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On the estimation of normal copula discrete regression models

using the continuous extension and simulated likelihood

Aristidis K. Nikoloulopoulos∗

Abstract

The continuous extension of a discrete random variable is amongst the computational
methods used for estimation of multivariate normal copula-based models with discrete
margins. Its advantage is that the likelihood can be derived conveniently under the the-
ory for copula models with continuous margins, but there has not been a clear analysis
of the adequacy of this method. We investigate the asymptotic and small-sample effi-
ciency of two variants of the method for estimating the multivariate normal copula with
univariate binary, Poisson, and negative binomial regressions, and show that they lead
to biased estimates for the latent correlations, and the univariate marginal parameters
that are not regression coefficients. We implement a maximum simulated likelihood
method, which is based on evaluating the multidimensional integrals of the likelihood
with randomized quasi Monte Carlo methods. Asymptotic and small-sample efficiency
calculations show that our method is nearly as efficient as maximum likelihood for fully
specified multivariate normal copula-based models. An illustrative example is given to
show the use of our simulated likelihood method.

Keywords: Continuous extension; Jitters; Multivariate normal copula; Rectangle prob-
abilities; Simulated likelihood.

1 Introduction

For multivariate discrete data Y = (Y1, . . . , Yd) given a vector of (continuous or dis-
crete) covariates x = (x1, . . . ,xd) with xj ∈ R

p, j = 1, . . . , d, the discretized multivari-
ate normal (MVN) distribution, or the MVN copula with discrete margins, has been
in use for a considerable length of time, e.g. Joe (1997), and much earlier in the bio-
statistics (Ashford and Sowden, 1970), psychometrics (Muthén, 1978), and econometrics
(Hausman and Wise, 1978) literature. It is usually known as a multivariate, or multino-
mial, probit model. The multivariate probit model is a simple example of the MVN copula
with univariate probit regressions as the marginals. In the general case, the discretized
MVN model has the following cumulative distribution function (cdf):

Pr(Y1 ≤ y1, . . . , Yd ≤ yd;x) = Φd

(

Φ−1[FY1(y1;x1)], . . . ,Φ
−1[FYd

(yd;xd)];R
)

, (1)

where Φd denotes the standard MVN distribution function with correlation matrix R =
(ρjk : 1 ≤ j < k ≤ d), Φ is the cdf of the univariate standard normal, and FY1(y1;x1), . . . ,
FYd

(yd;xd) are the univariate discrete cdfs.
Other multivariate copulas for discrete response data have been around a long time, e.g.

in Joe (1997), and earlier for some simple copula models. Simple parametric families of
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copulas have a closed form cdf; hence the joint likelihood is straightforward to derive from
the probability mass function (pmf) as a finite difference of the cdf, but they provide limited
dependence. For example, Meester and MacKay (1994) used a Frank copula (Frank, 1979)
with a closed form cdf to model multivariate binary data. The Frank copula is a member
of the Archimedean class of copulas, which are limited to exchangeable structures.

The MVN copula generated by the MVN distribution inherits the useful properties of
the latter, thus allowing a wide range for dependence, and overcomes the drawback of lim-
ited dependence inherent in simple parametric families of copulas (Nikoloulopoulos et al.,
2011). The use of the MVN with logistic regression (or Poisson or negative binomial re-
gression) is just a special case of the general theory of dependence modelling with cop-
ulas. Implementation of the MVN copula for discrete data (discretized MVN) is possi-
ble, but not easy, because the MVN distribution as a latent model for discrete response
requires rectangle probabilities based on high-dimensional integrations or their approxi-
mations (Nikoloulopoulos and Karlis, 2009). Many approaches have been considered for
computing high-dimensional normal probabilities, see e.g. Schervish (1984), Genz (1992),
and Joe (1995). These could be used to evaluate the normal copula-based likelihood for
discrete data with general dependence.

