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MAXIMAL SUBGROUPS OF FREE IDEMPOTENT GENERATED

SEMIGROUPS OVER THE FULL LINEAR MONOID

IGOR DOLINKA AND ROBERT D. GRAY

Abstract. We show that the rank r component of the free idempotent gen-
erated semigroup of the biordered set of the full linear semigroup full of n× n
matrices over a division ring Q has maximal subgroup isomorphic to the gen-
eral linear group GLr(Q), where n and r are positive integers with r < n/3.

1. Introduction

The full linear monoid of all n × n matrices over a field (or more generally a
division ring) is one of the most natural and well studied of semigroups. This
monoid plays an analogous role in semigroup theory as the general linear group
does in group theory, and the study of linear semigroups [28] is important in a
range of areas such as the representation theory of semigroups [1], [5, Chapter 5],
Putcha–Renner theory of linear algebraic monoids (monoids closed in the Zariski
topology) [30, 35, 37], and the theory of finite monoids of Lie type [29, 31, 32, 33].

The full linear monoid Mn(Q) (where Q is an arbitrary division ring) is an
example of a so-called (von Neumann) regular semigroup. In 1979 Nambooripad
published his foundational paper [26] on the structure of regular semigroups, in
which he makes the fundamental observation that the set of idempotents E(S) of
an arbitrary semigroup carries a certain abstract structure of a so-called biordered
set (or regular biordered set in the case of regular semigroups). He provided an ax-
iomatic characterisation of (regular) biordered sets in his paper, and later Easdown
extended this to arbitrary (non-regular) semigroups [7] showing that each abstract
biordered set is in fact the biordered set of a suitable semigroup. Putcha’s theory
of monoids of Lie type shows that one can view the biordered set of idempotents
of a reductive algebraic monoid as a generalised building [30], in the sense of Tits.
Thus, in the context of reductive algebraic monoids, a natural geometric structure
is carried by the biordered set of idempotents. We shall not need the formal defini-
tion of biordered set here, for more details of the theory of abstract biordered sets
we refer the reader to [18].

The study of biordered sets of idempotents of semigroups is closely related with
the study of idempotent generated semigroups. Here a semigroup is said to be idem-
potent generated if every element is expressible as a product of idempotents of the
semigroup. Such semigroups are in abundance in semigroup theory. For instance,
every non-invertible matrix of Mn(Q) is expressible as a product of idempotent
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matrices [9, 23], and the same result is true for the full transformation semigroup
of all maps from a finite set to itself [20]. More recently, in a significant extension
of Erdos’s result, Putcha [34] gave necessary and sufficient conditions for a reduc-
tive linear algebraic monoid to have the property that every non-unit is a product
of idempotents. Idempotent generated semigroups have received considerable at-
tention in the literature, in part because of the large number of semigroups that
occur in nature that have this property, and also because of the universal property
that they possess: every semigroup embeds into an idempotent generated semi-
group, and if the semigroup is (finite) countable it can be embedded in a (finite)
semigroup generated by 3 idempotents.

For a fixed abstractly defined biordered set E, the collection of all semigroups
whose biordered set of idempotents is (biorder) isomorphic to E forms a category
when one restricts morphisms to those that are one-to-one when restricted to the
set of idempotents. There is an initial object in this category, called the free idem-
potent generated semigroup over E and denoted IG(E), that thus maps onto every
idempotent generated semigroup with biordered set E via a morphism that is one-
to-one on idempotents. Clearly an important step towards understanding the class
of semigroups with fixed biordered set of idempotents E is to study the free objects
IG(E). For semigroup-theoretic reasons, much of the structure of IG(E) comes
down to understanding the structure of its maximal subgroups. Until recently,
very little was known about maximal subgroups of free idempotent generated semi-
groups. In fact, in all known cases, all such maximal subgroups had turned out to
be free groups, and in [25] it was conjectured that this would always be the case.
However, in 2009 Brittenham, Margolis and Meakin [2] gave a counterexample to
this conjecture by showing that the free abelian group of rank 2 arises as a maximal
subgroup of a free idempotent generated semigroup. The proof in [2] makes use
of new topological tools introduced for the study of maximal subgroups of IG(E).
In this new theory in a natural way a 2-complex, called the Graham–Houghton
2-complex GH(E), is associated to a regular biordered set E (based on work of
Nambooripad [26], Graham [12] and Houghton [19]) and the maximal subgroups of
IG(E) are the fundamental groups of the connected components of GH(E). The
2-cells of GH(E) correspond to the singular squares of E defined by Nambooripad
in [26].

More recently, in [15], an alternative approach to the study of maximal subgroups
of free idempotent generated semigroups was introduced. Using Reidemeister–
Schreier rewriting methods originally developed in [36], together with methods from
combinatorial semigroup theory (that is, the study of semigroups by generators and
relations), a presentation for an arbitrary maximal subgroup of IG(E) was given
in [15, Theorem 5]. Then applying this result it was shown that, in fact, every
abstract group arises as a maximal subgroup of IG(E), for an appropriately chosen
biordered set. Moreover, it was shown that every finitely presented group is a
maximal subgroup of a free idempotent generated semigroup over a finite biordered
set E.

Other recent work in the area includes [6] where free idempotent generated semi-
groups over bands are investigated, and it is shown that there is a regular band B
such that IG(B) has a maximal subgroup isomorphic to the free abelian group of
rank 2.
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However, the structure of the maximal subgroups of free idempotent generated
semigroups on naturally occurring biordered sets, such as the biordered set of the
full linear monoidMn(Q) over a division ringQ, remained far from clear. In a recent
paper [3] Brittenham, Margolis and Meakin further developed their topological tools
to study this problem. The main result of [3] shows that the rank 1 component of
the free idempotent generated semigroup of the biordered set of a full matrix monoid
of size n × n, n > 2, over a division ring Q has maximal subgroup isomorphic to
the multiplicative subgroup of Q. This result provided the first natural example of
a torsion group that arises as a maximal subgroup of a free idempotent generated
semigroup on some finite biordered set, answering a question raised in [8]. It is
remarked in [3] that the methods used there seem difficult to extend to higher
ranks. Here we shall extend their result, showing that general linear groups arise
as maximal subgroups in higher rank components.

As mentioned above, the free idempotent generated semigroup over E is the
universal object in the category of all idempotent generated semigroups whose
biordered sets of idempotents are isomorphic to E. Given a semigroup S with set
of idempotents E = E(S) the free idempotent generated semigroup over E is the
semigroup defined by the following presentation.

IG(E) = 〈E | e · f = ef (e, f ∈ E, {e, f} ∩ {ef, fe} 6= ∅)〉. (1.1)

(It is an easy exercise to show that if, say, fe ∈ {e, f} then ef ∈ E. In the defining
relation e · f = ef the left hand side is a word of length 2, and ef is the product
of e and f in S, i.e. a word of length 1.) The idempotents of S and IG(E) are in
natural one-one correspondence (see Proposition 1(ii) below), and we will identify
the two sets throughout. We may now state our main result.

Theorem 1. Let n and r be positive integers with r < n/3, let E be the biordered
set of idempotents of the full linear monoid Mn(Q) of all n × n matrices over an
arbitrary division ring Q, and let W be an idempotent matrix of rank r. Then the
maximal subgroup of IG(E) with identity W is isomorphic to the general linear
group GLr(Q).

Observe here that the condition r < n/3 forces n ≥ 4. Theorem 1 extends
the main result of [3] where Theorem 1 is proved in the case r = 1 and n ≥
3. In particular Theorem 1 shows that arbitrary general linear groups arise as
maximal subgroups of naturally occurring biordered sets. An analogous result for
the full transformation semigroup Tn of all mappings from the set {1, . . . , n} to
itself under composition was recently established in [16] where it is shown how the
standard Coxeter presentation for the symmetric group Sr is encoded by the set
of all idempotents with image size r. Our methods do not extend to higher values
of r, and the problem of describing the maximal subgroups in those cases remains
open (see Section 8 for further discussion of this).

The proof of Theorem 1 is broken down into stages. For each stage of the
proof the initial algebraic problem will be recast in purely combinatorial terms.
At the heart of the proof will be the detailed analysis of various connectedness
conditions satisfied by the structure matrices of the principal factors of the monoid
Mn(Q). Several different notions of connectedness arise, the first of which will
be analysed using a coloured bipartite graph representation, closely related to the
Graham–Houghton graphs employed in [2, 3], while later connectedness conditions
concern graphs obtained in a natural way from occurrences of symbols arising in
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multiplication tables of semigroups of matrices. The fact that these notions of
connectedness are central to the proof reflects the natural geometric and topological
structure underlying the problem, as explored in detail in [2, 3].

The paper is structured as follows. In Section 2 we give the necessary background
on matrix semigroups over division rings and on free idempotent generated semi-
groups, and then we go on to apply results from [2, 3] to write down a presentation
for an arbitrary maximal subgroup of a rank r idempotent in IG(E(Mn(Q))). The
remainder of the paper is concerned with proving that, when r < n/3, the group
that this presentation defines is GLr(Q). This proof is broken down into three
main steps which are explained in Section 3. We work through the main steps of
the proof over Sections 4, 5, 6 and 7. Finally, in Section 8 we discuss some open
problems and possible directions for future research.

2. Preliminaries

Matrix semigroups. Throughout this paper, Q will be an arbitrary fixed division
ring, Mn(Q) will denote the full linear monoid of n × n matrices over Q, and we
shall use Mm×l(Q) to denote the set of all m × l matrices over Q, for positive
integers m, l. We let GLn(Q) denote the general linear group of all invertible n×n
matrices over Q, which is, of course, the group of units of the monoid Mn(Q). We
also choose and fix an arbitrary idempotent W of Mn(Q) of rank r < n/3. Since we
are working over a division ring, which might not be commutative, some care needs
to be taken here with notions like the rank of a matrix. Linear combinations of
rows will always be taken using left scalar multiplication, and linear combinations
of columns will be taken using right scalar multiplication. Thus by the row space
RowA of a matrix A we shall mean left row space, by the column space ColA of
A we shall mean right column space, and by the rank of a matrix we mean the left
row rank of the matrix, which is equal to its right column rank.

With E equal to the biordered set of idempotents of Mn(Q) our aim is to prove
that the maximal subgroup of the free idempotent generated semigroup IG(E)
with identity W is isomorphic to the general linear group GLr(Q). Since any
pair of maximal subgroups in the same D-class of a semigroup are isomorphic, by
Proposition 1(iii) below it follows that without loss of generality we may take

W =

[
Ir 0
0 0

]

where Ir denotes the r × r identity matrix.
In general, important structural information about a semigroup may be obtained

by studying its ideal structure. Since their introduction in [17], Green’s relations
have provided a powerful tool for the investigation of the ideal structure of semi-
groups. Recall that two elements s and t of a semigroup S are said to be R-related
if they generate the same principal right ideal, L -related if they generate the same
principal left ideal, and J -related if they generate the same principal two-sided
ideal, that is

sRt ⇔ sS ∪ {s} = tS ∪ {t}, sL t ⇔ Ss ∪ {s} = St ∪ {t},

sJ t ⇔ SsS ∪ sS ∪ Ss ∪ {s} = StS ∪ tS ∪ St ∪ {t}.

In addition, we have the relations H = R ∩L and D = R ◦L = L ◦ R which is
the join of R and L in the lattice of equivalence relations on S. Given an element
a ∈ S we use R(a, S) to denote its R-class, and similarly we use the notation
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L(a, S), J(a, S), H(a, S) and D(a, S). Let e ∈ S be an idempotent. The set eSe
is a submonoid in S with identity element e, and it is the largest submonoid of S
which has e as identity. The group of units of eSe is the largest subgroup of S with
identity e, and is called the maximal subgroup of S containing e. This maximal
subgroup is precisely the H -class H(e, S) of S that contains the idempotent e.
More background on Green’s relations and their importance in semigroup theory
may be found, for example, in [22].

One particularly important class are those semigroups that do not have any
proper two-sided ideals. A semigroup S is called simple if its only ideal is S itself,
and a semigroup with zero 0 ∈ S is called 0-simple if {0} and S are its only ideals
(and S2 6= {0}). A semigroup is called completely (0-)simple if it is (0-)simple and
has (0-)minimal left and right ideals, under the natural orders on left and right
ideals by inclusion.

