, then


Pα “T
˜

α is an Aronszajn tree ”.

Proof of the Claim. This easily follows from the fact that UM is σ-

centered (Fact 2.17 and Note 2.19). Namely, suppose that α = 2i + 1. We

know that


P2i
“T
˜

α is an Aronszajn tree”,

as T
˜

α is a P2i-name of an Aronszajn tree. We only have to check that Q
˜

2i

does not add any uncountable branches to T
˜

α. We work in V P2i . Suppose

p ∈ UM and

p 
 “τ
˜

: ω1 → T α is increasing & (∀γ < ω1) (τ
˜
(γ) ∈ T α

γ ).”

For γ < ω1, let Dγ be the set of conditions of UM which are above p and

decide the value of τ
˜
(γ). Then there is a directed subset A of UM and an

uncountable B ⊆ ω1 such that

γ ∈ B =⇒ A ∩ Dγ 6= ∅.

It follows from the directedness of A that for all γ ∈ B, there is a unique

lγ such that for all q ∈ Dγ ∩ A we have q 
 “τ
˜
(γ) = x

T α
γ

lγ ”. Again by the

directedness ofA, if γ1 < γ2 ∈ B we must have x
T α

γ1
lγ1

<T α x
T α

γ2
lγ2

, a contradiction.

⋆4.3

Notation 4.4. (1) For j < α and p, r ∈ Pj we say p ≤apr r iff

(i) Dom(p) = Dom(r) and

(ii) p ≤ r and

(iii) (∀2k + 1 ∈ Dom(p)) (r ↾ (2k + 1) 
P2k+1
“r(2k + 1) = p(2k + 1)”).

16



(2) For j < α and p, r ∈ Pj we say p ≤pr r iff

(a) p ≤ r and

(b) (∀2k ∈ Dom(p)) (r ↾ (2k) 
P2k
“r(2k) = p(2k)”).

(3) For p ∈ Pα we define q = p ↾ EV EN by Dom(q)
def
= Dom(p) ∩ EV EN

and for β ∈ Dom(q), by letting q(β)
def
= p(β).

Observation 4.5. (1) ≤pr and ≤apr are partial orders.

(2) If p ∈ Pα, then p ↾ EV EN ∈ Pα and p ≥ p ↾ EV EN .

Definition 4.6. By simultaneous induction on α ≤ ω2, we define items (1)-

(4) below and prove Claim 4.7 below.2

(1)

P ′
α

def
=































p ∈ P ′
α :

(A) If 2i ∈ Dom(p), then
p(2i) is simple above p ↾ 2i

(B) There is δ∗(p) limit < ω1 such that
2i+ 1 ∈ Dom(p) =⇒


P2i+1
“lt(p(2i+ 1)) = δ∗(p)”































,

with the order inherited from Pα.

(2) For 2i < α and p ∈ P2i, we say that p(2i) = (t
˜

2i, T
˜

2i) is simple above

p ↾ 2i iff there are P2i-names I
˜

n (n < ω) such that

p ↾ 2i 
P2i
“ (∀n < ω)[I

˜
n ⊆ R(p↾2i)↾EV EN countable predense &

(r ∈ I
˜

n =⇒ r determines
p(2i) to degree n)]”

(3) For p ∈ Pα we define

Rp
def
= {q ∈ P ′

α : q ≥apr p},

with the order inherited from P ′
α.

2Later we shall prove that P
′

α
is a dense subset of Pα, for all α ≤ ω2.
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(4) If 2i < α and τ
˜

= (tτ˜ , T
τ
˜ ) is a P2i-name for a condition in UM

˜
, while

q ∈ P2i, we say that q determines τ
˜

to degree n iff

(i) q forces in P2i a value to T
˜

τ
˜ ∩ ≤n2

(ii) q forces in P2i a value to t
˜

τ
˜ ,

(iii) for all η ∈ ≤n2, there is ν ⊲ η such that

q 
P2i
“η ∈ T

˜
τ
˜ =⇒ ν /∈ T

˜
τ
˜”,

(iv) For all η ∈ ≤n2, there are η1 6= η2 ⊲ η such that

q 
P2i
“η ∈ T

˜
τ
˜ =⇒ η1, η2 ∈ T

˜
τ
˜”.

Claim 4.7. (1)If p ∈ P ′
α and β < α, then p ↾ β ∈ P ′

β.

(2) If p ∈ P ′
α, then p ↾ EV EN ∈ P ′

α.

Proof of the Claim. This is easily checked, noting that the definition of

p(2i) being simple above p ↾ 2i only depends on p ↾ 2i, for 2i ≤ α. ⋆4.7

Notation 4.8. (1) p ≥apr (≥pr,≥) q iff q ≤apr (≤pr,≤) p.

(2) Let Q̄ = 〈Pα, Q
˜

β : α ≤ ω2, β < ω2〉 and Q̄′ = 〈P ′
α : α ≤ ω2〉.

(3) P
def
= P ′

ω2
.

(4) χ is a fixed large enough regular cardinal, and <∗
χ is a fixed well-ordering

of H(χ).

(5) EVEN stands for the set of even ordinals, and ODD for the set of odd

ones.

(6) Quantifier ∀∗ means “for all but finitely many”.

Definition 4.9. Suppose that 2i < ω2 and p ∈ P2i, and p(2i) is simple above

p ↾ 2i, while Ī
˜

= 〈In
˜

: n < ω〉 are as in Definition 4.6(2). We say that Ī
˜

exemplifies the simplicity of p(2i) above p ↾ 2i.

18



Note 4.10. (1) Suppose that α ≤ ω2 and 〈αn : n < ω〉 is an increasing

sequence of ordinals with supn<ω αn = α. Further suppose that 〈qn : n < ω〉

is a sequence such that

(i) qn ∈ Pαn [P ′
αn

] for all n,

(ii) qn+1 ↾ αn = qn.

Then q
def
=

⋃

n<ω qn is a condition in Pα [P ′
α]..

(2) For every α < ω2 we have 
Pα “Q
˜

α is proper.”

(3) If α ≤ ω2 and p, p′ are such that p ≤apr p
′ ∈ P ′

α, then

Rp′ = {q ∈ Rp : q ≥ p′}.

(4) If p ≤apr p
′ ∈ P ′, then δ∗(p) = δ∗(p′).

Notation 4.11. (1) Given γ < ω2 even. We let g
˜

γ be a Pγ-name for the

dominating real added by Q
˜

γ .

(2) Suppose that β < α ≤ ω2 and A ⊆ P ′
α. We define

A ↾ β
def
= {s ↾ β : s ∈ A}.

(3) For α ≤ ω2 and J ⊆ P ′
α, we say that J is ≤pr-open iff

(∀q ∈ J)(∀p ≥pr q) (p ∈ J).

We say that J is ≤pr-dense above p ∈ P ′
α iff

(∀q ∈ P ′
α) [q ≥pr p =⇒ (∃r ∈ J) (r ≥pr q).].

Observation 4.12. Suppose that β < α ≤ ω2 and p ∈ P ′
α. Further suppose

that J ⊆ P ′
α is ≤pr-open and ≤pr-dense above p.

Then J ↾ β is ≤pr-open ≤pr-dense above p ↾ β.
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Observation 4.13. Suppose that α ≤ ω2 and p ≤ q ∈ Pα, and let as define

r as follows:

r(β)
def
=

{

p(β) if β ∈ (EV EN ∩ Dom(p))
q(β) otherwise,

letting Dom(r) = Dom(q). Then r ∈ Pα and r has the following properties:

(i) p ≤pr r ≤apr q

(ii) ¬(q ↾ α 
 “r(α) = q(α)”) =⇒ α ∈ Dom(p).

(iii) If there is δ∗ such that for all β ∈ Dom(q) we have 
Pβ
“lt(q) = δ∗,

then for all such β we have 
Pβ
“lt(r) = δ∗.

Notation 4.14. Suppose that α ≤ ω2 and p ≤ q ∈ Pα. Then r defined as

in Observation 4.13 is denoted by intr(p, q).

Claim 4.15. Given α ≤ ω2 and p ∈ P ′
α. Then

p 
Pα “Rp is a ccc partial order”.

(More is true, see Lemma 6.6.)

Proof of the Claim. By induction on α, for all p ∈ P ′
α simultaneously.

There are two eventful cases of the induction.

α = β + 1, β even. Note that Rp ⊆ Rp↾β ∗ {τ
˜

∈ UM
˜

: τ
˜

≥ p(β)} is a

dense suborder. (Or see the proof of Claim 5.1 (1)α
e case α = β∗ + 1 and β∗

even.)

cf(α) = ℵ0. Given {ri : i < ω1} ⊆ Rp. For i < ω1 let

Fi
def
= {β ∈ Dom(p) : ¬(ri ↾ β 
 “ri(β) = p(β)”)}.

Without loss of generality, {Fi : i < ω1} forms a ∆-system with root F ∗,

and now the conclusion follows by the induction hypothesis. ⋆4.15
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Claim 4.16. Suppose that α ≤ ω2 and q, r ∈ P ′
α are such that p ≤apr r

and p ≤pr q. Let us define r + q by letting Dom(r + q) = Dom(q) and for

β ∈ Dom(r + q)

(r + q)(β)
def
=

{

r(β) if β EV EN ∈ Dom(r)
q(β) otherwise.

Then r + q ∈ Rq and r + q ≥pr r.

Proof of the Claim. The proof is by induction on α, for all conditions in

P ′
α simultaneously. The eventful case of the induction is

α = β + 1, β even.

We need to prove that (r + q)(β) is simple above (r + q) ↾ β.

Case 1. β ∈ Dom(r).

Let 〈I
˜

n : n < ω〉 exemplify that r(β) is simple above r ↾ β. For n < ω let

J
˜

n
def
= {s+ [(r + q) ↾ β] ↾ EV EN : s ∈ I

˜
n}.

By the induction hypothesis we have that (r + q) ↾ β forces J
˜

n to be a

countable subset of R[(r+q)↾β]↾EV EN . We finish by noticing that it is also

forced by (r + q) ↾ β that J
˜

n is predense in R[(r+q)↾β]↾EV EN .

Case 2. β /∈ Dom(r).