Four recent papers (Heinen and Rengifo, 2007, 2008; Madsen, 2009; Madsen and Fang,
2011) attempt to “approximate” the likelihood, by using the continuous extension (CE) of
a discrete random variable developed in Denuit and Lambert (2005). Heinen and Rengifo
(2007, 2008) proposed a surrogate likelihood, assuming the latent uniform variables in the
CE of a discrete random variable are observed, while Madsen (2009) and Madsen and Fang
(2011) used also the CE but their method is actually an example of a simulated likelihood
to compute the MVN rectangle probabilities. The methods based on the CE cannot be rec-
ommended until its properties have been studied and compared to existing methods. The
CE method in Denuit and Lambert (2005) has been used to prove theoretical results for
copula-based concordance measures for discrete data. Although its application to copula
dependence modeling for discrete data is novel, its theoretical and small-sample efficiency
has yet to be established in that context. The contribution in this paper is (a) to exam-
ine thoroughly the accuracy and the adequacy of the surrogate and simulated likelihood
method based on the CE using asymptotics and simulations; (b) to improve the efficiency
of simulated likelihood by transforming the rectangle integrals as in Genz (1992); and (c) to
give precise guidelines for handling the MVN copula-based likelihood for regression models
with dependent discrete response data.

For ease of exposition, we consider the case that the univariate marginal parameters are
common to different univariate margins; γ denotes the r-dimensional vector of univariate
marginal parameters that are not regression coefficients, and β the p-dimensional vector of
the regression parameters. The marginal means, E(Yj) = µj , j = 1, . . . , d, depend on the
vector of the covariates xj , via the vector β and a link function, η(µj) = x⊤

j β, j = 1, . . . , d.
The remainder of the paper proceeds as follows. Section 2 provides an overview of the sur-
rogate and simulated likelihood method using the CE. In Section 3 we describe appropriate
methods for handling the MVN copula-based likelihood for regression models with depen-
dent discrete response data, and propose a maximum simulated likelihood method based
on evaluating the multidimensional integrals of the likelihood with randomized quasi Monte
Carlo methods. Section 4 and Section 5 contain theoretical (e.g. asymptotic properties of
the estimators) and small sample efficiency calculations, respectively, to assess the accuracy
of the methods. Section 6 presents an application of the proposed simulated likelihood to
the toenail infection data in Madsen and Fang (2011). We conclude this article with some
discussion, followed by a technical Appendix.
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2 Surrogate and simulated likelihood using the CE

Denuit and Lambert (2005) proposed a CE of integer-valued random variables to study
concordance measures for dependent discrete data. They associate an integer-valued random
variable Y with a jittered random variable Y ⋆, such that,

Y ⋆ = Y + (V − 1),

where V is a uniform random variable in the unit interval and independent of Y . Y ⋆ is
a CE of Y , and has support on the reals. Given a particular realization of the jittering,
the (conditional) density of Y ⋆ is fY ⋆|V (y

⋆|v) = fY (⌈y⋆⌉), where ⌈y⋆⌉ is the ceiling of
y⋆, or the smallest integer greater than or equal to y⋆. The (conditional) cdf of Y ⋆ is
FY ⋆|V (y

⋆|v) = FY (⌈y⋆⌉−1)+vfY (⌈y⋆⌉). It is easy to see that the simplified cdf and density
of Y ⋆ take the form FY ⋆|V (y

⋆|v) = FY (y−1)+vfY (y) and fY ⋆|V (y
⋆|v) = fY (y), respectively.

2.1 Surrogate likelihood based on the CE of a discrete random variable

Heinen and Rengifo (2007, 2008) were the first that adopt this approach to form a surrogate
likelihood for MVN copula-based models with discrete margins (hereafter HR method).
Copula-based models were originally developed for continuous responses where the density
is obtained using partial derivatives of the multivariate cdf (see e.g. Nikoloulopoulos et al.
(2012)), and hence the numerical calculations are much simpler. The corresponding density
for the jittered continuous vector Y⋆ = (Y ⋆