Let S be a completely 0-simple semigroup. The Rees theorem [22, Theorem 3.2.3]
states that S is isomorphic to a regular Rees matrix semigroup M0[G; I,Λ;P ] over
a group G, and conversely that every such semigroup is completely 0-simple. Here
G is a group, I and Λ are index sets, P = (pλi) is a regular Λ × I matrix over
G ∪ {0} (where regular means that every row and column of the matrix contains
at least one non-zero entry) called the structure matrix, and S = M0[G; I,Λ;P ]
is the semigroup with elements (I × G × Λ) ∪ {0} and multiplication defined by
(i, g, λ)(j, h, µ) = (i, gpλ,jh, µ) if pλ,j 6= 0, and 0 otherwise.

The importance of 0-simple semigroups comes from the way in which they may
be viewed as basic building blocks of arbitrary semigroups. Indeed, given a J -
class J of a semigroup S we can form a semigroup J0 from J , called the principal
factor of S corresponding to J , where J0 = J ∪{0} and multiplication ∗ is given by
s ∗ t = st if s, t, st ∈ J , and s ∗ t = 0 otherwise. It is well known (see [22]) that J0

is then either a semigroup with zero multiplication, or J0 is a 0-simple semigroup.
Recall that a semigroup S is called (von-Neumann) regular if a ∈ aSa for all a ∈ S.
A semigroup is regular if and only if every R-class (equivalently every L -class)
contains at least one idempotent.

Now let us turn our attention back to the full linear monoid Mn(Q). Linear
semigroups have received a lot of attention in the literature, and much is known
about the structure of the full linear semigroup Mn(Q); see [28, 30]. Let us now
recall some of these basic fundamental facts regarding Mn(Q) that we shall need in
what follows. The semigroup S = Mn(Q) is a (von-Neumann) regular semigroup.
More than this, it is completely semisimple meaning that each of its principal factors
is a completely 0-simple semigroup, and thus by the Rees theorem, each principal
factor of Mn(Q) is isomorphic to some Rees matrix semigroup over a group.

The set of matrices of a fixed rank r ≤ n forms a J -class in the monoid Mn(Q).
In fact, J = D in Mn(Q) and for matrices X,Y ∈ Mn(Q), we have

XDY ⇔ GLn(Q)X GLn(Q) = GLn(Q)Y GLn(Q) (2.1)

⇔ rank(X) = rank(Y ). (2.2)

The maximal subgroups of the D-class of all matrices of rank r are isomorphic to
GLr(Q). Green’s relations R and L in Mn(Q) are described by

XRY ⇔ X GLn(Q) = Y GLn(Q) ⇔ ColX = ColY, (2.3)
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and

XL Y ⇔ GLn(Q)X = GLn(Q)Y ⇔ RowX = RowY. (2.4)

Let Dr be the D-class of Mn(Q) consisting of the rank r matrices, where 1 ≤
r < n, and let D0

r be the corresponding principal factor, which we know is a
completely 0-simple semigroup. Following [3] we now write down a natural Rees
matrix representation for the principal factor D0

r . At the heart of our proof will
be a detailed analysis of the combinatorial properties of the structure matrix Pr of
this Rees matrix semigroup.

Recall that a matrix is said to be in reduced row echelon form (RRE for short)
if the following conditions are satisfied

• all nonzero rows (rows with at least one nonzero element) are above any
rows of all zeros,

• the leading coefficient (the first nonzero number from the left, also called
the pivot) of a nonzero row is always strictly to the right of the leading
coefficient of the row above it, and

• every leading coefficient is 1 and is the only nonzero entry in its column.

Given an r × q matrix A in RRE form we use LC(A) to denote the subset of
{1, . . . , q} indexing the leading columns of the matrix, that is, the columns contain-
ing the leading 1s. If A is an r × q matrix in RRE form, and if A has rank r, then
all of the rows must be non-zero and the leading coefficient in every row is 1, and
therefore A must have exactly r leading columns which are, in order, the trans-
poses of the 1× r standard basis vectors {[1, 0, . . . , 0], [0, 1, . . . , 0], . . . , [0, 0, . . . , 1]}.
Therefore, for every r × q rank r matrix A in RRE form, LC(A) is an r-element
subset of {1, . . . , q}. Dually, given the transpose B of a matrix BT in RRE form,
we use LR(B) to denote the set of numbers indexing the leading rows of B.

Let Yr denote the set of all r×n rank r matrices in RRE form, and let Xr denote
the set of transposes of elements of Yr. The structure of D0

r is described in the
following theorem (see [28]).

Theorem 2. The principal factor D0
r of Mn(Q) is isomorphic to the Rees matrix

semigroup M0(GLr(Q);Xr,Yr;Pr) where the structure matrix Pr = (Pr(Y,X)) is
defined for Y ∈ Yr, X ∈ Xr by Pr(Y,X) = Y X if Y X is of rank r and 0 otherwise.

Given X ∈ Xr and Y ∈ Yr we shall use R(X) to denote the R-class indexed
by X , and L(Y ) to denote the L -class indexed by Y . So, the R-classes of Dr are
indexed by Xr, the L -classes by Yr, and the H -class R(X) ∩ L(Y ) contains an
idempotent if and only if Pr(Y,X) 6= 0 which is true if and only if Y X has rank
r. In this case we use eX,Y to denote the unique idempotent in the group H -class
R(X) ∩ L(Y ).

Free idempotent generated semigroups. Let S be a semigroup, let E = E(S)
be the set of idempotents of S, and let IG(E) be the free idempotent generated
semigroup over E defined by the presentation (1.1). Some fundamental basic prop-
erties of the semigroup IG(E) are summarised in the following statement.

Proposition 1. Let S be a semigroup and E = E(S). The free idempotent gener-
ated semigroup IG(E) has the following properties:

(i) There exists a natural homomorphism φ from IG(E) onto the subsemigroup
S′ of S generated by E.
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(ii) The restriction of φ to the set of idempotents of IG(E) is a bijection onto E
(and an isomorphism of biordered sets). Thus we may identify those two sets.

(iii) φ maps the R-class (respectively L -class) of e ∈ E onto the corresponding
class of e in S′; this induces a bijection between the set of all R-classes (resp.
L -classes) in the D-class of e in IG(E) and the corresponding set in S′.

(iv) The restriction of φ to the maximal subgroup of IG(E) containing e ∈ E (i.e.
to the H -class of e in IG(E)) is a homomorphism onto the maximal subgroup
of S′ containing e.

Proof. The assertion (i) is obvious; (ii) is proved in [26] and [7]; (iii) is a corollary
of [10]; (iv) follows from (ii). �

A presentation for the maximal subgroup of IG(E) containing W . For
the remainder of the article E will denote the set of idempotents of the full linear
monoid Mn(Q). Our interest is in the maximal subgroup H(W, IG(E)) where
IG(E) is defined by the presentation (1.1), and our first task will be to write down
a presentation for this group. The key concept that we need in order to write down
such a presentation is the notion of a singular square, a concept which originally
goes back to work of Nambooripad [26].

Let S be a semigroup with set of idempotents E = E(S). An E-square is a
sequence (e, f, g, h) of elements of E with e R f L g R h L e. Unless otherwise
stated, we shall assume that all E-squares are non-degenerate, i.e. the elements
e, f, g, h are all distinct. An idempotent t = t2 ∈ E left to right singularises the
E-square (e, f, g, h) if

te = e, th = h, et = f and ht = g.

Right to left, top to bottom and bottom to top singularisation is defined similarly
and we call the E-square singular if it has a singularising idempotent of one of
these types.

A biordered set E is called regular if E = E(S) where S is a regular semigroup.
In particular, E(Mn(Q)) is a regular biordered set since the semigroup Mn(Q) is
regular. Recall from [2] that the Graham-Houghton graph of a (regular) biordered
set E is the bipartite graph with vertices the disjoint union of the set of R-classes
of E and the set of L -classes of E, and with a directed (positively oriented) edge
from an L -class L to an R-class R if there is an idempotent e ∈ L ∩ R (and a
corresponding inverse edge from R to L in this case). One then adds 2-cells to this
graph, one for each singular square (e, f, g, h). Given this square we sew a 2-cell
onto this graph with boundary ef−1gh−1. The resulting 2-complex is called the
Graham-Houghton complex of E and we denote it by GH(E).

The following theorem in [2] is based on the work of Nambooripad, and is
the principal tool used in [2] to construct maximal subgroups of free idempotent-
generated semigroups on biordered sets.

Theorem 3. [2] Let E be a regular biordered set. Then the maximal subgroup of
IG(E) containing e ∈ E is isomorphic to the fundamental group π1(GH(E), Le) of
the Graham-Houghton complex of E based at the L -class Le of e.

The above result shows that the maximal subgroups of IG(E) are determined
by relations given by singular squares, when E is a regular biordered set. In fact,
the same is true in the case of arbitrary (non-regular) biordered sets, as is shown
in [15] using Reidemeister–Schreier rewriting methods (see [24, 36]).
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What remains of this section will be dedicated to using Theorem 3 to write
down a presentation for the group H(W, IG(E)). The key task for writing down a
presentation for the fundamental group of the connected component of W in this
2-complex is to to make a good choice of spanning tree for the underlying 1-skeleton
and so this is what we shall turn our attention to now.

We begin by associating a certain bipartite graph with the Rees structure matrix
Pr, and then shall define the spanning tree of the connected component of W in
the 1-skeleton of the Graham–Houghton complex using a certain subtree of this
bipartite graph.

Definition 1. Let Pr = (Pr(Y,X)) where Y ∈ Yr, X ∈ Xr and Pr(Y,X) = Y X if
Y X is of rank r, and 0 otherwise. Let ∆(Pr) denote the bipartite graph with vertex
set Xr ∪ Yr where (X,Y ) is an edge if and only if Pr(Y,X) = Y X = Ir.

Note that there are fewer edges in the graph ∆(Pr) than there are idempotents
in Dr, that is, the edges in this graph just pick out a subset of the idempotents.

The graph ∆(Pr) is the subgraph of the connected component of W in the 1-
skeleton of the Graham–Houghton complex GH(E), with the same vertex set, and
edge set corresponding to the positions of the entries Ir in the structure matrix Pr.
The use of such bipartite graphs as an approach to the study of products of elements
in Rees matrix semigroups is widespread, see for example [12, 13, 14, 19, 21].

Given A1, . . . , Ak, a collection of pairwise disjoint subsets of {1, . . . , n}, we let
I(A1| · · · |Ak) denote the (k × n) matrix with 1 in positions (j, aj) (aj ∈ Aj) for
1 ≤ j ≤ k, and every other entry equal to 0. In particular, given a subset {i1, . . . , ir}
of {1, . . . , n} with i1 < · · · < ir, we use I(i1| · · · |ir) to denote the r×n matrix with
1 in positions (j, ij) for 1 ≤ j ≤ r, and every other entry equal to 0. So the i1 to irth
columns of I(i1| · · · |ir) together form a copy of the r × r identity matrix, and the
other columns are all zero vectors. We call I(i1| · · · |ir) a scattered identity matrix.
Given m ≤ n and {i1, . . . , ir} ⊆ {1, . . . ,m} we use Ir×m(i1| · · · |ir) to denote the
r ×m scattered identity matrix with 1 in positions (j, ij) for 1 ≤ j ≤ r, and every
other entry equal to 0.

Unless otherwise stated, throughout given an r-element subset {i1, . . . , ir} of
{1, . . . , n} we shall adopt the convention that the elements are ordered so that
i1 < · · · < ir.

We group the vertices of ∆(Pr) together depending on their leading rows or
columns. Given X ∈ Xr with LR(X) = {i1, . . . , ir} where i1 < · · · < ir we shall
say that X belongs to the region (i1 < · · · < ir). Similarly, given Y ∈ Yr with
LC(Y ) = {i1, . . . , ir} where i1 < · · · < ir we shall say that Y belongs to the region
(i1 < · · · < ir). Moreover, we let

(i1 < · · · < ir)× (j1 < · · · < jr)

denote the subgraph of ∆(Pr) induced by the set of all vertices X ∈ Xr belonging
to the region (i1 < · · · < ir) together with all vertices Y ∈ Yr belonging to the
region (j1 < · · · < jr). In particular, we let

∆(i1 < · · · < ir) = (i1 < · · · < ir)× (i1 < · · · < ir),

and call these the diagonal regions.
We define a natural order � on the set of r-element subsets of {1, . . . , n}

where {1, . . . , r} � A for every r-element subset of {1, . . . , n}, and given A =
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Figure 1. An example of the � ordering for n = 6, r = 2. The
bold edges correspond to the regions of the graph ∆(Pr) drawn in
Figure 2.