Let now 〈I
˜

n : n < ω〉 exemplify that q(β) is simple above q ↾ β. Let for

n < ω

K
˜

n
def
= {z ∈ R[(r+q)↾β]↾EV EN : (∃s ∈ I

˜
n)[z ≥ s]},

and let J
˜

n be countable predense ⊆ K
˜

n. It is easily seen that 〈J
˜

n : n < ω〉

exemplify that (r + q)(β) is simple above (r + q) ↾ β.

⋆4.16

Note 4.17. In the notation of Claim 4.16, r + q = (r ↾ EV EN) + q.

Notation 4.18. Suppose that p and q are as in Claim 4.16, and R ⊆ Rp.

Then R + q
def
= {r + q : r ∈ R}.
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5 Properness

Claim 5.1. Given α ≤ ω2. The following holds.

(0)α Suppose 2i < α and q ∈ P ′
2i determines τ

˜
= (tτ˜ , T

τ
˜ ) to degree n.

Then q ↾ EV EN determines τ
˜

to degree n.

(1)α P ′
α is a ≤pr-dense subset of Pα.

(2)α Suppose that N ≺ (H(χ),∈) countable, {p, α, Q̄, Q̄′} ⊆ N , where

p is some element of P ′
α. Further assume that J

˜
∈ N is forced by p to be

a ≤pr-open ≤pr-dense above p subset of {q ∈ P ′
α : p ≤pr q}, and u is finite

⊆ ODD∩Dom(p), while ǫ > 0. In addition, suppose that for γ ∈ u we have a

Pγ-name τ
˜

γ (not necessarily in N) such that p ↾ γ 
 “τ
˜

γ is finite ⊆ T
˜

γ
N∩ω1

”.

Let τ̄
˜

def
= 〈τ

˜
γ : γ ∈ u〉.

Then there is q ∈ P ′
α such that

(∗)α
p,q,N,J

˜
,u,ǫ,τ̄

˜
meaning



































































































(i) q ≥pr p,
(ii) q is (N,P ′

α)-generic, moreover,
(ii)+ q is the limit of a ≤pr -increasing sequence
〈qn : n < ω〉 such that for every I

˜
∈ N

forced by q to be ⊆ P ′
α open dense,

⋃

n<ω(I
˜
∩Rqn + q ∩N) is forced by q to be

predense above q,
while q0 ≥pr p and each qn ∈ N.

(iii) For all γ ∈ u and x
˜

with q ↾ γ 
 “x
˜
∈ τ

˜
γ”,

q ↾ γ 
 “f
˜

q(γ)(x
˜
) < f

˜

p(γ)(x
˜

↾ (δ∗(p) + 1)) + ǫ”
(iv) δ∗(q) = N ∩ ω1 and
(v) q ∈ J

˜
.

Notation 5.2. Suppose that (∗)α
p,q,N,J

˜
,u,ǫ,τ̄

˜
holds for some appropriate values

of α, p, q, N, J
˜
, u, ǫ, τ̄

˜
, and that 〈qn : n < ω〉 is a sequence as in the definition

of (∗)α
p,q,N,J

˜
,u,ǫ,τ

˜
. We say that 〈qn : n < ω〉 exemplifies that (∗)α

p,q,N,J
˜
,u,ǫ,τ̄

˜
holds.

Proof of the Claim. The proof is by induction on α, proving (0)α, (1)α and

(2)α simultaneously. However, we shall formulate four additional statements

to help us carry the induction. These statements are denoted by (1)α
e , (1)+,α,
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(1)α
o and (2)+,α. We shall prove by induction on α that (0)α, (1)α

e , (1)+,α,

(1)α
o , and (2)+,α hold. As (2)+,α is clearly a strengthening of (2)α and (1)+,α

of (1)α, this suffices.

Description of (1)α
e , (1)+,α, (1)α

o and (2)+,α.

(1)α
e Assume that α = β + 1 and β is even, while p ∈ Pα is such that

p ↾ β ∈ P ′
β, and p forces J

˜
⊆ P ′

α to be ≤pr-open and ≤pr-dense above p.

Further assume that N ≺ (H(χ),∈) is countable and {p, β, Q̄, Q̄′, J
˜
} ⊆ N .

Suppose (∗)β
p↾β,r,N,J

˜
↾β,u,ǫ,τ̄

˜
for some appropriate u, τ̄

˜
and ǫ.

Then q
def
= r∪{(β, p(β))} ∈ P ′

α and q ≥pr p. If p ∈ P ′
α, then (∗)α

p,q,N,J
˜
,u,ǫ,τ̄

˜
.

(1)+,α Suppose that p ∈ Pα, β ≤ α and r ∈ P ′
β are such that for

some p′ ∈ P ′
β with p′ ≥pr p ↾ β and some appropriate N, J

˜
, ǫ, τ̄

˜
we have

(∗)β
p′,r,N,J

˜
,u,ǫ,τ̄

˜
. Then there is q ∈ P ′

α such that q ↾ β = r and q ≥pr p.

(1)α
o Suppose that α = β+1 and β is odd. GivenN ≺ (H(χ),∈) countable

such that α, Q̄, Q̄′ ∈ N and let J
˜
, u, ǫ and τ̄

˜
be as in the assumptions of (2)α.

Let δ
def
= N ∩ ω1. Let {I

˜
n : n < ω} enumerate all Pβ-names of open dense

subsets of Q
˜

β which are elements of N . Further assume that 〈rn : n < ω〉

exemplifies that (∗)β
p↾β,r,N,J

˜
↾β,u∩β,ǫ,τ̄

˜
↾β holds.

Now assume that 〈pn : n < ω〉 is a sequence of conditions in P ′
α with the

following properties:

(a) pn ↾ β = rn and pn ∈ N .

(b) pn ≤pr pn+1.

(c) There is a series Σn<ωǫn with Σn<ωǫn < ǫ, such that for each n < ω the

following statement ⊕ is forced by Pβ:

⊕
def
=











“f
˜

pn+1(β)(x
˜
) < f

˜

pn(β)(x
˜

↾ (δ∗(pn) + 1)) + ǫn”, for all x
˜

with

rn+1 
 “x
˜
∈ w

˜

T
˜

β

δ∗(pn+1)

g
˜

β−1(n) ∪ {y ↾ (δ∗(pn+1 + 1)) : y ∈ τ
˜

β}”.

(e) r 
Pβ
“pn+1(β) ∈ I

˜
n”.
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Then the following defines a condition q in P ′
α:

We let Dom(q) = Dom(r) ∪ {β} and q ↾ β = r. Further let f
˜

q(β)(x
˜
) be

f
˜

pn(β)(x
˜
)

if for some j
˜

with rn 
 “j
˜
∈ C

˜
pn(β)”, we have

rn 
 “x
˜
∈ w

˜

T
˜

β
j

g
˜

β−1(n) ∪ {y ↾ (δ∗(pn) + 1) : y ∈ τ
˜

β}”

and let it be

Σn<ωf
˜

pn(β)(x
˜

↾ (δ∗(pn) + 1))

if r 
 “x
˜
∈ T

˜
β
δ ”.

We let C
˜

q(β) def
= (

⋃

n<ω C
˜

pn(β)) ∪ {δ}. Let Ψ
˜

q(β) def
=

⋃

n<ω Ψ
˜

pn(β).

Moreover,

(∗)α
p,q,N,u∪{β},J

˜
,ǫ,τ̄

˜
.

(2)+,α For every β ≤ α and p,N, J
˜
, u, ǫ, τ̄

˜
as in the hypothesis of (2)α, and

r ∈ P ′
β such that (∗)β

p↾β,r,N,J
˜

↾β,u∩β,ǫ,τ̄
˜

↾β, there is q ∈ P ′
α such that (∗)α

p,q,N,J
˜
,u,ǫ,τ̄

˜
and q ↾ β = r.

Proof of (0)α, (1)α
e , (1)+,α, (1)α

o , and (2)+,α.

α = 0. Trivial.

α = β∗ + 1 and β∗ is even.

(0)α Without loss of generality, 2i = β∗. Suppose that the claim is not

true. Applying (1)β∗

, there are q1, q2 ≥pr q ↾ EV EN both in P ′
β∗ , and q1, q2

force contradictory statements about τ
˜

to degree n, while determining it.

But then q1 + q and q2 + q both extend q and force contradictory information

on a fact which q already determines.

(1)α
e Hence β = β∗. It is easily seen that q ∈ Pα and q ≥pr p. By the

choice of r, in order to see that q ∈ P ′
α we only need to check that p(β) is

simple above q ↾ β. Given n < ω. Let

I
˜

def
= {s ∈ Pβ : s determines p(β) to degree n}.

Hence I
˜
⊆ Pβ is forced by p ↾ β to be open dense above p ↾ β, and certainly

I
˜
∈ N . Let I

˜
′ def

= I
˜
∩ P ′

β. By the induction hypothesis (1)β, it is forced by
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p ↾ β that I
˜
′ is an open dense subset of P ′

β. So, by the choice of r as a limit

of a purely increasing sequence 〈rm : m < ω〉, (see (ii)+) we have that

I
˜

n
def
=

⋃

m<ω

(I
˜
′ ∩ (Rrm + r) ↾ EV EN ∩N)

is forced by r ↾ EV EN to be predense above r ↾ EV EN . Certainly it is

also forced by r that I
˜

n is countable and consists of conditions which are in

R(q↾β)↾EV EN , so I
˜

n is as required. This shows that q ∈ P ′
α.

Suppose that p ∈ P ′
α. As we have 
Pβ

“Q
˜

β is ccc”, it follows by the

usual arguments that q is (N,Pα)-generic. As we have just proved that P ′
α

is ≤pr-dense ⊆ Pα, by the choice of 〈rn : n < ω〉 we can find a subsequence

〈rnk
: k < ω〉 such that choosing qk

def
= rnk

∪ {(β, p(β))} we’ll have shown

that (ii)+ from the definition of (∗)α
p,q,N,J

˜
,u,ǫ,τ̄

˜
holds. If u ⊆ ODD ∩ α, then

in fact u ⊆ β, so (iii) holds as well, by the choice of r. It is also easily seen

that (iv) and (v) hold, noticing that J
˜

↾ β is ≤pr-dense and ≤pr-open above

p ↾ β.