1 , . . . , Y
⋆
d ) given n independent standard uniforms

V = (V1, . . . , Vd) is,

hY⋆|V(y⋆|v;x) = c
(

FY ⋆
1 |V1

(y⋆1 |v1;x1), . . . , FY ⋆
d
|Vd

(y⋆d|vd;xd);R
)

d
∏

j=1

fY ⋆
j |Vj

(y⋆j |vj ;xj),

where v = (v1, . . . , vd) are realizations of the jitters V and c(u1, . . . , ud;R) is the d-variate
normal copula density. Since the MVN copula has a closed form density,

c(u1, . . . , ud;R) = |R|−1/2 exp
[1

2

{

q⊤(Id −R−1)q
}

]

,

where q = (q1, . . . , qd) with qj = Φ−1(uj), j = 1, . . . , d and Id is the d-dimensional identity
matrix, the authors avoid the multidimensional integration by using the CE of the discrete
random variables. The estimated parameters can be obtained by maximizing the surrogate
log-likelihood,

ℓHR(β,γ,R) =
n
∑

i=1

log hY⋆|V(y⋆i1, . . . , y
⋆
id|vi1, . . . , vid;xi1, . . . ,xid),

over the univariate and copula parameters (β,γ,R). In order to avoid the noise introduced
by the jitters V, they use m jitters. That is, they simulate a vector of independent standard
uniforms Vk = (V1,k, . . . , Vd,k) and maximize,

ℓ
(k)
HR(β,γ,R) =

n
∑

i=1

log hY⋆|Vk
(y⋆i1, . . . , y

⋆
id|vi1,k, . . . , vid,k;xi1, . . . ,xid),

for k = 1, . . . ,m. The HR estimates are the average of the estimates over the m runs.
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2.2 Simulated likelihood based on the CE of a discrete random variable

Madsen (2009) and Madsen and Fang (2011) also adopt the CE of Yj proposed by Denuit and Lambert
(2005), but they make use of importance functions in combination with simulated likelihood.
Simulated likelihood for multivariate probit models has been used in econometrics since the
early 1990s, and it is one of the recommended methods for generalized linear mixed models,
see e.g. Chapter 7 in Demidenko (2004). The simulated likelihood method, applies impor-
tance sampling to simulate the likelihood function, but this must be done in a way that the
simulated likelihood changes little when the parameters of the model are perturbed a little.
This can be accomplished by using the same set of random draws in an appropriate way.
For importance sampling to work well, the integrand, say,

∫

e(z) dz =

∫

e(z)

g(z)
g(z) dz = EZ

[e(z)

g(z)

]

,

must be converted to a good form of an empirical average based on data simulated from
a suitable importance sampling distribution g. Better choices of g have small variance for
w(z) = e(z)/g(z), such that the importance weight w is bounded. A bad choice can lead to
an inflated variance of the integral-estimate and thus to a very poor approximation. Hence,
in order to use simulated likelihood in an efficient way the choice of the the importance
sampling distribution is crucial.

The simulated likelihood using the jitters (hereafter MF method) is,

LMF (β,γ,R) = EV

[

n
∏

i=1

hY⋆|V(y⋆i1, . . . , y
⋆
id|vi1, . . . , vid;xi1, . . . ,xid)

]

. (2)

Essentially, the MF importance weight is unbounded. Madsen and Fang (2011) write an
exponential with quadratic form 1

2

{

q⊤(Id −R−1)q
}

, which is not positive definite, so for
part of the q vector space, it can be arbitrarily negative; hence their integrand can be
arbitrarily large. This is a poor choice of an importance function, and it is hard to achieve
good accuracy for the numerical integral.