{a1, . . . , ar} 6= {1, . . . , r} with a1 < a2 < · · · < ar we set

{a1, . . . , am−1, am − 1, am+1, . . . , ar} � {a1, . . . , am−1, am, am+1, . . . , ar}

where m ∈ {1, . . . , r} is the smallest subscript such that am 6= m, and then we
take the reflexive transitive closure to obtain the relation �. Clearly this defines
a partial order on the r-element subsets of {1, . . . , n} and this order has a unique
minimal element {1, . . . , r} which lies below every other element of the poset. This
order clearly induces an order on the diagonal regions of the bipartite graph ∆(Pr).
Note that the poset of r-element subsets of {1, . . . , n} under the �-relation has the
property that every non-minimal element p of the poset covers exactly one other
element. That is, for every non-minimal p there is precisely one element q of the
poset such that q ≺ p and there is no element z satisfying q ≺ z ≺ p. In particular,
the Hasse diagram of such a poset is a tree; see Figure 1 for an illustration of this
when n = 6 and r = 2.

Let Tn,r be the subgraph of ∆(Pr) spanned by the edges:

(T1) (I(i1| · · · |ir)T , Y ) where Y ∈ Yr belongs to the region (i1 < · · · < ir);
(T2) (X, I(i1| · · · |ir)) where X ∈ Xr belongs to the region (i1 < · · · < ir); and
(T3) (I(i1| · · · |ir)T , I(i1| · · · |ij−1|ij − 1, ij|ij+1| · · · |ir)) where i1 = 1, i2 = 2, . . . ,

ij−1 = j − 1 but ij 6= j,

where {i1, . . . , ir} ranges through all r-element subsets of {1, . . . , n}.
If one just takes the edges (T1) and (T2) one obtains a bipartite graph whose

connected components are connected subgraphs of the regions ∆(i1 < · · · < ir).
The remaining edges (T3) give exactly one edge connecting every pair of regions
that are adjacent under the � order. In particular this means that the graph
obtained by factoring out the spanning tree by the equivalence relation given by
the diagonal regions is isomorphic to the Hasse diagram of the poset of r-element
subsets of {1, . . . , n} under �.

Each of (T1), (T2) and (T3) is easily seen to define a subset of the edges of
∆(Pr). Moreover, using the observations made above it is easily verified that Tn,r is
a spanning tree for the graph ∆(Pr). An illustration of the spanning tree Tn,r = T6,2
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I(1|2) I(1|2, 3) I(1|3) I(1|3, 4) I(1, 2|3) I(1|4) I(2|3)

I(1|2)T I(1|3)T I(1|4)T I(2|3)T

. . .

. . .

(1 < 2) (1 < 3) (1 < 4) (2 < 3)

(1 < 2) (1 < 3) (1 < 4) (2 < 3)

Figure 2. A partial view of the graph ∆(Pr), where n = 6 and
r = 2, with edges from the spanning tree Tn,r indicated. The bold
lines represent edges of type (T3); the dashed lines those of type
(T2); while the remaining edges are those of type (T1). Note that
the edges (I(i|j), I(i|j)T ) are both of type (T1) and (T2). When
the spanning tree is quotiented out by the diagonal regions we
obtain a graph that is isomorphic to the Hasse graph illustrated
in Figure 1. In particular, the three bold edges between regions in
this figure correspond in the obvious natural way to the three bold
edges in Figure 1.

in the graph ∆(Pr) = ∆(P2) is given in Figure 2. In fact, not only is Tn,r a spanning
tree of ∆(Pr), but it is also easily seen to be a spanning tree of the 1-skeleton of
the connected component of W in the Graham–Houghton complex GH(E). We use
this fact below where we write down a presentation for the group H(W, IG(E)).

In light of Theorem 3 we would now like to characterise the singular squares in
the D-class Dr. It is easy to show in general that if (e, f, g, h) is a singular square
then {e, f, g, h} forms a 2 × 2 rectangular band. In other words, for a square to
stand a chance of being singular it must be a rectangular band. In [3] it is shown
that in the full linear semigroup the converse is also true.

Theorem 4. [3, Theorem 4.3] Every non-trivial rectangular band in Mn(Q) is a
singular square.

Our interest is in the set of singular squares in the D-class Dr. Such a singular
square may be given either by listing the four idempotents that make up that square,
or by giving a quadruple (X,X ′, Y, Y ′) ∈ Xr × Xr × Yr × Yr which specifies the
coordinates of a singular square (eX,Y , eX,Y ′ , eX′,Y ′ , eX′,Y ) of idempotents. Since it
will always be clear from context what we mean, we shall also call such quadruples
(X,X ′, Y, Y ′) singular squares.

Let Σ ⊆ Xr × Xr × Yr × Yr be the set of all singular squares of Dr, which by
the above result correspond precisely the set of rectangular bands in Dr. In terms
of the structure matrix Pr it is easily verified that (X,X ′, Y, Y ′) corresponds to a
rectangular band if and only if the equality

Pr(Y,X)Pr(Y
′, X)−1 = Pr(Y,X

′)Pr(Y
′, X ′)−1 (2.5)
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holds in the group GLr(Q). (Actually this is a general fact describing 2 × 2 rect-
angular bands in Rees matrix semigroups.)

With the above notation, it now follows from the definition of the Graham–
Houghton complex along with Theorem 3 that the maximal subgroupH(W, IG(E))
is defined by the presentation with generators

F = {fX,Y : X ∈ Xr, Y ∈ Yr , Pr(Y,X) 6= 0}, (2.6)

and defining relations

fX,Y = 1 (X,Y ) ∈ Tn,r, (2.7)

f−1
X,Y fX,Y ′ = f−1

X′,Y fX′,Y ′ ((X,X ′, Y, Y ′) ∈ Σ). (2.8)

Let us denote this presentation by Pr,n.
The rest of the paper will be devoted to the proof that when r < n/3 this

presentation actually defines the general linear group GLr(Q).

3. Outline of the Proof

The basic idea behind the proof is as follows. We consider two matrices both
with rows indexed by Xr and columns indexed by Yr . The first matrix is the
transpose PT

r of the Rees structure matrix of D0
r defined in Theorem 2. The second

is the Xr × Yr matrix with non-zero entries the abstract generators fX,Y from the
presentation Pr,n. So, we view the set of generators F given in (2.6) as being
arranged in a matrix in a natural way where the entry indexed by the pair (X,Y )
is equal to the generator fX,Y and all the other entries are set to 0. We shall carry
out a sequence of Tietze transformations to the presentation Pr,n transforming it
into a presentation for the general linear group GLr(Q). One of the key ideas is
that we imagine the two Xr × Yr matrices above laid out side-by-side, and then
the Rees structure matrix PT

r acts as a “guide” pointing out relations between the
generators fX,Y one should be aiming to show hold. The fact that the structure of
Pr influences the relations we obtain should not come as a surprise since, firstly, the
spanning tree Tn,r has been defined in terms of Pr, which links entries in Pr with
the relations (2.7), and secondly, because all the rectangular bands are singular,
the relations (2.8) in the presentation correspond exactly to the singular squares
which are seen inside Pr.

The proof breaks down into the following three main steps.

Stage 1: Generators fX,Y such that Y X = Ir.

In Section 4 we prove that for every such generator the relation fX,Y = 1 is a
consequence of the relations in the presentation Pr,n (see Lemma 1). This is done
by beginning with the relations (2.7) which tell us that the result holds for every
generator fX,Y where the corresponding edge (X,Y ) belongs to the spanning tree
Tn,r and then extending this, using the relations (2.8), to arbitrary edges from the
bipartite graph ∆(Pr).

Stage 2: Pairs of generators fA,B and fX,Y such that BA = Y X.

In Sections 5 and 6 we prove that for every such pair, the relation fA,B = fX,Y is a
consequence of the relations in the presentation Pr,n (see Lemmas 8 and 9). This
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is achieved in the following way. We fix some element K ∈ GLr(Q) and consider
all the generators fA,B such that BA = K. Given such a pair of generators fA,B,
fA′,B′ we say that they are strongly connected if (1) they are in the same row or
column (i.e. A = A′ or B = B′) and (2) the pair fA,B, fA′,B′ completes to a
singular square such that the other pair fi, fj of the square are both known to
satisfy fi = fj = 1 as a consequence of Stage 1. Then a sequence of generators
fA,B all satisfying BA = K, and such that adjacent terms in the sequence are
strongly connected, is called a strong path. In this language, in this step of the
proof we prove that for every K ∈ GLr(Q), and for every pair fA,B, fA′,B′ , if
BA = B′A′ = K then there is a strong path from fA,B to fA′,B′ . Keeping in mind
the relations (2.8), this will suffice to show that fA,B = fA′,B′ is a consequence of
the relations from the presentation Pr,n.

Stage 3: Defining relations for GLr(Q).

By this stage we have transformed Pr,n into a presentation whose generators are
in natural one to one correspondence with the elements of GLr(Q). Using this
correspondence, we denote the generating symbols in this new presentation by fA
where A ∈ GLr(Q). As a consequence of (2.5) and the relations (2.7), (2.8) it
follows that the map which sends fA to A−1 ∈ GLr(Q) extends to define a well-
defined homomorphism from H(W, IG(E)) onto GLr(Q), and this homomorphism
maps the generators fA bijectively to GLr(Q). The fact that fA is mapped to A−1

rather than A here reflects the relationship between (2.5) and (2.8). In Section 7,
we show that for any pair of matrices A, B from GLr(Q) the relation fBfA = fAB

belongs to (2.7) (see Lemma 14) and it follows that every word over the generators
fA is actually equal to one of the generators. Again the form of the relation fBfA =
fAB comes from the fact that fA corresponds to A−1 and the fact that B−1A−1 =
(AB)−1 in GLr(Q). We may then conclude that the elements of H(W, IG(E)) are
in bijective correspondence with the generators fA and thus that the homomorphism
from H(W, IG(E)) onto GLr(Q) described above is in fact an isomorphism.

Let us conclude this section by making a comment about our method of proof.
We recall that, in general, when writing down a Rees matrix representation for a
completely 0-simple semigroup the structure matrix P is in no sense unique; see
[22, Theorem 3.4.1]. Given an arbitrary completely 0-simple semigroup, and some
Rees matrix representation for it, the graph ∆(P ) need not be connected (in fact
it will not contain any edges at all if the structure matrix does not contain any
1s) even if the semigroup is idempotent generated. On the other hand, it is always
possible to normalise the matrix putting it into a particular form, introduced in
[12] and later utilised in [13], called Graham normal form. When the corresponding
completely 0-simple semigroup is idempotent generated, if the structure matrix P
is in Graham normal form, then ∆(P ) will be connected. It just so happens that
the Rees matrix representation we work with in this paper is in Graham normal
form, and the decision to work with this particular Rees matrix representation is
an important part of the proof, since we need the graph ∆(Pr) to be connected
in order to find the spanning tree Tn,r which is the starting point of the proof of
the main theorem. This suggests that putting the structure matrix into Graham
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normal form would be a sensible first step when investigating maximal subgroups
of free idempotent generated semigroups in general.

4. Generators fX,Y such that Y X = Ir

In this section we work through Stage 1 of the proof of the main theorem. We
continue using the notation and definitions introduced in Section 2. So in particular,
Pr denotes the structure matrix for the Rees matrix representation for the principal
factor D0

r of Mn(Q), ∆(Pr) is the bipartite graph defined in Definition 1 whose
edges correspond to occurrences of Ir in Pr, and Tn,r is the spanning tree of ∆(Pr)
spanned by the edges (T1)–(T3). Recall that our aim is to show that for every edge
(X,Y ) of ∆(Pr) the relation fX,Y = 1 is a consequence of the presentation Pr,n.
Even though in the statement of the main result Theorem 1 we insist that r < n/3,
all of the results in this section will be proved under the weaker assumption that
1 ≤ r < n − 1 and this assumption about the relationship between n and r will
remain in place throughout the section.

From the relations (2.7) we already know fX,Y = 1 for every edge (X,Y ) in
the spanning tree Tn,r. With this initial information, together with the relations
(2.8) from the presentation, we shall complete the proof of Stage 1 by proving the
following result.

Lemma 1. Let n and r be positive integers with 1 ≤ r < n − 1, and let Y ∈ Yr,
X ∈ Xr such that Y X = Ir. Then the relation fX,Y = 1 is a consequence of the
relations (2.7)–(2.8).