(1)+,α Given p ∈ Pα. Without loss of generality, β = β∗. Now apply (1)α
e

to r ∪ {(β∗, p(β∗))}.

(1)α
o Follows by the induction hypothesis, as β is even.

(2)+,α Without loss of generality, β = β∗. We let q
def
= r ∪{(β, p(β))}. By

(1)α
e it follows that (∗)α

p,q,N,J
˜
,u,ǫ,τ̄

˜
holds.

α = β∗ + 1 and β∗ is odd.

(1)α
e Does not apply.

(1)+,α Follows by the induction hypothesis (1)+,β∗

.

(1)α
o Hence β∗ = β. This is like the proof of Claim 2.8, but we also get

to use Claim 2.11. We first show that 
Pβ
“q(β) ∈ Q

˜
β”. It is easily seen that


Pβ
“C
˜

q(β) is a closed subset of δ + 1 with the last element δ”.

It is also easy to see, by the choice of 〈pn : n < ω〉, that Pβ forces that Ψ
˜

q(β)

is a countable set of promises, and that Γ
˜
∈ Ψ

˜
q(β) =⇒ δ ∈ C

˜
(Γ
˜
) (because the

promises are in N), and C
˜

(Γ
˜
) ⊇ C

˜
q(β) \ min(C

˜
(Γ
˜
)). We have to check that

Pβ forces f
˜

q(β) to be a well defined function.
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All information in the next 3 paragraphs is either true or forced by r to

be true, and which one is the case is clear from the context:

For x
˜
∈ Dom(f

˜

q(β)) for which f
˜

q(β)(x
˜
) is defined by the first clause of its

definition, the fact that f
˜

q(β)(x
˜
) is well defined, follows from the fact that

pn are increasing. For those x
˜

∈ Dom(f
˜

q(β)) for which f
˜

q(β)(x
˜
) is defined

by the second clause of the definition, we have r 
 “x
˜
∈ T

˜
β
δ ”. Hence x

˜
is a

Pβ−1-name (this is where we use the fact that T
˜

β is a Pβ−1-name.) We define

a Pβ−1-name h
˜

of a function from ω to ω by h
˜
(n) = m iff x

˜
↾ (δ∗(pn) + 1) is

the m-th element of the increasing enumeration of T
˜

β
δ∗(pn).

By the definition of g
˜

β−1 we have that for all but finitely many n, it is

forced by Pβ that h
˜
(n) < g

˜
β−1(n). Hence for all but finitely many n we have

that ⊕ from (c) in (1)α
o holds for x

˜
in question. Hence f

˜

q(β)(x
˜
) is well defined.

Now it is also obvious that f
˜

q(β) is forced to be a partial monotonically

increasing function into Q. We can also see that the domain of f
˜

q(β) is forced

to be
⋃

i∈C
˜

q(β) T
˜

β
i , as this follows by the fact that 
Pβ−1

“g
˜

β−1 diverges to ∞.”

The rest is easy to check.

(2)+,α By the induction hypothesis, without loss of generality we have

β∗ = β and u = {β∗}. For n < ω let ǫn
def
= ǫ/2n+2.

Let δ
def
= N ∩ ω1. By Fact 2.7, we can find a sequence 〈pn : n < ω〉 which

satisfies (a)-(e) in the statement of (1)α
o , where we have chosen 〈rn : n < ω〉

to exemplify (∗)β
p↾β,r,N,J

˜
↾β,u∩β,ǫ,τ̄

˜
↾β.

α a limit ordinal. Both (1)α
e and (1)α

o are vacuously true. The following

proof proves both (1)+,α and and (2)+,α. Given p− ∈ Pα and β ≤ α.

Case 1. cf(α) = ℵ0.

Let 〈αn : n < ω〉 be a sequence in N which is increasing and cofinal in

α, with α0 = β. Let p
def
= p0 ≥pr p

− ↾ β be such that p0 ∈ P ′
β. Without loss

of generality, p0 ∈ N . Let 〈un : n < ω〉 be an increasing sequence of finite

subsets of ODD ∩N ∩ ω2, with
⋃

n<ω un = N ∩ODD ∩ ω2. Let δ
def
= N ∩ ω1.

Let 〈δn : n < ω〉 be an increasing sequence of ordinals, cofinal in δ, and such

that δ0 = δ∗(p). We are assuming that the assumptions of (2)+,α hold.

By induction on n < ω we shall construct two sequences 〈qn : n < ω〉

and 〈pn : n < ω〉 such that
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(A) p0 = p and q0 = r.

(B) pn ∈ P ′
α ∩N and qn ∈ P ′

αn
.

(C) δ∗(pn) ≥ δn.

(D) (∗)αn

pn,qn,N,J
˜

↾αn,un∩αn,ǫ,τ̄
˜

↾αn
.

(E) pn+1 ≥pr pn.

(F) qn+1 ↾ αn = qn and pn+1 ≥pr p
− ↾ αn+1 and pn+1 ↾ αn = qn.

The induction goes through without problems. We now take q =
⋃

n<ω qn.

Case 2. cf(α) = ℵ1.

The conclusion follows by the induction hypothesis.

⋆5.1

Remark 5.3. Claim 5.1 in particular implies that P is a proper forcing

notion.

Claim 5.4. (1) For all α < ω2 we have

(i) ∅ 
Pα “|Q
˜

α| has ℵ2-pic∗”

(ii) ∅ 
Pα “2ℵ0 = ℵ1”.

(iii) P
′′

α
def
= {p ∈ P ′

α : (∀i ∈ Dom(p)) [p(i) is a name from H<ℵ1(Ord)]} is

dense in P ′
α.

(2) P has ℵ2 − cc.

Proof of the Claim. The proof uses Fact 2.6 and is like the corresponding

proof for countable support iterations, [Sh -f VIII, §2], which we quoted as

Fact 2.5. Of course, notice that ccc trivially implies ℵ2-pic∗. ⋆5.4

Lemma 5.5. It is possible to arrange the bookkeeping so that

V P |= “there are no Suslin trees (in fact, all Aronszajn trees are special).”

Proof of the Lemma. This is standard, by V |= “2ℵ1 = ℵ2” and Fact 2.6.

⋆5.5
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6 Sweetness revisited

Notation 6.1. Suppose that α ≤ β ≤ ω2 and p, q ∈ P ′
β. We say

(0) Suppose p ≤ q. We write p(α) 6= q(α) iff ¬(q ↾ α 
 “q(α) = p(α)”).

(1) p ≤+ q iff p ≤ q and for all α even with p(α) 6= q(α), we have that t
˜

q(α)

is an object tq(α), not just a name.

(2) p ≤+
apr q iff [p ≤apr q and p ≤+ q].

(3) ≥+ and ≥+
apr are defined in the obvious manner.

(4) R+
p

def
= {r ∈ Rp : r ≥+

apr p}.

Each R+
p will be a sweetness model.

Claim 6.2. Suppose that α ≤ ω2 and p ≤apr q ∈ P ′
α. Then for some q+ ∈ P ′

α

we have p, q ≤+
apr q

+.

Proof of the Claim. By induction on α. The only eventful case of the

induction is the case when α = β + 1 for some β even. As p(β) is simple

above p ↾ β and q ↾ β ∈ Rp↾β, we can find z ∈ Rp↾β with z ≥apr q and

such that z decides the value of t
˜

p(β). By the induction hypothesis we find

z+ ∈ R+
z such that z+ ≥apr p ↾ β, q ↾ β, z. We define t by letting

t
def
= {η : z+


 “η ∈ t
˜

p(β)”},

and let q+ def
= z+ ∪ {(β, (t, T

˜
p(β)))}. ⋆6.2

Definition 6.3. Suppose that α̂ ≤ ω2 and p ∈ P ′
α̂ with Dom(p) ⊆ EV EN .

We define:

(1) For r ∈ Rp we let Dom∗
p(r)

def
= {β ∈ Dom(p) : r(β) 6= p(β)}.

Dom∗

p(r) is the domain of r in Rp.
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(2) A sequence x̄ is called an assignment for p if for some α > sup(Dom(p)),

which we denote by α(x̄), we have

x̄ = 〈〈Aγ
m : m < ω〉 : γ ∈ Dom(p) ∪ {α}〉

and each Aγ
m is a directed subset of R+

p↾γ, while
⋃

m<ω A
γ
m is dense in R+

p↾γ; or

if x̄ has an initial segment with domain (Dom(p) ∪ {α′}) which has the just

mentioned properties.

We use the notation x̄Aγ
m to denote x̄(γ,m).

The intended meaning of an assignment is an enumeration of equivalence classes of R+
p↾γ

for γ in

Dom(x̄).

(3) For a ∈ [ω2]
≤ℵ0 , we define

FAa
def
= {〈(βj, tj) : j < j∗〉 : j∗ < ω& βj ∈ a ∩ EV EN & βj are

increasing & tj is a finite subtree of <ω2}.

The intended meaning of FAa is to be a formal E0-equivalence class.

(4) For y ∈ FADom(p), we let

Ay
p

def
= {r ∈ R+

p : Dom∗
p(r) = {β : (∃t)((β, t) ∈ Rang(y))} &

(β, t) ∈ Rang(y) =⇒ tr(β) = t}.

(5) ȳ is a formal 0-canonical assignment for p if for some α > sup(Dom(p)),

which we denote by α(ȳ), we have

ȳ = 〈ȳγ = 〈yγ
m : m < ω〉 : γ ∈ Dom(p) ∪ {α}〉

and {yγ
m : m < ω} is a list, possibly with repetitions, of FADom(p↾γ), for

γ ∈ Dom(p)∪{α(ȳ)}; or if ȳ has an initial segment of domain (Dom(p)∪{α′})

which has the just mentioned properties.

A formal 0-canonical assignment gives a list of formal E0-equivalence classes. The main definition of

this section, Definition 6.5, will deal with formal En-equivalence classes.