It will be useful to rephrase the problem in purely combinatorial terms. Let n
and r be positive integers with 1 ≤ r < n− 1, and let ∆n,r be the bipartite graph
given in Definition 1. Now we shall colour the edges of ∆n,r so that every edge
is either red or blue. Initially we colour all edges from the spanning tree Tn,r of
∆n,r blue (i.e. the edges (T1), (T2) and (T3)) and all the other edges red. Our
aim is to turn the colour of every edge from red to blue, in the following way. For
every square of edges in ∆n,r if three of the edges of the square are blue, and the
fourth is red, the we can transform the fourth edge from red to blue. We call such
a transformation an elementary edge colour transformation. The remainder of this
section will be concerned with proving the following result.

Proposition 2. Let n and r be positive integers with 1 ≤ r < n− 1, and let ∆n,r

be the coloured bipartite graph defined above with blue edges for every edge in the
spanning tree Tn,r and all other edges coloured red. Then every red edge of ∆n,r

may be turned blue by a finite sequence of elementary edge colour transformations.

Before proving Proposition 2 we now show how Lemma 1 follows from it.

Proof of Lemma 1. If (X,Y ) ∈ Tn,r then we are done by (2.7). By Proposition
2 every edge (X,Y ) can be reached, and turned blue, by a finite sequence of el-
ementary edge colour transformations. The proof now proceeds by induction on
the number of elementary edge colour transformations required to turn the edge
(X,Y ) blue. For the inductive step we have vertices X ′ ∈ Xr and Y ′ ∈ Yr such
that the edges (X ′, Y ), (X,Y ′) and (X ′, Y ′) have all been turned blue, and by
induction fX′,Y = 1, fX,Y ′ = 1 and fX′,Y ′ = 1 are all consequences of the relations
(2.7)–(2.8). Since by definition of ∆n,r,

Pr(Y,X) = Pr(Y,X
′) = Pr(Y

′, X) = Pr(Y
′, X ′) = 1
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it follows by Theorem 4 and (2.5) that this square is singular. Hence, by applying
the relation (2.8) from the presentation Pn,r we deduce fX,Y = 1. �

After first proving some general lemmas we shall then deduce that Proposition
2 holds for all pairs (n, r) = (n, 1) with n ≥ 3. Then we prove the result for
an arbitrary pair (n, r) (with 1 < r < n − 1) where we may (and shall) assume
inductively that the result holds for the pair (n − 1, r − 1) (which we note still
satisfies r − 1 < (n − 1) − 1). Induction will be applied by finding a natural copy
of the coloured bipartite graph ∆n−1,r−1 as an induced subgraph of ∆n,r.

Lemma 2. Let (X,Y ), (X ′, Y ) and (X,Y ′) be edges of ∆n,r.

(i) If X and X ′ are in the same region, and (X,Y ) has been turned blue, then
(X ′, Y ) can be turned blue.

(ii) If Y and Y ′ are in the same region, and (X,Y ) has been turned blue, then
(X,Y ′) can be turned blue.

Proof. (i) Suppose that X,X ′ ∈ (i1 < i2 < · · · ir). Then both of the edges

(X, I(i1|i2| · · · |ir)) and (X ′, I(i1|i2| · · · |ir)),

belong to the tree Tn,r and thus are assumed already to be blue edges. Now the
subgraph induced by these two edges together with the edges (X,Y ) and (X ′, Y )
form a square in ∆n,r. It is then immediate from the definition of elementary edge
colour transformation that once (X,Y ) has been turned blue (X ′, Y ) may also be
turned blue.

(ii) The proof is dual to that of (i), making use of the fact that, with Y, Y ′ ∈
(i1 < i2 < · · · ir), both of the edges

(I(i1|i2| · · · |ir)
T , Y ) and (I(i1|i2| · · · |ir)

T , Y ′),

belong to the spanning tree Tn,r. �

Lemma 3. Let Γ be the subgraph

(i1 < i2 < · · · < ir)× (j1 < j2 < · · · < jr),

of ∆n,r, and suppose that all the edges of Γ belong to a single connected component
of Γ. Then every edge of Γ may be turned blue provided at least one edge of Γ has
been turned blue.

Proof. Let (X,Y ) and (X ′, Y ′) be edges in Γ. Suppose that the edges (X,Y ) and
(X ′, Y ′) are adjacent i.e. that X = X ′ or Y = Y ′. Then it follows from Lemma 2
that (X,Y ) can be turned blue if and only if (X ′, Y ′) can be turned blue. But
since all the edges of Γ belong to a single connected component there is a sequence
of edges between (X,Y ) and (X ′, Y ′) where adjacent edges in the sequence are
adjacent in Γ. The result is now immediate. �

It should be noted that it is not true in general that every region will satisfy the
hypotheses of Lemma 3.

Lemma 4. Let (X,Y ) be an edge of ∆n,r. For any subset {i1, . . . , ir} of {1, . . . , n},
if (X,Y ) belongs to any of the following subgraphs:

(i) (i1 < i2 < · · · < ir)× (i1 < i2 < · · · < ir),
(ii) (i1 < i2 < · · · < ir)× (i1 − 1 < i2 < · · · < ir) (i1 ≥ 2), or
(iii) (i1 − 1 < i2 < · · · < ir)× (i1 < i2 < · · · < ir) (i1 ≥ 2),
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then (X,Y ) can be turned blue.

Proof. Suppose that (X,Y ) belongs to the subgraph (i) and let I0 = I(i1| · · · |ir).
Then the edges (IT0 , I0), (X, I0) and (IT0 , Y ), which all belong to the tree Tn,r and
hence are blue edges, together with the edge (X,Y ) form a square, and hence (X,Y )
can be turned blue.

Now suppose that (X,Y ) belongs to the subgraph (ii) which we shall denote here
by Γ. We claim that all the edges of Γ belong to a single connected component of
Γ. Indeed, for every vertex X ∈ (i1 < i2 < · · · < ir), the edge

(X, I(i1 − 1, i1|i2| · · · |ir)) (4.1)

belongs to Γ since I(i1− 1, i1|i2| · · · |ir)X = Ir and, since Γ is bipartite, every other
edge of Γ shares a common vertex with an edge from of the form (4.1). But the
edge (I(i1|i2| · · · |ir)T , I(i1 − 1, i1|i2| · · · |ir)) from the spanning tree Tn,r belongs to
(ii), and is blue by assumption, and so it follows from Lemma 3 that, since one edge
has been turned blue and all the edges in the region belong to a single connected
component, every edge in the subgraph (ii) can be turned blue.

Finally suppose that (X,Y ) belongs to the subgraph (iii). This is the most
difficult of the three cases since there are no edges from the spanning tree Tn,r in
this region. By a dual argument to case (ii), since the mapping X 7→ XT is an
automorphism of the graph ∆n,r preserving regions, we conclude that the subgraph
(iii) has a connected component that contains all of its edges, and thus, by Lemma 3
it will suffice to show that at least one edge in each subgraph of type (iii) can be
turned blue.

We treat the case i1 − 1 = 1 (that is, the case {i1 − 1, i1} = {1, 2}) separately.

Case 1: i1 ≥ 3. First observe that the edge

(I(i1|i2| . . . |ir)
T , I(i1 − 2, i1 − 1, i1|i2| . . . |ir)) (4.2)

completes to a square in ∆n,r when taken together with the following three edges

(I(i1|i2| · · · |ir)
T , I(i1 − 1, i1|i2| · · · |ir)),

(I(i1 − 1|i2| · · · |ir)
T , I(i1 − 2, i1 − 1, i1|i2| · · · |ir)),

(I(i1 − 1|i2| · · · |ir)
T , I(i1 − 1, i1|i2| · · · |ir)).

But these three edges are from subgraphs of type (ii), (ii) and (i), respectively, and
therefore by parts (i) and (ii) we know that all three of these edges may be turned
blue, and therefore the edge (4.2) may be turned blue. Next consider the edge

(I(i1|i2| · · · |ir)
T , I(i1 − 2, i1|i2| · · · |ir)). (4.3)

Comparing the edges (4.2) and (4.3), since I(i1 − 2, i1 − 1, i1|i2| · · · |ir) and I(i1 −
2, i1|i2| · · · |ir) both belong to the region

(i1 − 2 < i2 < i3 < · · · < ir),

and since the edge (4.2) has been turned blue, it follows from Lemma 2(ii) that we
can turn the edge (4.3) blue.

Finally, consider the edge

(I(i1 − 1, i1|i2| . . . |ir)
T , I(i1|i2| . . . |ir)). (4.4)
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This edge completes to a square in ∆n,r when taken together with the following
three edges

(I(i1 − 1, i1|i2| . . . |ir)
T , I(i1 − 2, i1|i2| . . . |ir)),

(I(i1|i2| · · · |ir)
T , I(i1|i2| · · · |ir)),

(I(i1|i2| · · · |ir)
T , I(i1 − 2, i1|i2| · · · |ir)).

The last of these three edges is (4.3) which we have already shown can be turned
blue, while the other two edges belong to subgraphs of types (ii) and (i), respectively,
so are also blue. Thus we deduce that the edge (4.4) can be turned blue and, since
this edge belongs to the subgraph (iii), this completes the proof in this case.

Case 2: {i1−1, i1} = {1, 2}. In this case, choose k ∈ {1, . . . , n}\{1, 2, i2, i3, . . . , ir}.
This is possible since n > r + 1. Then the subgraph of ∆n,r induced by the four
vertices

Yr : I(1, 2|i2|i3| · · · |ir) I(2, k|i2|i3| · · · |ir)

Xr : I(1, k|i2|i3| · · · |ir)
T I(2|i2|i3| · · · |ir)

T

is a square, three of whose edges belong to subgraphs of types (i) or (ii) and so are
blue edges, which means that the fourth edge

(I(1, k|i2|i3| · · · |ir)
T , I(2, k|i2|i3| · · · |ir)),

which belongs to the subgraph (iii), can be turned blue, completing the proof for
this case. (Note that these four matrices are in RRE form regardless of the value
of k.) �

We give another general result.

Lemma 5. Let (X,Y ) be an edge of ∆n,r. If (X,Y ) belongs to the subgraph

(i1 < i2 < · · · < ir)× (j1 < i2 < · · · < ir), (4.5)

then the edge (X,Y ) can be turned blue.

Proof. We claim that this subgraph has a single connected component containing all
of its edges. When i1 = j1, so the subgraph is a diagonal region, this is immediate
from the definition of the spanning tree Tn,r. Now suppose i1 < j1 < i2, the other
case being dual. Then for every vertex B in (j1 < i2 < · · · < ir) the edge

(I(i1, j1|i2|i3| · · · |ir)
T , B) (4.6)

belongs to ∆n,r and, since the graph induced by this region is bipartite, it follows
that every edge in this subgraph shares a vertex with one of the edges (4.6), proving
the claim. Thus by Lemma 3 for each subgraph of the form (4.5) once we have
turned one edge blue, we can conclude that every other edge in that subgraph can
be turned blue.

We prove the lemma by induction on |i1 − j1|. When |i1 − j1| ≤ 1 the result
holds by Lemma 4, so suppose otherwise and assume that the result holds for
smaller values of |i1 − j1|. Suppose that i1 < j1 and j1 6= i1 + 1, the other case is
dual. Now consider the subgraph of ∆n,r induced by the four vertices

Yr : I(j1|i2| · · · |ir) I(i1, i1 + 1|i2| · · · |ir)

Xr : I(i1, j1|i2| · · · |ir)
T I(i1 + 1, j1|i2|i3| · · · |ir)

T .
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Three of these edges belong to subgraphs whose edges may be turned blue by
induction, thus the remaining edge

(I(i1, j1|i2| · · · |ir)
T , I(j1|i2| · · · |ir)),

which belongs to the subgraph

(i1 < i2 < · · · < ir)× (j1 < i2 < · · · < ir)

may also be turned blue, completing the inductive step, and hence the proof of the
lemma. �

The following result will serve as a family of base cases for the induction proving
Proposition 2.

Corollary 1. For every positive integer n ≥ 3, every edge (X,Y ) in ∆n,1 can be
turned blue.