(6) An assignment x̄ is a 0-canonical assignment for p if for some formal 0-

canonical assignment ȳ for p, we have x̄Aγ
m ⊆ Ayγ

m
p , for all γ ∈ Dom(p)∪{α(ȳ)}

and m < ω. We let without loss of generality α(x̄)
def
= α(ȳ).
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Claim 6.4. Suppose that p ∈ P ′
α̂ and β < α̂, while Dom(p) ⊆ EV EN .

Suppose that ȳ is a formal 0-canonical assignment (assignment, 0-canonical

assignment) for p. Then ȳ is a formal 0-canonical assignment (assignment,

0-canonical assignment) for p ↾ β.

Proof of the Claim. Check, looking at (2), (5) and (6) of Definition 6.3.

⋆6.4

Definition 6.5. By simultaneous induction on α̂ ≤ ω2 we define the follow-

ing notions (a)–(d) and prove Lemma 6.6:

(a) For a ∈ [α̂]≤ℵ0 , sets FEn(a) for n < ω. The elements of FEn(a) are

called formal equivalence classes.

These are intended as formal En-equivalence classes.

(b) For a ∈ [α̂]≤ℵ0 , we define

(1) For b E a ∈ [α̂]≤ℵ0 , a function Fb,a :
⋃

n<ω FEn(a) →
⋃

n<ω FEn(b).

F is intended as a restriction to a smaller domain.

(2) Functions Projn2
n1

(a) : FEn2(a) → FEn1(a), for n1 ≤ n2 < ω.

(c) For a ∈ [α̂]≤ℵ0 , we define functions Hisa and Basea by defining

(i) Hisa(Υ̂) for Υ̂ ∈
⋃

n<ω FEn(a).

His stands for history.

(ii) Basea(Υ̂) for Υ̂ ∈
⋃

n<ω FEn(a).

(d) For p ∈ P ′
α̂ with Dom(p) ⊆ EV EN and an assignment x̄ for p we define

when x̄ is a canonical assignment for p.

(e)

(I) For p ∈ Pα̂ and n < ω we define typep,n
x̄ : R+

p → FEn(a), for

a ∈ [α̂]≤ℵ0 . Here x̄ is a canonical assignment for p.
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(II) For p, x̄ as in (I), we define an equivalence relation Ep,n
x̄ on R+

p .

Lemma 6.6. Suppose that p ∈ P ′
α̂ with Dom(p) ⊆ EV EN , and x̄ is a

canonical assignment for p. Then

(1)α̂

Bp,x̄
def
= (R+

p ,
⋃

m<ω

Aα(x̄)
m , Ep,n

x̄ )n<ω

is a sweetness model.

(2)α̂,β Suppose that β ≤ α̂. Then Bp↾β,x̄ < Bp,x̄.

(3)α̂ For b E a ∈ [α̂]≤ℵ0 , we have that Fb,a is a totally defined function.

∗

We proceed to give the inductive definition and proof.

α̂ = 0. In this case p = ∅ and a = ∅. We let

(a) FEn(∅)
def
= {〈n, 0, 0, ∅, ∅, ∅, ∅, ∅, ∅〉} for n < ω.

(b)

(1) F∅,∅ is the identity.

(2) Projn2
n1

(∅) : FEn2(∅) → FEn1(∅) is given by

Projn2
n1

(∅)(〈n2, 0, 0, ∅, ∅, ∅, ∅, ∅, ∅〉)
def
= 〈n1, 0, 0, ∅, ∅, ∅, ∅, ∅, ∅〉,

for n1 ≤ n2 < ω.

(c)

(i) His∅(〈n, 0, 0, ∅, ∅, ∅, ∅, ∅, ∅〉)
def
= {〈n1, 0, 0, ∅, ∅, ∅, ∅, ∅, ∅, ∅〉 : n1 ≤ n}

for n < ω.

(ii) Base∅(〈n, 0, 0, ∅, ∅, ∅, ∅, ∅, ∅〉)
def
= ∅.

(d) Any 0-canonical assignment for ∅ is a canonical assignment.
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(e)

(I) For n < ω we let type∅,n∅ (∅)
def
= 〈n, 0, 0, ∅, ∅, ∅, ∅, ∅, ∅〉.

(II) For n < ω, we let ∅E∅,n
∅ ∅.

Proof of the Lemma. [6.6, case α̂ = 0]. Trivial. ⋆6.6,α̂=0

α̂ = β̂ + 1. We first consider (a), (b) and (c) above. Fix a ∈ [α̂]≤ℵ0 .

Case 1. [β̂ is odd] or [β̂ is even & β̂ /∈ a].

(a) For n < ω, let FEn(a)
def
= FEn(a ∩ β̂).

(b)

(1) For b E a ∈ [α̂]≤ω2 and n < ω, we let Fb,a
def
= Fb∩β̂,a∩β̂.

(2) For n1 ≤ n2 < ω, let Projn2
n1

(a)
def
= Projn2

n1
(a ∩ β̂).

(c)

(i) Hisa
def
= Hisa∩β̂ .

(ii) Basea
def
= Basea∩β̂.

Case 2. (main case) β̂ is even and β̂ ∈ a.

(a) For n < ω,

FEn(a)
def
= FEn(a ∩ β̂) ∪ {〈n, 1, β̂,Υ, t, w, u, k̄, ε̄〉 : (∗) holds },

where for (∗) to hold it means that the following 6 items are

satisfied:

1. Υ ∈ FEk(a ∩ β̂) for some k ≥ n (the equivalence class of the initial

segment),

2. (∃m̂) (t is a subtree of <ω2 of height m̂),

3. w ⊆ {0, . . . , n−1} (the places where there is an extension in the corresponding

equivalence class)
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4. u ⊆ {(η,m) : η ∈ <n2 and m ∈ w} (for m ∈ w, the witness that the

m-th equivalence class in the enumeration produces to show that T
˜

r(β̂) is nowhere

dense),

5. k̄ = 〈(km,Υm) : m ∈ w〉 is such that

(∀m ∈ w) [km < ω & Υm ∈ FEkm(a ∩ β̂)]

(the sequence of k’s for the equivalence classes of the projections),

6. ε̄ is an increasing finite sequence with Rang(ε̄) ⊆ a∩EV EN

(the coordinates where the equivalence class lives).

We let for Υ̂ ∈
⋃

n<ω FEn(a),

Υ̂
def
= 〈n[Υ̂], o[Υ̂], β [Υ̂],Υ[Υ̂], t[Υ̂], w[Υ̂], u[Υ̂], k̄[Υ̂], ε̄[Υ̂]〉.

(b)

(1) We define Fb,a by cases:

Subcase 1. a = b.

Fb,a is the identity.

Subcase 2. b 6= a and Υ̂ ∈
⋃

n<ω FEn(a ∩ β̂).

Fb,a(Υ̂) = Fb,a\{β̂}(Υ̂).

Subcase 3. None of the Subcases 1 and 2 hold.

Fb,a(Υ̂) = Fb,a\{β̂}(Υ
[Υ̂]).

(2) For n1 ≤ n2 < ω we let
(

Projn2
n1

(a)
)

(Υ2) = Υ1 iff

Subcase 1. Υ2 ∈ FEn2(a∩ β̂) and Υ1 =
(

Projn2
n1

(a ∩ β̂)
)

(Υ2).

Subcase 2. new Υ2 /∈
⋃

n<ω FEn(a ∩ β̂) but Υ2 ∈ FEn2(a) and

Υ1 satisfies (α)-(η) below, if possible:

(α) n[Υ1] = n1, while o[Υ1] = 1 and β [Υ1] = β̂

(β) Υ[Υ1] = (Projn2
n1

(a ∩ β̂))(Fa∩β̂,a(Υ2)),

(γ) t[Υ1] = t[Υ2],

(δ) w[Υ1] = w[Υ2] ∩ n1,

(ε) u[Υ1] = u[Υ2] ∩ {(η,m) : η ∈ <n12 & m ∈ w[Υ1]},

(ζ) k̄[Υ1] = k̄[Υ2] ↾ w[Υ1],
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(η) ε̄[Υ1] = ε̄[Υ2].

Subcase 3. If Fb,a(Υ) has not been defined by any of the two

subcases above, we leave it undefined.

(c)

(i) Hisa(Υ̂) is given by

Hisa(Υ̂) = {Υ̂}∪
⋃

n1≤n[Υ̂]

Hisa\{β̂}(Fa\{β̂},a(Projn
[Υ̂]

n1
(a))(Υ̂))

∪
⋃

m∈w[Υ̂]

Hisa\{β̂}((Projn
[Υ̂]

m (a \ {β̂}))(Υ[Υ̂]).

(ii) Basea(Υ̂) = {(β [Υ], n1) : Υ ∈ Hisa(Υ̂) & n1 ≤ n[Υ̂]}.

We go on to define (d), (e) for the case α̂ = β̂ + 1.

(d) Let x̄ be a 0-canonical assignment for p ∈ P ′
α̂ (so we are assuming

Dom(p) ⊆ EV EN).

Subcase 1. β̂ /∈ Dom(p).

x̄ is a canonical assignment for p iff x̄ is a canonical assignment

for p ↾ β̂.

Subcase 1. β̂ ∈ Dom(p).

x̄ is a canonical assignment for p if x̄ is a canonical assignment

for p ↾ β̂ and 〈x̄Aβ̂
m : m < ω〉 is an enumeration of all Ep↾β̂,n

x̄↾β̂
-

equivalence classes for n < ω.

(e) For n < ω and x̄ a canonical assignment for p, we define the func-

tion typep,n
x̄ : R+

p → FEn(a) by describing typep,n
x̄ (r) for r ∈ R+

p .

Subcase 1. β̂ /∈ Dom∗
p(r) or β̂ /∈ Dom(p).

We let typep,n
x̄ (r)

def
= typep↾β̂,n

x̄ (r ↾ β̂).

Subcase 2. β̂ ∈ Dom∗
p(r).

We shall have typep,n
x̄ (r) = Υ̂ for some Υ̂ ∈ FEn(a). We define Υ̂

by defining its 9 coordinates

〈n[Υ̂], o[Υ̂], β [Υ̂],Υ[Υ̂], t[Υ̂], w[Υ̂], u[Υ̂], k̄[Υ̂], ε̄[Υ̂]〉.
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We’ll have n[Υ̂] def
= n, o[Υ̂] def

= 1, and β [Υ̂] def
= β̂. Furthermore,

t[Υ̂] = tr(β̂). Arriving to the heart of the matter,

w[Υ̂] def
= {m < n : r ↾ β̂ has an extension in x̄Aβ̂

m},

while

u[Υ̂] def
= {(η,m) : η ∈ <n2 & m ∈ w[Υ̂]&

for some q ∈ x̄Aβ̂
m we have q 
 “η /∈ T

˜
r(β̂)”},

k̄[Υ̂] = 〈〈km(r ↾ β̂), typep↾β̂,m
x̄ (r ↾ β̂)〉 : m ∈ w[Υ̂]〉, where

km(r ↾ β̂)
def
= min

{

k :
(

∀q ∈ (r ↾ β̂)/Ep↾β̂,k
x̄

)

(∃q′ ∈ x̄Aβ̂
m) (q′ ≥ q)

}

.

The fact that such numbers km(r ↾ β̂) are well defined, is a part

of the induction hypothesis (see Definition 2.13). Let

k[Υ̂] def
= Max({km(r ↾ β̂) : m < n} ∪ {n}).

We’ll have

Υ[Υ̂] = typep↾β̂,k[Υ̂]

x̄ (r ↾ β̂).

Finally, ε̄[Υ̂] is the increasing list of Dom∗
p(r).

To see that the definition is well posed, notice that r ↾ β̂ ∈ R+

p↾β̂
.

(II) For r′, r′′ ∈ R+
p , we let

r′Ep,n
x̄ r′′ iff typep,n

x̄ (r′) = typep,n
x̄ (r′′).

Proof of the Lemma. [6.6, case α̂ = β̂ + 1].

Without loss of generality, β = β̂. We prove (2)α̂,β, and (1)α̂ follows. By

comparing with Definition 2.14 (which is [Sh 176, 7.6]), we can see that

Bp,x̄ is isomorphic to the canonical sweetness model on R+
p↾β ∗UM

˜
with

respect to Bp↾β,x̄. Notice that UM is a homogeneous forcing notion.

The conclusion follows from the Composition Lemma 2.17 (which is

[Sh 176, 7.6-7.9]).

(3)α̂ Follows from (2)α̂,β. ⋆6.6,α̂=β̂+1

α̂ is a limit ordinal.
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(a) For a ∈ [α̂]≤ℵ0 , we consider two cases:

Case 1. sup(a) = α < α̂.

FEn(a) is already defined by the induction hypothesis.

Case 2. sup(a) = α̂.

We let FEn(a)
def
=

⋃

α∈a FEn(a ∩ α).

(b) We again consider two cases.

Case 1. sup(a) = α < α̂.

(1) For b E a, we have already defined Fb,a.

(2) Functions Projn2
n1

(a) are defined by the induction hypothesis,

for n1 ≤ n2 < ω.

Case 2. sup(a) = α̂.

(1)

Subcase 1. b = a.

We define Fa,a as the identity.

Subcase 2. b 6= a.

Suppose that n < ω and Υ̂ ∈ FEn(a). Let α < α̂ be large

enough such that Υ̂ ∈ FEn(a ∩ α) and b E (a ∩ α). We let

Fb,a(Υ̂)
def
= Fb,a∩α(Υ̂).

(2) For n1 ≤ n2 < ω and Υ̂ ∈ FEn2(a), we define

(Projn2
n1

(a))(Υ̂)
def
= (Projn2

n1
(a ∩ α))(Υ̂)

if Υ̂ ∈ FEn2(a ∩ α).

(c)

(i) For Υ̂ ∈
⋃

n<ω FEn(a), we define Hisa(Υ̂)
def
= Hisa∩α(Υ̂) for any

α < α̂ such that Υ̂ ∈
⋃

n<ω FEn(a ∩ α).

(ii) For Υ̂ ∈
⋃

n<ω FEn(a), we let Basea(Υ̂)
def
= Basea∩α(Υ̂) for α

such that Υ̂ ∈
⋃

n<ω FEn(a ∩ α).

(d) x̄ is a canonical assignment for p ∈ P ′
α̂ iff for all β < α̂ we have

that x̄ is a canonical assignment for p ↾ β.
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(e)

(I) Suppose that n < ω. For r ∈ R+
p we let

typep,n
x̄ (r)

def
= typep↾α,n

x̄ (r ↾ α)

for any α < α̂ such that Dom∗
p(r) ⊆ α.

(II) For n < ω and r′, r′′ ∈ R+
p , we let

r′Ep,n
x̄ r′′ iff (r′ ↾ α)Ep↾α,n

x̄ (r′′ ↾ α)

for any α < α̂ such that Dom∗
p(r

′) ∪ Dom∗
p(r

′′) ⊆ α.

As a part of the inductive definition in the case α̂ a limit ordinal, we

prove the following

Observation 6.7. Objects in items (a)–(e) above are well defined.

Proof of the Observation. We have to check several spots where

the definition in the case of α̂ limit might run into a contradiction. We

start by (b) Case 2(1), Subcase 2. We assume that α1 ≤ α2 < α̂, while

Υ̂ ∈ FEn(a∩α1)∩FEn(a∩α2), and b E a∩α1. We can prove by induction

on α ∈ [α1, α2] that Fb,a∩α1(Υ̂) = Fb,a∩α(Υ̂). Note the definition in the

case that α̂ is a successor ordinal, item (b)(1), Subcase 2 of Case 2.

We move on to (b), Case 2(2).

Suppose that α1 ≤ α2 < α̂ and Υ̂ ∈ FEn2(a ∩ α1) ∩ FEn2(a ∩ α2). We

can prove by induction on α ∈ [α1, α2] that

(Projn2
n1

(a ∩ α1))(Υ̂) = (Projn2
n1

(a ∩ α))(Υ̂).

Observe the way the definition is set up in Subcase 1. of Case 2. (b)(2)

of the definition for the case of α̂ being a successor ordinal.

We go to item (c), part (i), which is proved similarly, observing the set

up of the definition in the case of α̂ being a successor ordinal, Case 2,

item (c) (i). Similarly for item (c), part (ii).

37



We still have to check items (d) and (e), which is done in a similar

fashion. ⋆6.7

Proof of the Lemma. [6.6, case α̂ a limit].

First suppose cf(α̂) = ℵ0. We prove (2)α̂,β for a given β ≤ α̂. Without

loss of generality, β < α̂. Let 〈αn : n < ω〉 be an increasing sequence of

ordinals with α0 = β and supn<ω αn = α̂. Considering Bp↾αn,x̄ (n < ω),

we finish by the induction hypothesis and Fact 2.18.

If cf(α̂) ≥ ℵ1, the conclusion follows by the induction hypothesis. ⋆6.6

This ends the inductive definition.

∗ ∗ ∗

Claim 6.8. Suppose that α ≤ ω2 and p ∈ P ′
α. Then

(1)α The function i given by i(r) = r ↾ EV EN is a complete embedding of

Rp into Rp↾EV EN .

(2)α Rp↾EV EN is a complete suborder of Rp.

Proof of the Claim. We prove (1)α-(2)α together, by induction on α. The

proof is straightforward. ⋆6.8

Notation 6.9. For α ≤ ω2, we let P ′
α ↾ EV EN

def
= {p ↾ EV EN : p ∈ P ′

α}.

Definition 6.10. Suppose that α ≤ ω2 and p ≤pr q ∈ P ′
α. Further suppose

that p′ = p ↾ EV EN and q′ = q ↾ EV EN , while Dom(q′) = Dom(p′).

Notice: q′ and p′ are not necessarily the same name, as the names of q(β) for β even might depend

on coordinates of q outside of Dom(p).

By induction on α we define (A)α and prove (B)α below:
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(A)α Suppose that x̄ is a canonical assignment for q′ with α(x̄) ≤ α. We

define x̄ : p′ by letting

x̄ : p′
def
= 〈x̄:p′Aβ

m : β ∈ [Dom(x̄) ∩ (Dom(p′)] ∪ {α(x̄)})〉,

and for β ∈ Dom(x̄ : p′), for the unique n < ω and Υ ∈ FEn(Dom(p′)) such

that
x̄Aβ

m = {z ∈ R+
q′↾β : typeq′↾β,n

x̄ (z) = Υ},

we have
x̄:p′Aβ

m
def
= {ž ∈ R+

p′↾β : typep′↾β,n
x̄:p′ (ž) = Υ}.

(B)α

Claim 6.11. Suppose that x̄ is a canonical assignment for q′ with α(x̄) ≤ α.

Then x̄ : p′ is a canonical assignment for p′.

Proof of the Claim. Check Definition 6.5. ⋆6.11

7 More partial orders

Claim 7.1. Suppose that α ≤ ω2, while p ≤ p∗ ∈ P ′
α and q1, q2 ∈ Rp are such

that q1, q2 ≤ p∗. Then there is p∗∗ ≥ p∗ and q∗ ∈ Rp such that q1, q2 ≤apr q
∗

and q∗ ≤ p∗∗, and p∗∗ ∈ Pα′ .

Proof of the Claim. The proof is by induction on α. The eventful case of

the induction is when α = β + 1 for some even β ∈ Dom(p) such that

¬(q1 ↾ β 
 “q1(β) = p(β)” and q2 ↾ β 
 “q2(β) = p(β)”).

We can find p′ ≥ p∗ ↾ β in P ′
β which forces a value to all

v
˜

0
def
= t

˜
p∗(β), v

˜
1

def
= t

˜
q1(β), v

˜
2

def
= t

˜
q2(β).