Proof. In this case every edge of ∆n,1 belongs to a region of the form (4.5) and
hence can be turned blue by Lemma 5. �

So, from now on in this section we may suppose that r and n are integers
satisfying 1 < r < n − 1, shall assume that Proposition 2 holds for the pair (n −
1, r − 1), and then prove under this assumption that the proposition holds for the
pair (n, r). Then by induction, with Corollary 1 dealing with the base cases, this
will suffice to prove Proposition 2. These assumptions will remain in place for the
rest of this section.

In order to apply our inductive assumption we shall first need to identify a
natural subgraph of ∆n,r which is isomorphic to ∆n−1,r−1. Let ∆′

n,r denote the
subgraph of ∆n,r induced by the set Y ′

r of all vertices from Yr of the form

Y =




1 0 0 0 · · · 0 0

0
...
0

Ŷ


 ,

together with the set X ′
r ⊆ Xr of transposes of the elements of Y ′

r . Since Y ∈ Y ′
r ⊆

Yr is an r × n rank r matrix in RRE form, it follows that Ŷ ∈ Yn−1,r−1, where
Yn−1,r−1 denotes the set of all (r − 1)× (n− 1) rank r − 1 matrices in RRE form.

Conversely given any (r−1)× (n−1) rank r−1 matrix Ŷ in RRE form, the matrix
Y above is clearly then an r × n rank r matrix in RRE form. Thus ̂ defines, in
a natural way, a bijection between the subset Y ′

r of Yr and the set Yn−1,r−1. The
obvious dual statements hold for pairs X ∈ Xr, X

′ ∈ Xn−1,r−1 where Xn−1,r−1

denotes the set of transposes of elements of Yn−1,r−1. Therefore we have a natural
bijection

̂ : (X ′
r × Y ′

r) → (Xn−1,r−1 × Yn−1,r−1), (X,Y ) 7→ (X̂, Ŷ ). (4.7)

Next we observe that the bijection (4.7) is actually an isomorphism between the
subgraph ∆′

n,r of ∆n,r induced by X ′
r ∪ Y ′

r and the graph ∆n−1,r−1. This is easily
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seen. Indeed, for every pair (X,Y ) ∈ X ′
r × Y ′

r we have

Y X =




1 0 · · · 0

0
...
0

Ŷ X̂


 ∈ Mr(Q),

in particular Y X = Ir if and only if Ŷ X̂ = Ir−1, and therefore (X,Y ) is an edge

of ∆′
n,r if and only if (X̂, Ŷ ) is an edge of ∆n−1,r−1.

Finally, looking at the list of edges (T1), (T2) and (T3) in the definition of the
spanning tree, we see that the edge (X,Y ) belongs the spanning tree Tn,r of ∆n,r

if and only if the edge (X̂, Ŷ ) belongs to the spanning tree Tn−1,r−1 of ∆n−1,r−1.
In other words, for every edge (X,Y ) of ∆′

n,r ⊆ ∆n,r, (X,Y ) is an initial blue edge

of ∆n,r if and only if (X̂, Ŷ ) is an initial blue edge of ∆n−1,r−1. (Here, in each
case, by an initial blue edge we mean an edge that is blue by virtue of being in the
spanning tree.)

Now consider an arbitrary edge (X,Y ) of ∆n,r such that (X,Y ) belongs to
∆′

n,r. Then from the above observations ∆′
n,r is an isomorphic copy of ∆n−1,r−1,

preserving the initial red and blue edge colours, and since by induction we are
assuming that Proposition 2 holds for ∆n−1,r−1, it follows immediately that using
the same sequence of elementary edge transformations inside ∆′

n,r we can transform
(X,Y ) into a blue edge.

(†) Therefore by induction we may assume that every edge (X,Y )
of ∆n,r in ∆′

n,r has already been turned blue. This assump-
tion will remain in place for the rest of the section.

Lemma 6. Let (X,Y ) be an edge in ∆n,r. If (X,Y ) belongs to the subgraph

(1 < i2 < · · · < ir)× (1 < j2 < · · · < jr), (4.8)

then (X,Y ) can be turned blue.

Proof. Let (X,Y ) be an edge in the subgraph (4.8). Let X ′ be the matrix obtained
by replacing the first column of X by the n× 1 vector [1, 0, 0, . . . , 0]T and let Y ′ be
the matrix obtained by replacing the first row of Y by the 1×n vector [1, 0, 0, . . . , 0].
Note that Y ′ is still a matrix in the set Yr (that is, it is still a RRE rank r matrix)
and Y ′ belongs to the same region as Y . Similarly X ′ ∈ Xr and X ′ belongs to the
same region as X . Since Y X = Ir, it follows from the way that Y ′ and X ′ have
been defined that Y X ′ = Ir , Y

′X = Ir and Y ′X ′ = Ir . Therefore the vertices
{X,X ′, Y, Y ′} induce a square in ∆n,r. Now the edge (X ′, Y ′) belongs to ∆′

n,r

and hence may be turned blue by induction (†). Since (X ′, Y ′) is blue, and X
and X ′ belong to the same region, it follows from Lemma 2(i) that (X,Y ′) may
be turned blue. Dually, since Y and Y ′ belong to the same region, (X ′, Y ) may
be turned blue. Therefore the remaining edge (X,Y ) in the square may be turned
blue, completing the proof of the lemma. �

Lemma 7. Every edge (X,Y ) in the subgraph

(i1 < i2 < · · · < ir)× (i1 < j2 < · · · < jr) (4.9)
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can be turned blue.

Proof. Let (X,Y ) be an edge in the subgraph (4.9). If i1 = 1 we are done by
Lemma 6, so suppose i1 > 1. Let X ′ be the matrix obtained by replacing the first
row of X by the 1 × r vector [1, 0, 0 . . . , 0], and let Y ′ be the matrix obtained by
replacing the first row of Y by the 1×n vector [1, 0, 0 . . . , 0]. Note that since the i1th
column of Y is the r×1 vector [1, 0, 0, . . . , 0]T , and since i1 > 1, this transformation
means that the i1th column of Y ′ is the zero vector. Clearly Y ′ ∈ Yr and X ′ ∈ Xr.
Since i1 > 1 it follows that Y X ′ = Y X = Ir. This in turn, along with the definition
of Y ′, implies Y ′X ′ = Y X ′ = Ir. Therefore each of (X,Y ), (X ′, Y ) and (X ′, Y ′) is
an edge in ∆n,r (while (X,Y ′) is not an edge since Y ′X 6= Ir).

Next consider the subgraph of ∆n,r induced by the four vertices

Yr : Y Y ′

Xr : X ′ I(1, i1|j2|j3| · · · |jr)
T .

Straightforward computations show that these four vertices form a square in ∆n,r.
In this square, both of the edges (X ′, Y ′) and (I(1, i1|j2|j3| · · · |jr)T , Y ′) may be
turned blue by Lemma 6, while the edge (I(1, i1|j2|j3| · · · |jr)T , Y ) belongs to the
subgraph

(1 < j2 < j3 < · · · < jr)× (i1 < j2 < j3 < · · · < jr),

and so can be turned blue by Lemma 5. Therefore we deduce that the edge (X ′, Y )
may be turned blue.

Finally consider the subgraph of ∆n,r induced by the four vertices

Yr : Y I(i1|i2|i3| · · · |ir)

Xr : X X ′.

Again, it is easily verified that this set of vertices induces a square in ∆n,r. We saw
above that the edge (X ′, Y ) may be turned blue. The edge (X, I(i1|i2|i3| · · · |ir))
belongs to a diagonal region and so may be turned blue by Lemma 4(i), while the
edge (X ′, I(i1|i2|i3| · · · |ir)) belongs to the subgraph

(1 < i2 < · · · < ir)× (i1 < i2 < · · · < ir),

and so may be turned blue by Lemma 5. Since three of the four edges of the square
can be turned blue, we deduce that the fourth edge (X,Y ) may be turned blue,
completing the proof of the lemma. �

We are now in a position to complete the proof of the main result of this section.

Proof of Proposition 2. Let (X,Y ) be an arbitrary edge of ∆n,r, where (X,Y ) be-
longs to

(i1 < i2 < · · · < ir)× (j1 < j2 < · · · < jr),

say. If i1 = j1 we are done by Lemma 7, so suppose i1 > j1 (the other case may
be dealt with using a dual argument). Let X ′ be the matrix obtained by replacing
the first column of X by the n× 1 vector [0, 0, . . . , 0, 1, 0, . . . , 0]T with 1 in position
j1 and 0s elsewhere. Note that since row i1 of X is the 1 × r vector [1, 0, 0, . . . , 0],
it follows that row i1 of X ′ is the zero vector. Clearly since i1 > j1 it follows that
X ′ ∈ Xr. Now consider the subgraph of ∆n,r induced by the four vertices

Yr : Y I(j1, i1|i2|i3| · · · |ir)

Xr : X X ′.
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From the definition of X ′ it follows that Y X ′ = Y X = Ir, and it is then easily
checked that these four vertices induce a square in ∆n,r. The edge

(X, I(j1, i1|i2|i3| · · · |ir))

belongs to

(i1 < i2 < · · · < ir)× (j1 < i2 < · · · < ir)

and so may be turned blue by Lemma 5. The edge (X ′, I(j1, i1|i2|i3| · · · |ir)) belongs
to

(j1 < i2 < · · · < ir)× (j1 < i2 < · · · < ir),

a diagonal region, and so may be turned blue by Lemma 4(i). Finally, the edge
(X ′, Y ) belongs to

(j1 < i2 < · · · < ir)× (j1 < j2 < · · · < jr)

and so may be turned blue by Lemma 7. Since all three of these edges may be turned
blue we deduce that the remaining edge (X,Y ) of this square may be turned blue,
completing the proof of the proposition. �

5. Combinatorial Properties of Multiplication Tables

From the explanation of Stage 2 of the proof of our main result given in Section 3
it may be seen that establishing this part of the proof comes down to the combina-
torial analysis of the structure matrix Pr for the Rees matrix representation of D0

r .
Even though in the statement of the main result Theorem 1 we insist that r < n/3,
all of the results in this section will be proved under the weaker assumption that
1 ≤ r < n/2 and this assumption about the relationship between n and r will
remain in place throughout the section.

Recall that Pr = (Pr(Y,X)) is a matrix with rows indexed by Yr , columns by Xr,
and entries Pr(Y,X) = Y X if Y X is of rank r, and 0 otherwise. So the entries of Pr

come from the set GLr(Q) ∪ {0}. We also view the abstract generators F given in
(2.6) as being arranged in a table also with rows indexed by Yr, columns indexed by
Xr and the entry (Y,X) is fX,Y if Pr(Y,X) 6= 0 (i.e. if fX,Y ∈ F) and 0 otherwise.
So far, using the defining relations (2.7)–(2.8) from the presentation Pr,n we have
been making deductions about relations between the symbols fX,Y appearing in this
table. The results from the previous section show that we may deduce fX,Y = 1
whenever the corresponding entry Pr(Y,X) of Pr satisfies Pr(Y,X) = Ir. That was
Stage 1 of the proof. Now we move on to consider Stage 2 of the proof. In this stage
our aim is to prove that for any pair of non-zero entries Pr(Y,X) and Pr(Y

′, X ′)
from the structure matrix Pr, if Pr(Y,X) = Pr(Y

′, X ′) then fX,Y = fX′,Y ′ may be
deduced from (2.7)–(2.8).

As we did for the bipartite graph ∆n,r in the previous section, we shall partition
the matrix Pr into regions

(i1 < i2 < · · · < ir)× (j1 < j2 < · · · < jr) (5.1)

where the region (5.1) is the set of all pairs (Y,X) with Y ∈ Yr, X ∈ Xr, LC(Y ) =
{i1, i2, . . . , ir} and LR(X) = {j1, j2, . . . , jr}. By the entries in the region (5.1) we
mean the set of all matrices Y X with rank r where (Y,X) belongs to the region
(5.1). In this section we focus our attention just on the region

(1 < 2 < · · · < r)× (1 < 2 < · · · < r), (5.2)
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whose entries are those of the form:

Y X = [Ir|A]

[
Ir
B

]
= Ir +AB,

where A ∈ Matr×(n−r−1)(Q) and B ∈ Mat(n−r−1)×r(Q). The aim of this section is
to prove the following result.

Lemma 8. Let n and r be positive integers with 1 ≤ r < n/2. Let Y, Y ′ ∈ Yr

and X,X ′ ∈ Xr with LC(Y ) = LC(Y ′) = LR(X) = LR(X ′) = {1, 2, . . . , r}. If
Pr(Y,X) = Pr(Y

′, X ′) 6= 0 then fX,Y = fX′,Y ′ is a consequence of the relations
(2.7)–(2.8).

As in the previous section, we shall find it useful to recast this problem in purely
combinatorial terms before solving it. We begin by introducing a general framework,
and some terminology, for the analysis of combinatorial properties of tables.

Let P = P (B,A) be a matrix with rows indexed by a set B and columns indexed
by A, where the entries of P all come from a set L, that we call the set of labels.
Then given an element l ∈ L we define a graph, called the λ-graph of l, with

Vertices: {(B,A) ∈ B × A : P (B,A) = l}: the set of all coordinates with label l,
and

Edges: (B,A) and (B′, A′) are joined by an edge if and only if B = B′ or A = A′.

So, the λ-graph of l ∈ L is obtained by removing all entries from the matrix except
occurrences of the symbol l, and then drawing an edge between every pair of ls that
belong to the same row, or to the same column.

Now, one natural source of such matrices is given by the multiplication tables
of semigroups, where given a semigroup S we take A = B = L = S and define
the entry P (s, t) = st. Let us briefly think about how λ-graphs behave in this
situation. If S happens to be a group, S = G, then this matrix is a Latin square
and so (unless the group is trivial) for every g ∈ L = G the λ-graph of g will not
be connected (in fact it will not have any edges at all). On the other hand, if S
is a semigroup with a zero element 0 ∈ S, then since in the multiplication table
the row labelled by 0 (and dually column labelled by 0) contains all zeros, it is
clear that in this case the λ-graph of 0 in the multiplication table is connected.
Now suppose that S is monoid with a non-trivial group of units such that the set
of non-invertible elements of S forms an ideal of S (for example, the semigroup
Mn(Q) has this property). Then since here a product st is invertible if and only if
both s and t are, by the same reasoning as for groups above, the λ-graphs of the
invertible elements s ∈ S (i.e. those elements from the group of units of S) will
not be connected. So for such a semigroup the most one could hope for would be
for the λ-graphs of every non-invertible element to be connected. As we shall see
below, this is exactly what happens in the multiplication table of the semigroup
Mn(Q). In fact we show rather more than this.

Theorem 5. Let k and m be positive integers with k ≤ m, let B be the set of all
k×m matrices over a division ring Q, A be the set of m× k matrices over Q, and
let Tm,k = Tm,k(B,A) be the matrix with entries BA ∈ Mk(Q) where B ∈ B and
A ∈ A. Let K ∈ Mk(Q) be arbitrary.

(i) If k < m then the λ-graph of K in Tm,k is connected.
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(ii) If k = m and K is non-invertible then the λ-graph of K in Tm,k is con-
nected.

It should be noted that, in contrast to the Rees structure matrix Pr, in the
matrix Tm,k the index sets A and B range over all possible matrices, not just those
in RRE form, and all products BA are recorded in the table, including those with
rank less than k.

Theorem 5 is a general result which is possibly of independent interest. It might
be of interest to explore more which semigroups have multiplication tables with
this property, and whether there is some general connection between semigroups
with this property and those for which the maximal subgroups of IG(E) are well
behaved.

Before proving Theorem 5 let us see how it can be used to obtain Lemma 8 as a
corollary. Clearly

{Y ∈ Yr : LC(Y ) = {1, 2, . . . , r}} = {
[
Ir Ȳ

]
: Ȳ ∈ Mr×(n−r)}

and the natural map Y 7→ Ȳ where Y = [Ir Ȳ ] defines a bijection between the set of
Y ∈ Yr with LC(Y ) = {1, 2, . . . , r} and the set Mr×(n−r) of all r× (n− r) matrices
over Q. Also, for Y ∈ Yr and X ∈ Xr, with LC(Y ) = LR(X) = {1, 2, . . . , r},
writing

Y =
[
Ir Ȳ

]
, X =

[
Ir
X̄

]

we have Y X = Ir + Ȳ X̄. Thus for every pair (Y,X), (Y ′, X ′) ∈ Yr × Xr, with
LC(Y ) = LC(Y ′) = LR(X) = LR(X ′) = {1, 2, . . . , r}, we have

Y X = Y ′X ′ ⇔ Ȳ X̄ = Ȳ ′X̄ ′. (5.3)

Proof of Lemma 8. Let (Y,X) be an arbitrary pair in the region

(1 < 2 < · · · < r) × (1 < 2 < · · · < r) (5.4)

such that Pr(Y,X) 6= 0, that is, rank(Y X) = r. It follows from Theorem 5, with
k = r and m = n − r > r = k (since by assumption r < n/2), that the λ-graph
of Ȳ X̄ in Tm,k = Tn−r,r is connected. But then from (5.3) it follows that the
λ-graph of Y X in the region (5.4) is connected. Since (Y,X) were arbitrary we
obtain that for every such entry Y X in the region (5.4) the λ-graph of this matrix
in the component (5.4) is connected.

Now let Y, Y ′ ∈ Yr and X,X ′ ∈ Xr with LC(Y ) = LC(Y ′) = LR(X) =
LR(X ′) = {1, 2, . . . , r} and Pr(Y,X) = Pr(Y

′, X ′) 6= 0.
If Y = Y ′ then

X X ′

Y Y X Y X ′

I(1|2| · · · |r) Ir Ir

is a singular square by Theorem 4, equation (2.5), and the fact that Y X = Y X ′,
and hence from relation (2.8) we deduce fX,Y = fX′,Y in this case. Dually, if
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X = X ′ then the square

X I(1|2| · · · |r)T

Y Y X Ir

Y ′ Y ′X Ir

is singular since Y X = Y ′X , and hence from relation (2.8) we deduce fX,Y = fX,Y ′

in this case.
But now, since we know that the λ-graph of Y X in (5.4) is connected, it follows

that there is a sequence of entries in (5.4) from Pr(Y,X) to Pr(Y
′, X ′), all equal to

Y X , where adjacent terms in the sequence are either in the same row or column
of Pr, and thus the corresponding generators are equal by the arguments given
in the previous two paragraphs. Therefore, we may deduce fX,Y = fX′,Y ′ as a
consequence of the relations from the presentation Pr,n. �

The rest of this section is concerned with the proof of the above theorem.

Proof of Theorem 5. Let k and m be positive integers with k ≤ m. We prove the
result by induction on k + m. When k = m = 1 the result is trivially seen to
hold, since in this case T1,1 is the multiplication table of Q, the only non-invertible
element of which is 0, and as already observed above the corresponding λ-graph is
connected. Now suppose k+m > 2 and assume inductively that the result holds for
all pairs (k′,m′) with k′ ≤ m′ and k′ +m′ < k +m. Let K ∈ Mk(Q) be arbitrary.

The table Tm,k naturally divides into regions indexed by pairs (α, β) where by
definition the (α, β)-region is the set of all pairs

(
[α|A′],

[
β

B′

])
,

where A′ ∈ Mk×(m−1)(Q), B′ ∈ M(m−1)×k(Q), α is a column vector and β is a
row vector. Note that the region (0, 0) is a natural copy of the table Tm−1,k inside
Tm,k.

For part (i), we are given that k < m and must prove that the λ-graph of K in
Tm,k is connected. We consider two cases.

Case 1: k < m − 1: Let A ∈ Matk×m(Q) and B ∈ Matm×k(Q) be arbitrary, and
write

A = [α|A1|A2] and B =




β
B1

B2


 ,

where α is a k × 1 column vector, β is a 1 × k row vector, and A2, B2 ∈ Mk(Q).
Then

AB = αβ +A1B1 +A2B2. (5.5)

We begin by arguing that without loss of generality we may assume that B2 ∈
Mk(Q) is invertible. Indeed, let U ∈ Mk(Q) be an idempotent R-related to A2B2.
Such an idempotent U exists since Mk(Q) is regular. Then, since every idempo-
tent is a left identity in its R-class (see [22, Proposition 2.3.3]), URA2B2 implies
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UA2B2 = A2B2 and hence also UA2RURA2B2. Therefore by (2.3) there is an
invertible matrix X ∈ GLk(Q) such that UA2X = A2B2 = UA2B2. Thus

[α|A1|A2]




β
B1

B2


 = [α|A1|UA2]




β
B1

B2




= [α|A1|UA2]




β
B1

X


 ,

where X ∈ Mk(Q) is invertible, and this sequence of equalities defines a path in
the λ-graph of AB. Hence we may assume without loss of generality that B2 is
invertible. But then

[α|A1|A2]




β
B1

B2


 = [0|A1|A2 + αβB−1

2 ]




β
B1

B2




= [0|A1|A2 + αβB−1
2 ]




0
B1

B2


 ,

and so we have found a λ-path into the (0, 0)-region. Recall that the (0, 0)-region
is a natural copy of Tm−1,k inside the table Tm,k. Since k < m − 1 it follows by
induction, applying (i), that the λ-graph of AB restricted to the (0, 0)-region is
connected. Therefore every occurrence of AB is connected to an occurrence of AB
in the (0, 0)-region, while any two occurrences of AB in the (0, 0)-region are joined
by a λ-path in the (0, 0)-region by induction. Since the pair A, B was arbitrary,
this completes the proof that the λ-graph of K is connected in this case.

Case 2: k = m− 1: Arguing as in the previous case, for every entry in Tm,k there
is a λ-path to a pair of the form

[0|C]

[
0

D

]
,

where C,D ∈ Mat(m−1)×(m−1)(Q) and D is invertible. Now there are two cases
depending on whether or not C is invertible.

If C is not invertible then CD is not invertible and so by induction, applying
(ii), the λ-graph of CD in the (0, 0)-region is connected, and the proof is complete
as in the previous case.

So we may suppose that both C and D are invertible, and hence so is their prod-
uct CD. It is easy to see that for any matrix L ∈ Mm−1(Q) appearing in the table
Tm,k = Tm,m−1 and for any pair X and Y of invertible (m− 1)× (m− 1) matrices
we have that the λ-graph of L is connected if and only if the λ-graph of XL is con-
nected if and only if the λ-graph of XLY is connected. Indeed, left multiplication
by X induces a permutation of the set of matrices M(m−1)×m(Q) which label the
rows of the table Tm,m−1; the same is true for right multiplication by Y on the set
of matrices Mm×(m−1)(Q) labelling the columns of Tm,m−1. This transformation
of the table will result in a table where the entries XLY appear in precisely the
positions where the entries L appeared in the the original table Tm,m−1. Since
permuting rows and columns of the table does not affect λ-connectedness, we have
the desired conclusion.
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Therefore it will suffice to show that the λ-graph of

[0|C]

[
0

C−1

]
= Im−1,

is connected. Of course within the (0, 0)-region the λ-graph of Im−1 is not connected
(since Im−1 belongs to the group of units) and so it will be necessary to move out
of that region in order to prove that the λ-graph of Im−1 is connected in Tm,m−1.

We shall prove that there is a λ-path connecting ([0|C]
[

0
C−1

]
) into the region

([1, 0, 0, . . . , 0], [1, 0, 0, . . . , 0]T ).

Indeed, we have

[0|C]

[
0

C−1

]
= [0|C]

[
1 0 0 · · · 0

C−1

]

=




1
0
0
...
0

(Im−1 − E11)C




[
1 0 0 · · · 0

C−1

]
,

where E11 = [1, 0, . . . , 0]T [1, 0, . . . , 0] denotes the (m − 1) × (m − 1) matrix with
a 1 in the top left corner and zeros everywhere else. Computing the last of these
products gives

E11 + (Im−1 − E11)CC−1 = Im−1,

as required. But the matrix (Im−1 −E11) ∈ Mm−1(Q) is clearly not invertible and
so it follows by induction, applying (ii), that inside the region

([1, 0, 0, . . . , 0], [1, 0, 0, . . . , 0]T )

the λ-graph of the Im−1 is connected. This is because the

([1, 0, 0, . . . , 0], [1, 0, 0, . . . , 0]T )

region is a copy of the table Tm−1,m−1 with E11 added to each entry, and therefore
the λ-graph of Im−1 = E11 + (Im−1 − E11) is connected, since Im−1 − E11 is non-
invertible.

In conclusion we have proved that for every occurrence of Im−1 in Tm,k there
is a λ-path into the (0, 0)-region, and for every occurrence of Im−1 in the (0, 0)-
region there is a λ-path to the ([1, 0, 0, . . . , 0], [1, 0, 0, . . . , 0]T )-region, and in this
region every pair of occurrences of Im−1 are connected by a λ-path. Therefore the
λ-graph of Im−1 in Tm,k is connected, completing the proof of the inductive step
for part (i) of the theorem.