By the induction hypothesis, possibly extending p′, there is q′ ∈ Rp↾β such

that q1 ↾ β, q2 ↾ β ≤apr q
′ and q′ ≤ p′. We know that q′ ↾ β forces the
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existence of a predense set J
˜

in Rp↾β such that each condition in J
˜

forces

all of the above values. Possibly increasing p′ we can assume that there are

r0, r1, r2 ∈ Rp↾β forcing a value to v
˜

0, v
˜

1, v
˜

2 respectively, and all below p′. By

the induction hypothesis, possibly extending p′ again, there is q ∈ Rp↾β which

is above q′ and r0–r2, and below p′. Let

q∗
def
=

q ∪ {(β, ({η : q 
 “η ∈ t
˜

q1(β) ∪ t
˜

q2(β)”},
T
˜

q1(β) ∪ T
˜

q2(β)))},

and p∗∗
def
= p′ ∪ {(β, q∗(β))}. We need to check that q∗(β) is simple above q

(so above p′), which follows as ql(β) is simple above ql ↾ β for l = 1, 2. ⋆7.1

Corollary 7.2. If α, p, q1, q2 are as in Claim 7.1, then q1, q2 are compatible

in P ′
α iff q1, q2 are compatible in Rp.

Definition 7.3. Suppose that α ≤ ω2 and u ⊆ Dom(p). We define

(1) GRp,u
def
= {q ∈ Rp : Dom∗

p(q) ∩ u} = ∅.

(2) R+
p,u

def
= {q ∈ R+

p : Dom∗
p(q) ⊆ u}.

We make GRp,u and R+
p,u into partial orders by letting them inherit the

order from Rp.

Claim 7.4. Suppose that α ≤ ω2, while p ∈ P ′
α, u ⊆ Dom(p) and r ∈ R+

p,u

and s ∈ GRp,u. Then the following is a well defined condition in Rp: for

β ∈ Dom(p) we let

(r ∪ s)(β)
def
=











r(β) if β ∈ Dom∗
p(r)

s(β) if β ∈ Dom∗
p(s)

p(β) otherwise.

In addition, r ∪ s ≥apr r, s.

40



Proof of the Claim. The proof is by induction on α, and the only inter-

esting case is when α = β + 1 for some even β ∈ Dom(p). Note that exactly

one of the clauses in the definition of (r ∪ s)(β) applies. Let us work with

the first one, as the other cases are similar.

Hence β ∈ Dom∗
p(r) and (r ∪ s) ↾ β 
 “(r ∪ s)(β) = r(β)”. So we

have that (r ∪ s) ↾ β ≥apr r ↾ β and r ≥pr r ↾ β. By Claim 4.16 (2)α,

r ∪ s = [(r ∪ s) ↾ β + r] is well defined, and the rest of the Claim is easily

verified. ⋆7.4

Notation 7.5. We extend our definition of “r + s” from 4.16 to apply also

to r, s as in Claim 7.4, letting r + s
def
= r ∪ s.

Definition 7.6. Suppose that Q is a forcing notion and M ≺ (H(χ),∈, <∗)

is countable. We say that an increasing sequence s̄ = 〈sn : n < ω〉 of

conditions in Q ∩M is a generic enough sequence for (Q,M) iff for every

formula ϕ with parameters in M , there are infinitely many n such that

(α) Either there is no s ≥ sn in Q such that ϕ(s) holds, or

(β) ϕ(sn+1).

Claim 7.7. Suppose α ≤ ω2, while p ∈ P ′
α and u ⊆ Dom(p).

(1) Suppose that s ∈ GRp,u and r ∈ R+
p are compatible. Then there are

s′ ∈ GRp,u and r′ ∈ R+
p,u such that s ≤ s′ and r ≤ r′ + s′.

(Hence r is compatible with every s′′ ≥ s′ for which s′′ ∈ GRp,u.)

(2) Suppose that {u, p, Q̄, Q̄′, α} ⊆ M ≺ (H(χ),∈, <∗) is countable and

s̄ = 〈sn : n < ω〉 is a generic enough sequence for (GRp,u,M). Further

suppose γ ∈ M ∩ (α + 1) and r ∈ R+
p↾γ ∩M is compatible with all sn.

Then there is r′ ∈ R+
p↾γ,u ∩M such that for all large enough n we have

r ≤ r′ + sn.
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Proof of the Claim. (1) The proof is by induction on α. The interesting

case is when α = β + 1 for some even β ∈ Dom(p).

By the induction hypothesis, there are q′ ∈ R+
p↾β,u∩β and t′ ∈ GRp↾β,u∩β

such that s ↾ β ≤ t′ and r ↾ β ≤ q′ + t′.

We first work in the case that (q′ + t′) 
 “r(β) ≥ s(β)”. If β /∈ u this

means that s ↾ β 
 “s(β) = p(β)” and r ↾ β 
 “r(β) = p(β)”. We define

r′
def
= q′ + p, which is well defined by Claim 4.16 (2)α. It is easily seen that

r′ ∈ R+
p,u. Similarly we define s′

def
= t′+p, and check that r′, s′ are as required.

If β ∈ u, we define r′
def
= q′ + r (note that q′ ∈ R+

r↾β), and s′
def
= t′ + p, and

check that r′, s′ are as required.

It remains to be seen what happens in the case that it is not true that

(q′ + t′) 
 “r(β) ≥ s(β)”. As r and s are compatible, we can by Claim 7.1

find z ∈ Rp such that z ≥ r, s. By Claim 6.2, we can find z+ ≥+ z, hence

z+ ∈ R+
p and z+ ≥ s. Now we can apply the first part of the proof to z and

s, and derive the desired conclusion.

If s′′ ≥ s′ and s′′ ∈ GRp,u, then r ≤ r + s′′ and s′′ ≤ r + s′′, so r, s′′ are

compatible.

(2) Without loss of generality, α = γ. Let

I
def
= {s′ ∈ GRp,u : (∃r′ ∈ R+

p,u) (r ≤ r′ + s′)}.

Hence I ∈ M . Let n be such that when choosing sn we have asked if there

was s′ ≥ sn with s′ ∈ I
˜
, and if possible we chose sn+1 to be some such s′. (In

other words, either there is no s′ ≥ sn with s′ ∈ I, or sn+1 ∈ I.) As r, sn are

compatible, by (1), we have chosen sn+1 so that for some r′ ∈ R+
p,u we have

r ≤ r′ + sn. ⋆7.7

Definition 7.8. Suppose that α ≤ ω2 and 〈sn : n < ω〉 and u,M are as

above. Further suppose that r ∈ R+
s0↾α is compatible with all sn and r ∈ M .

(1)

We define Dom(r/s̄)
def
= Dom∗

s0↾α(r) ∩ u, and for β ∈ Dom(r/s̄)

(r/s̄)(β)
def
= (tr(β),

⋃

n<ω

{η ∈ <ω2 : (r + sn) ↾ β 
 “η ∈ T
˜

r(β)”}).
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(2) Suppose that n < ω, we define Dom(r/sn)
def
= Dom∗

s0↾α(r) ∩ u and for

β ∈ Dom(r/sn)

(r/sn)(β)
def
= (tr(β),

⋃

m<n

{η ∈ <ω2 : (r + sm) ↾ β 
 “η ∈ T
˜

r(β)”}).

(3) Suppose that I is a subset of Pα. We let

I/s̄
def
= {q/s̄ : q ∈ I & q/s̄ defined }.

Definition 7.9. For α ≤ ω2, p ∈ P ′
α ↾ EV EN and q1, q2 ∈ R+

p which are

compatible, we define q1 ⊕ q2 by letting

(q1 ⊕ q2)(β)
def
= (tq1(β) ∪ tq2(β), T

˜
q1(β) ∪ T

˜
q2(β)).

Remark 7.10. If p, q1, q2 are as above, then q1⊕ q2 is the lub of q1, q2 in Rp.

(this can be proved by induction on α).

Claim 7.11. Suppose α ≤ ω2 and s̄ = 〈sn : n < ω〉, and u,M are as above.

(1)α If r ∈ R+
s0↾α ∩M is compatible with all sn, then r/s̄ ∈ P ′

α, and for all

large enough n we have r/sn ∈ P ′
α.

(2)α Given q, r ∈ R+
s0↾α ∩M compatible with all sn, then

[q/s̄ ≥ r/s̄] ⇐⇒ [(∀∗n) (q + sn ≥ r + sn)].

(3)α Suppose that I
˜
∈ M and r ∈ R+

s0↾α∩M is compatible with all sn, while

r 
 “I
˜

countable predense ⊆ Rr.”

Then

r/s̄ 
 “I
˜
/s̄ countable predense ⊆ Rr/s̄.”
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(4)α Suppose that α = β+1 for some β ∈ Dom(r/s̄). Further suppose that

r ∈ R+
s0↾α ∩M and q ∈ R+

s0↾β ∩M are compatible with all sn, while

n < ω and

r ↾ β 
 “q determines r(α) to degree n.”

Then

(r/s̄) ↾ β 
 “q/s̄ determines (r/s̄(α)) to degree n.”

For r, q as above, if t is such that q 
 “T
˜

r(β) ∩ <n2 = t”, then

q/s̄ 
 “T
˜

(r/s̄)(β) ∩ <n2 = t”.

(5)α Suppose that x̄ is a canonical assignment for s0 ↾ EV EN . Further

suppose that 〈pn : n < ω〉 ∈ M is a ≤pr-increasing sequence in P ′
α with

limit p, such that p ≤pr s0 and Dom(p) = u. Then for every n < ω

(∀∗l < ω)
[type

s0↾(EV EN∩α),n
x̄ ((r + sl) ↾ (EV EN ∩ α)) =

type
pl↾(EV EN∩α),n
x̄:pl

((r/s̄+ pl) ↾ (EV EN ∩ α))].

Proof of the Claim. We prove the claim by induction on α, proving (1)α–

(5)α simultaneously. The only eventful case of the induction is when α = β+1

for some β even.

(1)α By (1)β, we have that (r/s̄) ↾ β ∈ P ′
β. Without loss of generality,

β ∈ Dom∗
s0↾α(r)∩u. Given G which is Pβ-generic and contains (r/s̄) ↾ β.

We have

(a) T
˜

(r/s̄)(β)
G ∩ <ht(tr(β))2 = tr(β), as the corresponding statement about

T
˜

r(β) is forced by each (r + sn) ↾ β.

(b) Similarly, T
˜

(r/s̄)(β)
G is perfect.

(c) We show that T
˜

(r/s̄)(β)
G is nowhere dense.

Given η ∈ <ω2 and n∗ such that (r + sn∗) ↾ β 
 “η ∈ T
˜

r(β)”.