For part (ii), we are given that k = m and that K is non-invertible, and again
we want to show that the λ-graph of K in Tm,k = Tm,m is connected.

Consider the entry AB in the multiplication table where A,B ∈ Mm(Q) and AB
is not invertible, so rank(AB) = l < m = k. Therefore AB is in the same D-class as

the matrix J =

[
Il 0
0 0

]
. Hence by (2.1) we can write J = X(AB)Y where X and

Y are invertible matrices. But since X and Y are invertible it follows that in Tm,k

the λ-graph of AB is connected if and only if the λ-graph of XAB is connected if
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and only if the λ-graph of XABY = J is connected. So we shall prove instead that
the λ-graph of J is connected.

Suppose that AB = J where A,B ∈ Mm(Q). Then we can write

AB =

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
Il 0
0 0

]
= J,

where A11 and B11 are both l × l matrices. Consequently, there is a λ-path given
by

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11 A12

A21 A22

] [
B11 0
B21 0

]

=

[
A11 A12

0 0

] [
B11 0
B21 0

]
,

into a region that is a natural copy of Tm,l inside Tm,k. By induction, since l < k =
m, the λ-graph of AB in this copy of Tm,l in Tm,k is connected, which completes
the proof of the inductive step for (ii), and hence also completes the proof of the
theorem. �

6. Strongly connecting the Table

In this section we shall complete Stage 2 of the proof of the main theorem by
extending Lemma 8 to obtain the following result. Throughout this section n and
r will denote positive integers satisfying 1 ≤ r < n/3. This assumption will be
necessary for our proof of Theorem 6 below.

Lemma 9. Let n and r be positive integers with 1 ≤ r < n/3, and let Y, Y ′ ∈ Yr

and X,X ′ ∈ Xr. If Pr(Y,X) = Pr(Y
′, X ′) 6= 0 then fX,Y = fX′,Y ′ is a consequence

of the relations (2.7)–(2.8).

As usual, we first recast this problem combinatorially.
Let P = P (B,A) be a matrix with rows indexed by a set B and columns indexed

by A, where the entries of P all come from a set L∪ {1} where 1 is a distinguished
symbol not belonging to L. Let l ∈ L and consider the λ-graph of l defined in
Section 5. We say that two vertices (B,A) and (B′, A′) of the λ-graph of l are
connected by a strong edge if either

(i) B = B′ and there exists B1 ∈ B such that P (B1, A) = P (B1, A
′) = 1; or

(ii) A = A′ and there exists A1 ∈ A such that P (B,A1) = P (B′, A1) = 1.

A strong path is then a sequence of vertices where adjacent terms in the sequence
are connected by strong edges, and we say that the λ-graph of l is strongly connected
if between any pair of vertices (B,A) and (B′, A′) there is a strong path. A strong
path of length 3 is illustrated in Figure 3.

Theorem 6. Let r and n be positive integers with r < n/3, let Yr be the set of
all r × n rank r matrices over a division ring Q in reduced row echelon form, Xr

be the set of transposes of elements of Yr, and let Tn,r = Tn,r(Y,X) be the matrix
with entries Y X ∈ Mr(Q) where Y ∈ Yr and X ∈ Xr. Then for every matrix
K ∈ Mr(Q) the λ-graph of K in Tn,r is strongly connected with respect to the
distinguished entries 1 = Ir.

Note that Tn,r is not exactly the same as the Rees structure matrix Pr since
Tn,r contains all products Y X even if Y X does not have rank r.
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··
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r
)
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<

··
·
<
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)

⋃

jr≤n−r, kr≤n−r
(j1 < j2 < · · · < jr)× (k1 < k2 < · · · < kr)

Figure 3. An illustration of the table Tn,r from Theorem 6. The
regions of the table are indicated, in each diagonal region the Is
corresponding to the edges of type (T1) and (T2) from the span-
ning tree Tn,r are indicated. The diagonal regions vary in size with
the bottom right diagonal region ∆(n − r + 1 < · · · < n) having
just a single entry. The singular square indicated by the quadruple
of shaded squares illustrates the proof of Lemma 10.

The aim of Theorem 6 is to show that for every symbol K appearing in the table,
the λ-graph of K is strongly connected. The structure of the proof is outlined in
Figure 3. A strong path of length 3 is indicated in the figure. The first and last
edges of this path are strong edges because of the singular squares indicated by the
quadruple of diamonds and circles respectively. The remaining third edge of this
path is a strong edge as a consequence of Lemma 10. In Lemma 8 we prove that
the λ-graph of K restricted to the small dark grey region of the table is strongly
connected. Then in Corollary 2 we prove that the λ-graph of K restricted to the
larger light grey region of the table is strongly connected. This is done by finding
a strong path from every K in the light grey region to a label K in the dark grey
region. Finally we complete the proof of Theorem 6 by finding a strong path from
an arbitrary K into the light grey region.

Before going on to prove Theorem 6 let us see how Lemma 9 may be deduced
from it.
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Proof of Lemma 9. Let Y, Y ′ ∈ Yr and X,X ′ ∈ Xr and suppose that Pr(Y,X) =
Pr(Y

′, X ′) 6= 0. If (Y,X) and (Y ′, X ′) are connected by a strong edge in the
Rees structure matrix Pr then applying Lemma 1, equation (2.5) and relation (2.8)
we may deduce that fX,Y = fX′,Y ′ . It follows that if (Y,X) and (Y ′, X ′) are
connected by a strong path in Pr then we may deduce that fX,Y = fX′,Y ′ . But
by Theorem 6, (Y,X) and (Y ′, X ′) are connected by a strong path in Tn,r and
therefore it is immediate from the definitions of Tn,r and Pr that the same path is
also a strong path in Pr connecting (Y,X) and (Y ′, X ′), proving the lemma. �

The rest of this section will, therefore, be devoted to the proof of Theorem 6.
As usual, we partition the table Tn,r into regions, where the region

(i1 < · · · < ir)× (j1 < · · · < jr) (6.1)

is the set of all pairs (Y,X) where LC(Y ) = {i1, . . . , ir} and LR(X) = {j1, . . . , jr}.

Lemma 10. If (Y,X) and (Y ′, X ′) belong to the same region of Tn,r, with Y X =
Y ′X ′, and either Y = Y ′, or X = X ′, then they are strongly connected in Tn,r.

Proof. Suppose that Y = Y ′ and that X and X ′ both belong to the region (i1 <
i2 < · · · < ir). Then the square

X X ′

I(i1|i2| · · · |ir) Ir Ir

Y Y X Y X ′

in Tn,r shows that (Y,X) and (Y,X ′) are strongly connected. The other case is
dual using the column labelled by I(i1|i2| · · · |ir)T . �

The following result extends Lemma 8.

Lemma 11. If (Y,X) and (Y ′, X ′) both belong to the region

(1 < 2 < · · · < r)× (1 < 2 < · · · < r),

and Y X = Y ′X ′, then there is a strong path from (Y,X) to (Y ′, X ′) in Tn,r.

Proof. From the results in Section 5 there is a path from (Y,X) to (Y ′, X ′) in

(1 < 2 < · · · < r)× (1 < 2 < · · · < r),

and then by Lemma 10 this path is actually a strong path. �

Therefore, to prove Theorem 6 it will be sufficient to show that for every entry
(Y,X) in Tn,r there is a strong path into the region

(1 < 2 < · · · < r)× (1 < 2 < · · · < r),

and this is what the rest of the proof will be focused on establishing.

Lemma 12. Let K ∈ Mr(Q) be an entry in a region

(i1 < i2 < · · · < ir)× (j1 < j2 < · · · < jr) (6.2)
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where ir ≤ n − r and jr ≤ n − r. Then there is a strong path in Tn,r from this
entry to an entry

K =
[
Ir×(n−r)(i1| · · · |ir) | D

]




Ir×(n−r)(j1| · · · |jr)
T

N




where N ∈ Mr(Q) and D ∈ GLr(Q). Dually there is a strong path to an entry of
the same form but where D ∈ Mr(Q) and N ∈ GLr(Q).

Proof. We prove the first statement, the second is proved using a dual argument.
The proof has two steps which are illustrated in Figures 4 and 5 respectively. Let
[P |A], [Z|B]T ∈ Matr×n(Q) be arbitrary such that A,B ∈ Mr(Q), ([P |A], [Z|B]T )
belongs to the region (6.2), and

[P |A]

[
Z
B

]
= PZ +AB = K.

We proceed along similar lines as in the proof of Theorem 5. We shall construct
a path where the entire path belongs to the region (6.2), and consequently by
Lemma 10 this path will automatically be a strong path.

For the first step of the proof, A,B ∈ Mr(Q) and since this semigroup is regular
there is an idempotent U with URAB, so UARAB and then by (2.3) there is an
invertible matrix C ∈ GLr(Q) satisfying UAC = UAB = AB. Since C is invertible,
Mr(Q)C = Mr(Q) and so there exists a matrix L ∈ Mr(Q) such that the equation

Ir×(n−r)(i1| · · · |ir)Z + LC = K

is satisfied. Combining these observations, in Figure 4 we construct a strong path
in the region (6.2) from ([P |A], [ ZB ]) to

(
[Ir×(n−r)(i1| · · · |ir)|L], [ ZC ]

)
.

For the second step of the proof, we use a dual argument to find a strong path,
in the same region, from

(
[Ir×(n−r)(i1| · · · |ir)|L],

[
Z
C

])

to (
[Ir×(n−r)(i1| · · · |ir)|D],

[
Ir×(n−r)(i1| · · · |ir)

T

N

])
,

where D ∈ GLr(Q). This path is given in Figure 5 where V is an idempotent
with V LLC, D ∈ GLr(Q) and LC = LCV = DCV . Here D exists by (2.4) since
CV LLC. Then, using the fact that D is invertible, N ∈ Mr(Q) is chosen so that
the equation

Ir×(n−r)(i1| · · · |ir)Ir×(n−r)(i1| · · · |ir)
T +DN = K

is satisfied. This completes the proof of the lemma. �
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



Z

B









Z

C





[ P |A ] PZ +AB = K

[ P |UA ] PZ + UAB = K PZ + UAC = K

[ Ir×(n−r)(i1| · · · |ir) |L ] K

Figure 4. Proof of Lemma 12: a strong path in the region (i1 <
· · · < ir)× (j1 < · · · < jr).

[

Z

C

] [

Z

CV

]

[

Ir×(n−r)(j1| · · · |jr)
T

N

]

[ Ir×(n−r)(i1| · · · |ir) |L ] K K

[ Ir×(n−r)(i1| · · · |ir) |D ] K K

Figure 5. Proof of Lemma 12: a strong path in the region (i1 <
· · · < ir)× (j1 < · · · < jr).

Lemma 13. Let K be an entry of the form

K =
[
Ir×(n−r)(i1| · · · |ir) | L

]




Ir×(n−r)(j1| · · · |jr)
T

N




(6.3)

where ir ≤ n− r, jr ≤ n− r, N ∈ Mr(Q) and L ∈ GLr(Q). Then there is a strong
path from (6.3) to an entry K in the region (1 < 2 < · · · < r) × (1 < 2 < · · · < r).

Proof. The proof has two stages, first we find a strong path into the region

(i1 < · · · < ir)× (1 < · · · < r) (6.4)

and then apply Lemma 12 and a dual argument to complete the proof. To simplify
notation in the proof let

I(i1| · · · |ir) = Ir×(n−r)(i1| · · · |ir).

For the first stage we prove by induction on the order �, defined in Section 2, that
there is a path into the region (6.4). If

(j1 < · · · < jr) = (1 < · · · < r)

then we are done, so suppose otherwise and let jm be the least jt such that jt 6= t.
Then there is a strong path with two edges from

[I(i1| · · · |ir)|L]




I(j1| · · · |jr)T

N



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(j1 < · · · < jr) (j1 < · · · < jm−1 < m < jm+1 < · · · < jr)
[

I(j1| · · · |jr)T

N

] [

I(j1| · · · |jm−1|m, jm|jm+1| · · · |jr)T

N1

]

[ I(i1| · · · |ir) |L ] K K
Ir×n(j1| · · · |jr) I I

Figure 6. Stage 1 of the proof of Lemma 13.

(j1 < · · · < jm−1 < m < jm+1 < · · · < jr)
[

I(j1| · · · |jm−1|m, jm|jm+1| · · · |jr)T

N1

] [

I(j1| · · · |jm−1|m|jm+1| · · · |jr)T

N2

]

I K K

Figure 7. Stage 2 of the proof of Lemma 13, where I =
[I(i1| · · · |ir)|L]. This is a strong edge because it is contained in
a single region.

to

[I(i1| · · · |ir)|L]




I(j1| · · · |jm−1|m|jm+1| · · · |jr)T

N2


 (6.5)

given in Figures 6 and 7. Here N1, N2 ∈ Mr(Q) have been chosen in such a way
that the appropriate entries in the table are equal to K. Such choices for N1 and
N2 are possible since L is invertible. This completes the proof of the first stage
since

{j1, . . . , jm−1,m, jm+1, . . . , jr}

≺ {j1, . . . , jm−1, jm, jm+1, . . . , jr}

and so by induction there is a strong path from (6.5) to an entry of the form

K = [I(i1| · · · |ir)|L]




I(1|2| · · · |r)T

Z


 . (6.6)

Next by Lemma 12 there is a strong path from (6.6) to an entry

K = [I(i1| · · · |ir)|L
′]




I(1|2| · · · |r)T

Z ′


 (6.7)

where Z ′ ∈ GLr(Q) is invertible and L′ need not be. Then a dual argument to
the one above gives a strong path from (6.7) to an entry in the region (1 < · · · <
r)× (1 < · · · < r), completing the proof of the lemma. �
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Combining Lemmas 11, 12 and 13 gives the following result showing that we
can strongly connect a large portion of the table Tn,r. This portion of the table is
represented by the large light grey region in Figure 3.

Corollary 2. For every matrix K ∈ Mr(Q) the λ-graph of K in Tn,r restricted to
⋃

ir≤n−r, jr≤n−r

(i1 < i2 < · · · < ir)× (j1 < j2 < · · · < jr) (6.8)

is strongly connected.

We are now in a position to complete the proof of the main result of this section,
Theorem 6. In the following proof, for an r× n matrix A, with r < n, we shall use
A[i] to denote its ith column. Dually, given an n × r matrix B, with r < n, we
shall use B[i] for its ith row.

One of the key steps in the following proof comes in the second paragraph where
we define the number t which we need to satisfy t > r in order to establish linear
dependence of a set of t vectors in an r-dimensional vector space. For this argument
to be valid we need to make use of our assumption that r < n/3.

Proof of Theorem 6. By Corollary 2 it suffices to show that there is a strong path
from every entry K ∈ Mr(Q) in Tn,r to an entry in the subtable (6.8). To this
end, let A ∈ Yr, B ∈ Xr and let K = AB ∈ Mr(Q). Moreover, suppose that
LC(A) = {i1, i2, . . . , ir}, LR(B) = {j1, j2, . . . , jr} and ir > n − r. We shall prove
that there exists a strong path from (A,B) to (A′′, B′) where the LR(B′) = LR(B)
and LC(A′′) is strictly less than LC(A) in the lexicographic order on the r-element
subsets of {1, . . . , n}. Using this it follows by induction that there is a strong path
from (A,B) to (A1, B1) where LC(A1) ⊆ {1, . . . , n − r} and LR(B1) = LR(B).
Then by a dual argument there is a strong path from (A1, B1) to (A2, B2) where
LC(A2) = LC(A1), while LR(B2) ⊆ {1, . . . , n− r}, and hence (A2, B2) belongs to
the region (6.8).

Let
{k1, . . . , kt} = {1, 2, . . . , n} \ (LC(A) ∪ LR(B))

be the set of indices distinct from all indices of leading columns of A and leading
rows of B, where k1 < k2 < · · · < kt. Since r < n/3 and |LC(A)| = |LR(B)| = r it
follows that

t = |{k1, . . . , kt}| = |{1, 2, . . . , n} \ (LC(A) ∪ LR(B))| ≥ n− 2r > r.

Therefore since t > r, and the column space of A has dimension r, it follows
that there exists some s such that column ks can be expressed as a (right) linear
combination of the columns {ks+1, ks+2, . . . , kt}. Write

A[ks] = A[ks+1]λs+1 +A[ks+2]λs+2 + · · ·+A[kt]λt,

where λi ∈ Q. Let C be the n× r matrix defined by

C[ks] = −B[ks], C[ks+j ] = λs+jB[ks] (1 ≤ j ≤ t− s),

and all other rows of C are set as the zero vector. Computing AC we obtain

AC = A[1]C[1] +A[2]C[2] + · · ·+A[n]C[n]

= A[ks]C[ks] +A[ks+1]C[ks+1] + · · ·+A[kn]C[kn] + 0r×r

= A[ks](−B[ks]) +A[ks+1]λs+1B[ks] + · · ·+A[kt]λtB[ks]

= (−A[ks] +A[ks+1]λs+1 +A[ks+2]λs+2 + · · ·+A[kt]λt)B[ks] = 0r×r.
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Now define B′ = B + C. We have

B′[ks] = B[ks] + C[ks] = 01×r.

Moreover, B′ is an n × r matrix, whose transpose is in RRE form, and satisfies
LR(B′) = LR(B). To see this, consider an arbitrary 1×r row vector of B′ = B+C
and compare it with the corresponding row of B. The only rows that are different
are those indexed by the ki, where i ≥ s, and all of the leading rows of B are
left unchanged. Row ks of B′ is now the zero vector so this change certainly
keeps the transpose of the matrix in RRE form. Now consider some row ks+j with
1 ≤ j ≤ t− s. By definition we have

B′[ks+j ] = B[ks+j ] + λs+jB[ks].

Let [b1, b2, . . . , br] denote this row vector. Suppose that bv 6= 0 for some v. Then it
follows that either column v of B[ks+j ] is non-zero or column v of B[ks] must be
non-zero which in turn, since the transpose of B is in RRE form, implies that the
leading row jv of B (that is, the first row of B to have a non-zero term in the vth
column) must satisfy jv < ks+j . This argument shows that the transpose of B′ is
in RRE form, and moreover that LR(B′) = LR(B). Since

AB′ = A(B + C) = AB +AC = AB + 0 = AB = K,

and LR(B′) = LR(B) it follows that there is a strong edge between (A,B) and
(A,B′) in Tn,k where B′ satisfies B′[ks] = 01×r.

Next we claim that above we may also choose ks so that it satisfies ks < ir.
Indeed, suppose that ks > ir. Consider column k1 of A. Certainly we have k1 ∈
{1, . . . , n − r} since r < n/3. Now let A′ be the matrix obtained by replacing
column A[ks] of A by a copy of A[k1] and leaving all the other columns unchanged.
Since ks > ir the matrix A′ is still in RRE form, and since row ks of B′ is the
zero vector the product is not affected and we have AB = AB′ = A′B′. Also A′

is in the same region as A so the corresponding λ-path is strong. Now column k1
and column ks of A′ are equal and so column k1 is a linear combination of columns
indexed by {k2, k3, . . . , kt}. But k1 ≤ n − r while ir ≥ n − r + 1 by assumption,
and so k1 < ir. Therefore, running once again through the argument given in the
previous paragraph, we may suppose without loss of generality that ks < ir.

So now suppose that ks < ir in A. Take the least v such that iv > ks, which
must exist since ks < ir. Then define a matrix A′′ obtained by replacing column ks
of A by a copy of A[iv] (i.e. the unit vector with zeros everywhere except in position
v). Clearly A′′ is in RRE form. Again we see that AB = AB′ = A′′B′, since B′[ks]
is the zero vector 01×r. Also the edge between AB′ and A′′B′ is easily seen to be
a strong edge by considering the column indexed by the scattered identity matrix
I(i1, i2, . . . , ir)

T , and computing

A I(i1, i2, . . . , ir)
T = A′′ I(i1, i2, . . . , ir)

T = Ir .

The proof is completed by observing that

LC(A′′) = {i1, i2, . . . , iv−1, ks, iv+1, . . . , ir}

is strictly less than

LC(A) = {i1, i2, . . . , ir}

in the lexicographic ordering on r-element subsets of n, and LR(B′) = LR(B). �
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


0r×r

0r×r

Ir

0(n−3r)×r







Ir
0r×r

B

0(n−3r)×r




[ 0r×r Ir A 0r×(n−3r) ] A AB

[ 0r×r 0r×r Ir 0r×(n−3r) ] Ir B

Figure 8. The singular square for the proof of Lemma 14. This
square is singular by Theorem 4 and (2.5). Clearly all of these
matrices are in RRE form.

7. Completing the proof

By this stage in the proof we have succeeded in identifying all of the labels in the
table with the corresponding elements in the group GLr(Q). So after performing
the identifications fA,B = fX,Y whenever BA = Y X we obtain a presentation P ′

r,n

with generators F ′ = {fU : U ∈ GLr(Q)}. As explained in the outline of the proof
of the main theorem given in Section 3, the mapping which sends each generator
fU of F ′ to the matrix U−1 ∈ GLr(Q) defines a homomorphism from the group
defined by P ′

r,n onto the group GLr(Q). The following lemma shows that this map
is actually an isomorphism by showing that every word over F ′ is equal to one of
the generators.

Lemma 14. For every pair A,B ∈ GLr(Q) the relation

fBfA = fAB

appears in the presentation P ′
r,n.

Proof. We show this relation appears among the relations (2.8) by finding an ap-
propriate singular square. Such a singular square is illustrated in Figure 8. This
square is singular by (2.5) since AI−1

r = (AB)B−1. This singular square then gives
rise to the relation f−1

A = f−1
ABfB in (2.8), or equivalently fBfA = fAB, completing

the proof. �

This completes all the steps of the proof of the main theorem, Theorem 1, as
outlined in Section 3.

8. Concluding Remarks

The obvious outstanding question that remains is whether our main result The-
orem 1 is true more generally for rank r components in the range n/3 ≤ r < n− 1.
The proof given here certainly does not extend in a straightforward way to higher
values of r. In terms of the outline of the proof given in Section 3, Stage 1 of the
proof does carry across and hold for all r in the range 1 ≤ r < n − 1. However,
both Stages 2 and 3 of the proof the assumption r < n/3 is used in the proofs.
Let us now see that as they stand the results in these section do not extend to the
case n/3 ≤ r < n− 1. Recall that in Stage 2 we show the abstract generators can
be identified in such a way as to put them (after this identification) into bijective
correspondence with the elements of GLr(Q). Clearly a necessary condition for
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this to be possible is that the set F has size at least equal to the size of GLr(Q).
However in general, without the assumption r < n/3 it is not always true that the
size of F is greater than GLr(Q). This can be seen by a simple counting argument.
Indeed, if Fq is the finite field with q elements, then the number of R-classes in
the D-class Dr of Mn(Fq) is precisely the number of r-dimensional subspaces of an
n-dimensional vector space over Fq which is given by the Gaussian coefficient

[
n
r

]

q

=
(qn − 1)(qn−1 − 1) · · · (qn−r+1 − 1)

(qr − 1)(qr−1 − 1) · · · (q − 1),

and the number of idempotents in each R-class of Dr is easily seen to be equal to
qr(n−r). On the other hand the size of the general linear group GLm(Fq) is well
known to be given by the formula

|GLm(Fq)| = (qm − q0)(qm − q1) · · · (qm − qm−1).

So for example if we take n = 7 and r = 7− 2 = 5 and consider the D-class D5 of
M7(F2) then the number of idempotents in D5 is given by

210
(27 − 1)(26 − 1)(25 − 1)(24 − 1)(23 − 1)

(25 − 1)(24 − 1)(23 − 1)(22 − 1)(2− 1)
=

210(27 − 1)(26 − 1)

3
,

which is easily checked to be strictly less than the number of elements in the group
GL5(F2) which, using the above formula, is equal to

(25 − 1)(25 − 2)(25 − 2)(25 − 22)(25 − 23)(25 − 24).

Therefore, if Theorem 1 does extend to values n/3 ≤ r < n−2 then the reason that
the theorem holds is different for the reason that it holds for low rank r < n/3.

The main result of [16] for the full transformation monoid Tn, and the main result
Theorem 1, suggest that it may well be worth investigating maximal subgroups of
endomorphism monoids of finite dimensional independence algebras (in the sense
of [4, 11]) which form a class of monoids generalising both the full transformation
monoid and the full linear monoid over a field. In particular this may provide
a route to proving a common generalisation of Theorem 1 and the corresponding
result for Tn established in [16].
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