At some stage n ≥ n∗ we have asked if there is s ≥ sn with

s ∈ GRp,u ∩M such that for some q ≥ r + sn with q ∈ R+
p , and

ν ⊲ η, we have q 
 “ν /∈ T
˜

r(β)” and q ≤ q′ + s for some q′ ∈ R+
p,u.
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By Claim 7.7(1), there was some such s which was chosen as sn+1.

In particular q+ sm ≥ r+ sm for any m ≥ n+ 1. So for no m can

we have (r + sm) ↾ β 
 “ν ∈ T
˜

r(β)”. Hence ν /∈ T
˜

(r/s̄)(β).

(d) We show that r/s̄ is simple above (r/s̄) ↾ β.

Let Ī
˜

= 〈I
˜

n : n < ω〉 exemplify that r(β) is simple above r ↾ β.

Without loss of generality, I
˜

∈ M . By (3)β+(4)β we have that

〈I
˜

n/s̄ : n < ω〉 exemplify that r/s̄ is simple above (r/s̄) ↾ β.

(2)α Again without loss of generality we have β ∈ Dom(r/s̄). First we prove

the direction from right to left.

By the induction hypothesis, (q/s̄) ↾ β ≥ (r/s̄) ↾ β. By the assumption,

tq(β) ⊇ tr(β). Suppose that for some n large enough and η ∈ <ω2, we

have

(r + sn) ↾ β 
 “η ∈ T
˜

r(β)”.

As q + sn ≥ r + sn, we have

(q + sn) ↾ β 
 “η ∈ T
˜

q(β)”.

Hence (q/s̄) ↾ β 
Pβ
“T
˜

(q/s̄)(β) ⊇ T
˜

(r/s̄)(β)”.

Suppose that for some η ∈ <ht(tr(β))2 and n large enough we have

(q + sn) ↾ β 
 “η ∈ T
˜

q(β)”. As q + sn ≥ r + sn, we have η ∈ tr(β).

In the direction from left to right, by the induction hypothesis we have

that

(∀∗n)[(q + sn) ↾ β ≥ (r + sn) ↾ β].

By the assumption, tq(β) ⊇ tr(β). Suppose that for some n∗ large

enough, and η ∈ <ω2, we have (q + sn∗) ↾ β 
 “η ∈ T
˜

r(β)”. Let

m
def
= lg(η). Let Ī

˜
= 〈I

˜
n : n < ω〉 ∈ M exemplify that r(β) is simple

above r ↾ β. Hence, it is forced by r ↾ β that for some z ∈ I
˜

m∩M which

is compatible with q we have z 
 “η ∈ T
˜

r(β)”. Notice that such a z is

compatible with every sn. Hence z/s̄ is defined and by (4)β we have

z/s̄ 
 “η ∈ T
˜

(r/s̄)(β)”. We also have that z/s̄ ≥ (q ↾ β)/s̄ ≥ (r ↾ β)/s̄,

and

q ↾ β/s̄ 
 “η ∈ T
˜

r/s̄(β) =⇒ η ∈ T
˜

q/s̄(β)”.
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So z/s̄ 
 “η ∈ T
˜

q/s̄(β)”. As z/s̄ and q + sn are compatible for all large

enough n, it must be that for some n∗ large enough

(q + sn∗) ↾ β 
 “η ∈ T
˜

q(β)”

(by the genericity of s̄).

Now suppose that for some η ∈ <ht(tr(β))2 and n large enough we have

(q+ sn) ↾ β 
 “η ∈ T
˜

q(β)”. Hence η ∈ T
˜

q/s̄(β), so, as q/s̄ ≥ r/s̄, it must

be that η ∈ tr(β).

(3)α Certainly r/s̄ forces I
˜
/s̄ to be countable, and by (2)α we also know

that r/s̄ 
 “I
˜
/s̄ ⊆ Rr/s̄”.

We show that

r/s̄ 
 “I
˜
/s̄ predense ⊆ Rr/s̄”.

Let I
˜

= {ql : l < ω}. Suppose that z∗ ∈ Rr/s̄, and we wish to show that

z∗ is compatible with some ql/s̄. Without loss of generality, z∗ ∈ R+
r/s̄.

If ql/s̄ is defined and z∗ ↾ β is compatible with (ql/s̄) ↾ β, the only way

that z∗ and ql/s̄ can turn out to be incompatible, is that one of the

following happens:

(i) Neither is tz(β) an end extension of t(q/s̄)(β), nor the other way

around,

(ii) or tz(β) is an end extension of t(q/s̄)(β), but for some η ∈ <ht(tz(β))2

which is not in tz(β), we have

(z ↾ β) ⊕ (ql/s̄) ↾ β 
 “η ∈ T
˜

ql/s̄(β) ∪ T
˜

z(β)”.

(iii) or tq/s̄(β) is an end extension of tz(β), but for some η ∈ <ht(tq(β))2

which is not in tq(β) we have

(z ↾ β) ⊕ (ql/s̄) ↾ β 
 “η ∈ T
˜

ql/s̄(β) ∪ T
˜

z(β)”.

When choosing sn, for some large enough n we have asked if there is

z ∈ P ′
α with Dom(z) = Dom∗

s0↾α(r) ∩ u and such that
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(A) z ↾ β ≥ (r/sn) ↾ β

(B) (∀γ ∈ Dom(z))(∃tγ) (
Pγ “t
˜

z(γ) = tγ”).

(C) For all l ≤ n one of the following happens

(a) z ↾ β is incompatible with (ql/sn) ↾ β,

(b) Neither tz(β) is an end extension of tql(β), nor is tql(β) end

extension of tz(β).

(c) tz(β) is an end extension of tql(β), but for some η ∈ <ht(tz(β))2

which is not in tz(β), we have

(z ↾ β) ⊕ (ql/sn) ↾ β 
 “η ∈ T
˜

ql/sn(β) ∪ T
˜

z(β)”.

(d) tql(β) is an end extension of tz(β), but for some η ∈ <ht(tq(β))2

which is not in tql(β) we have

(z ↾ β) ⊕ (ql/sn) ↾ β 
 “η ∈ T
˜

ql/sn(β) ∪ T
˜

z(β)”.

If after some n∗ the answer to the above question was never positive,

this means that z∗ could not have been used as a witness, which means

that z∗ is compatible with some ql/s̄.

Suppose that the answer was positive at some large enough n, and

let this be exemplified by some z. Without loss of generality we have

z ∈ M . We can find m > n such that with qm in place of ql above,

neither of the first two possibilities happen. So suppose the third one

does. Hence for some k < m we have that

z ↾ β + (qm + sk) ↾ β 
 “η ∈ T
˜

qm(β) ∪ T
˜

z(β)”

for some η ∈ ht(tz(β))2\ tz(β). But this is a contradiction with z ↾ β being

compatible with qm + sk.

(4)α Similar.

(5)α For l < ω let

Υ∗
l

def
= type

s0↾(α∩EV EN),n
x̄ ((r + sl) ↾ (α ∩ EV EN)) and

Υ′
l

def
= type

pl↾(α∩EV EN),n
x̄:pl↾(α∩EV EN)((r/s̄+ pl) ↾ (α ∩EV EN)).
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We show that for large enough l we have Υ∗
l = Υ′

l, by comparing the

corresponding 9 coordinates. It is easy to see that for any l we have

that

n[Υ∗

l
] = n[Υ′

l
] = n, o[Υ∗

l
] = o[Υ′

l
] = 1, β [Υ∗

l
] = β [Υ′

l
] = β,

t[Υ
∗

l
] = t[Υ

′

l
] = tr(β) and

ǭ[Υ
∗

l
] = ǭ[Υ

′

l
] = Dom(r/s̄) ∩ α in the increasing enumeration.

We now prove that for large enough l we have w[Υ∗

l
] = w[Υ′

l
]. Given

m < n.

When choosing sl’s, we have infinitely often asked if there is s′ ≥pr sl

and q ≥ r such that

(i) s′ ∈ GRs0,u,

(ii) (q + s′) ↾ (β ∩ EV EN) ∈ x̄Aβ
m

(iii) For some l′ ≥ l we have (q/s′) ↾ (β ∩EV EN) ∈ x̄:pl↾(β∩EV EN)Aβ
m,

and if possible, we have chosen some such s′ as sl+1.

Possibility 1. For some l large enough we chose sl+1 to satisfy (i)−(iii)

above with sl+1 in place of s′.

Hence there is q which witnesses the choice. By (2)α, we have q/s̄ ≥ r/s̄,

so m ∈ w[Υ∗

l
] ∩ w[Υ′

l
].

Possibility 2. For no large enough l could we have chosen sl+1 so to

satisfy (i) − (iii) above with sl+1 in place of s′.

Suppose that l is large enough and m ∈ w[Υ∗

l
], as exemplified by q.

Without loss of generality q ∈M . Hence q ≥apr (r+ sl) ↾ (β ∩EV EN)

and q ∈ R+
s0↾(β∩EV EN). We have (q/s̄) ↾ β ≥ (r/s̄) ↾ β. Let q, i be

such that x̄Aβ
m = z/E

s0↾(β∩EV EN),i
x̄ . Without loss of generality we have

z ∈M . Hence, by the induction hypothesis we have

x̄:pl↾(β∩EV EN)Aβ
m = (z/s̄ + pl) ↾ (β ∩ EV EN)/E

pl↾(β∩EV EN),i
x̄:pl

.

By the induction hypothesis, for large enough l we have q/s̄ ∈ x̄:plAβ
m.

This is a contradiction. Hence m /∈ w[Υ∗

l
] for all large enough l.
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We similarly show that m /∈ w[Υ′

l
] for all large enough l.

Other parts of the claim are checked similarly.

⋆7.11

8 Obtaining ♣ in V P

Claim 8.1. V P |= ♣.

Proof of the Claim.

Definition 8.2. Suppose that N̄ is a sequence of elementary submodels of

〈H(χ),∈, <∗
χ〉 and ā a finite sequence in N̄(0). We say that an x ∈ H(χ) is

chosen canonically for (N̄ , ā), if the choice of x depends only on the isomor-

phism type of (N̄ , ā) as a submodel of (H(χ),∈, <∗
χ,

⇀
a), where

⇀
a is a finite

list of constant symbols (interpreted in N̄(0) as ā).

Main Claim 8.3. (1) Given a sequence N̄ = 〈Nn : n < ω〉 of count-

able elementary submodels of 〈H(χ),∈, <∗
χ〉 with Nn ∈ Nn+1 for all n, and

Q̄, Q̄′, τ
˜
∈ N0 and p ∈ N0 ∩ P such that

p 
 “τ
˜
∈ [ω1]

ℵ1”.

Let ā = 〈τ
˜
, p, Q̄, Q̄′〉 and let δ

def
=

⋃

n<ω(Nn ∩ ω1).

Then there is

(a) a strictly increasing sequence β̄ = β̄(N̄ , ā) = 〈βn : n < ω〉 with

supn<ω βn = δ, which is chosen canonically for (N̄ , ā) and

(b) a condition r⊕ = r⊕
N̄,ā

≥ p, with r⊕ 
 “{βn : n < ω} ⊆ τ
˜
”.

(2) Values of βn
def
= β̄(N̄ , ā)(n) for n < ω, and the fact that there is an r⊕ ≥ p

such that r⊕ 
 “{βn : n < ω} ⊆ τ
˜
” only depend on the isomorphism type of

(N̄, ā) as a submodel of (H(χ),∈, <∗
χ,

⇀
a).

Proof of the Main Claim. (1).

Let Nω
def
=

⋃

n<ω Nn.
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Subclaim 8.4. Suppose that N̄ and ā are as in the statement of the Main

Claim 8.3 and Nω as defined above. Let ξN̄
def
= otp(Nω ∩ ω2 ∩ODD) and

let h be the order isomorphism exemplifying this. Let 〈u∗n : n < ω〉 be

the <∗
χ-first increasing sequence of finite sets such that un

def
= h−1(u∗n) ⊆ Nn

and
⋃

n<ω u
∗
n = ξN̄ . Let {ϕn : n < ω} be the <∗

χ-first enumeration of the

first order formulas with parameters in Nω, each formula appearing infinitely

often, and such that the parameters of ϕn are contained in Nn.

Then there are sequences

p̄ = p̄N̄,ā = 〈pn : n < ω〉 and q̄ = q̄N̄ ,ā〈qn : n < ω〉

chosen canonically for N̄ and ā such that

(i) q0 = p0 = p.

(ii) pn+1 ≥pr pn.

(iii) pn ≤apr qn.

(iv) pn, qn ∈ Nn+1.

(v) For all n and α ∈ un, we have that

pn+1 ↾ α 
 “f
˜

pn+1(α)(x) < f
˜

pn(α)(x ↾ (δ∗(pn) + 1) + 1/2n”,

for all x ∈ w
˜

T
˜

α
δ∗(pn+1)

g
˜

α−1(n) .

(vi) For every n

either

(α) There is no p′ ≥pr pn and q′ ≥apr p
′ such that ϕn(p′, q) and (v)

above holds with p′ in place of pn+1,

or

(β) (p′n, qn) are the <∗
χ-first elements of H(χ) which exemplify that

(α) does not happen, with p′n in place of p′ and qn in place of q.
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Proof of the Subclaim. The proof is straightforward. Construct pn, qn
by induction on n, the step at the stage n = 0 being given. At the stage

n + 1, we are given pn and we consider ϕn. If option (α) holds, just let

pn+1 = qn+1
def
= pn. If (β) holds, then find (pn+1, qn+1) as described in (β),

and note that pn+1, qn+1 ∈ Nn+2. ⋆8.4

Subclaim 8.5. Suppose that N̄ , ā and p̄ = p̄N̄,ā are as in the Claim 8.4.

Then there is a canonically chosen condition pω = pN̄,ā such that for all

n we have pn ≤pr pω, while Dom(pω) = Nω ∩ ω2 and δ∗(pω) = Nω ∩ ω1.

Proof of the Subclaim. The same argument as the one used in Claim 5.1

to prove (2)α at the stages α of countable cofinality. ⋆8.5

There is r ≥ p such that r 
 “β ∈ τ
˜
” for some β > δ. By Observation

4.13 and Claim 6.2 there are s0, r
∗ such that

(i) pω ≤pr s0 ≤
+
apr r

∗, and

(ii) [α ∈ Dom(r∗) & ¬(r∗ ↾ α“ 
 r∗(α) = s0(α)”)] =⇒ α ∈ Dom(pω).

(iii) For some β∗ > δ we have r∗ 
 “β∗ ∈ τ
˜
”.

Now let M be countable ≺ 〈H(χ),∈, <∗
χ〉 such that {N̄, s0, r

∗, β∗} ⊆M .

Let v
def
= {α : ¬(r∗ ↾ α 
 “r∗(α) = s0(α)”)}, hence v is finite ⊆ Dom(pω).

Let s̄ = 〈sn : n < ω〉 be a generic enough sequence for (GRs0,Dom(pω),M).

Let x̄ be a canonical assignment for s0 ↾ EV EN .

Definition of β̄ and r⊕.

By induction on n < ω we shall define βn, as well as natural numbers mn

and conditions rn.

n = 0. We let m0 = n0 and β0
def
= Nm0 ∩ ω1.

n + 1. Given is mn and βn.

Let m′ def
= m′

n+1 be the first large enough integer > mn so that

types0↾EV EN,n
x̄ ((r∗+sm′) ↾ EV EN) = type

pm′ ↾EV EN,n
x̄:pm′

((r∗/s̄+pm′) ↾ EV EN)
def
= Υn.

We now consider the formula ψn(x0, x1) saying that
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(I) pm′ ≤pr x0 ≤apr x1 and

(II) x1 
 “γ ∈ τ
˜
” for some γ > {Nm′ ∩ ω1} and

(III) We have typex0↾EV EN,n
x̄:pm′

(x1 ↾ EV EN) = Υn.

Let mn+1 be the first m > m′ such that ϕm = ψn. Hence we have chosen

(pmn+1+1, qmn+1+1) so that ψn((pmn+1+1, qmn+1+1)) holds, as is exemplified by

(s0, r
∗ + sm).

Let rn
def
= (qmn + pω) ↾ EV EN , for n < ω. We shall define r⊕ so that

r⊕ ≥ rn for all n. Hence r⊕ 
 “{βn : n < ω} ⊆ τ
˜
”.

The Main Point

Why does such r⊕ exist? All rn are elements of R+
pω

, and by the definition

of Υn, each has the property that rnE
pω,n
x̄:pω

((r∗/s̄+pω) ↾ EV EN). By Lemma

2.13, there must be ř ∈ Rpω which is a common upper bound to {rn : n < ω}.

Let r⊕
def
= ř + pω.

Proof of the Main Claim continued.

(2) It suffices to observe the following

Observation 8.6. Given N̄ , ā as in Main Claim 8.3. Let p̄ and q̄ be as in

Subclaim 8.4. Let z̄ be a canonical assignment for pω ↾ EV EN . Suppose

that X ∈ [ω]ℵ0 is such that {qn ↾ EV EN : n ∈ X} has an upper bound in

Bpω ,z̄. Suppose that f : (N̄ , ā) → (N̄ ′, ā′) is an isomorphism.

Then

{f(qn ↾ EV EN) : n ∈ X} has an upper bound in B
⋃

n<ω
f(pn),

⋃

n<ω
f(z̄:pn).

⋆8.3

Now we can finish proving Claim 8.1 and so Theorem 3.1. Let

A
def
= (H(χ),∈, <∗

χ, p, τ
˜
, Q̄, Q̄′),

where p, τ
˜
, Q̄, Q̄′ are constant symbols. We arrange ♦ in V in this form:

There is a sequence

〈N̄ δ = 〈N δ
i : i < δ〉 : δ < ω1 limit 〉

such that
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1. N δ
i is a countable elementary submodel of A, with N δ

i ∩ ω1 < δ,

N̄ δ ↾ i ∈ N δ
i+1.

2. N̄ δ is continuously increasing.

3. For every continuously increasing sequence 〈Ni : i < ω1〉 of countable

elementary submodels of A, there is a stationary set of δ such that the

isomorphism type of 〈Ni : i < δ〉 is the same as that of 〈N δ
i : i < δ〉.

For δ < ω1 a limit ordinal, we choose the <∗
χ-first increasing ω-sequence

〈ǫδn : n < ω〉 of ordinals such that supn<ω ǫ
δ
n = δ and ǫδ0 = 0. We define sets

Aδ for such δ as follows. Let N δ def
=

⋃

i<δ N
δ
i .

If N δ ∩ ω1 = δ, pNδ
0 ∈ P ′ ∩N δ

0 and pNδ
0 
 “τ

˜
Nδ

0 ∈ [ω1]
ℵ1”, then

Aδ
def
= Rang(β̄(〈N δ

ǫδ
n

: n < ω〉)).

Otherwise, we let Aδ be the range of any cofinal ω-sequence in δ.

We claim that 〈Aδ : δ limit < ω1〉 is a ♣-sequence in V P .

So suppose that p∗ 
 “τ
˜
∗ ∈ [ω1]

ℵ1” and p ∈ P ′. We fix a continuously

increasing sequence N̄ = 〈Ni : i < ω1〉 of countable elementary submodels

of A such that Q̄ = Q̄N0 , pN0 = p∗, τ
˜

N0 = τ
˜
, Q̄′ = [Q̄′]N0 and N̄ ↾ i ∈ Ni+1 for

all i < ω1. Then

C
def
= {δ < ω1 : δ limit and Nδ ∩ ω1 = δ}

is a club of ω1. Hence there is δ < ω1 such that 〈Ni : i < δ〉 and 〈N δ
i : i < δ〉

have the same isomorphism type. So Aδ is defined by the first clause in its

definition.

Hence, by Main Claim 8.3(2), we have Aδ = Rang(β̄(〈Nǫδ
n

: n < ω〉)),

while r̄(N̄ ↾ δ) has an upper bound, say r⊗. Now r⊗ ≥ p and r⊗ 
 “Aδ ⊆ τ
˜
∗”.

⋆8.1

⋆3.1

Remark 8.7. Note that the club sequence 〈Aδ : δ < ω1〉 we obtained for

the final model, is in fact a sequence in V .
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