The expected likelihood in (2) can be approximated by averaging over the jitters Vk, k =
1, . . . ,m, that is,

LMF (β,γ,R) =
1

m

m
∑

k=1

[

n
∏

i=1

hY⋆|Vk
(y⋆i1, . . . , y

⋆
id|vi1,k, . . . , vid,k;xi1, . . . ,xid)

]

=
1

m

m
∑

k=1





n
∏

i=1







|R|−1/2 exp

[

1

2

{

q⊤
i,k(Id −R−1)qi,k

}

] d
∏

j=1

fY ⋆
j |Vj

(y⋆ij |vij,k;xij)











=
1

m

n
∏

i=1

d
∏

j=1

fYj
(yij;xij)

m
∑

k=1

(

n
∏

i=1

{

|R|−1/2 exp

[

1

2

{

q⊤
i,k(Id −R−1)qi,k

}

]}

)

, (3)

where qi,k =
(

Φ−1[FY ⋆
1 |V1,k

(y⋆i1|vi1,k;xi1)], . . . ,Φ
−1[FY ⋆

d
|Vd,k

(y⋆id|vid,k;xid)]
)

.
The MF estimates of (β,γ,R) are derived by maximizing the ℓMF = logLMF with

respect to the univariate and copula parameters. For the MF (and HR in subsection 2.1)
likelihood, to work well in a numerical optimization routine, the evaluations via simulation
have to be smooth (differentiable) when the parameters change by small amounts. In order
to accomplish this, the same set of uniform random variables should be used no matter the
parameter values in the iterative optimization; see e.g. Bhat and Sidharthan (2011).

4



3 Appropriate methods for handling the likelihood

Estimation of the model parameters (β,γ,R) can be approached by the standard maximum
likelihood (ML) method, by maximizing the joint log-likelihood (Joe, 1997),

ℓ(β,γ,R) =
n
∑

i=1

log hY(yi1, . . . , yid;xi1, . . . ,xid), (4)

over the univariate and copula parameters (β,γ,R), where hY is the joint pmf of the
multivariate discrete response vector Y = (Y1, . . . , Yd). Song (2007), influencing other
authors (e.g. Heinen and Rengifo (2007, 2008); Madsen (2009); Madsen and Fang (2011)),
acknowledged that the pmf can be obtained as a finite difference of the cdf in (1). Generally
speaking, this is an imprecise statement, since calculating the finite difference among 2d

numerically computed orthant probabilities may result in negative values. The pmf can be
alternatively obtained by computing the following rectangle probability,

hY(y;x) = Pr(Y1 = y1, . . . , Yd = yd;x) (5)

= Pr(y1 − 1 < Y1 ≤ y1, . . . , yd − 1 < Yd ≤ yd;x)

=

∫ Φ−1[FY1
(y1;x1)]

Φ−1[FY1
(y1−1;x1)]

· · ·
∫ Φ−1[FYd

(yd;xd)]

Φ−1[FYd
(yd−1;xd)]

φR(z1, . . . , zd)dz1 . . . dzd,

where φR denotes the standard MVN density with latent correlation matrix R.
The computation of MVN rectangle probabilities such as the one in (5) is possible,

but requires multidimensional integration. However, there is a special case overlooked in
the biostatistics literature (Kiefer, 1982; Madsen and Fang, 2011; Ochi and Prentice, 1984;
Song et al., 2009): for positive exchangeable correlation structures, the d-dimensional in-
tegrals conveniently reduce to 1-dimensional integrals (Johnson and Kotz, 1972, p. 48).
Hence, MVN rectangle probabilities can be quickly computed to a desired accuracy that
is 10−6 or less, because 1-dimensional numerical integrals are computationally easier than
higher-dimensional numerical integrals. For general correlation structures, there are several
papers in the literature that focus on the computation of the MVN rectangle probabilities,
and, conveniently, the implementation of the proposed algorithms is available in contributed
R packages 1. Schervish (1984) proposed a locally adaptive numerical integration method
but this method, while more accurate, is time consuming and restricted to a low dimension.
Therefore, Genz (1992) proposed a Monte Carlo method and Joe (1995) proposed two ap-
proximations to multivariate normal probabilities. The first-order approximation makes use
of all of the univariate and bivariate marginal probabilities, and the second-order approxi-
mation also makes use of trivariate and four-variate marginal probabilities. These advances
in computation of MVN probabilities can be used to implement MVN copula models with
discrete response data:

• For positive exchangeable dependence structures, if one computes the rectangle MVN
probabilities in (4) with the 1-dimensional integral method in Johnson and Kotz
(1972), then one is using a numerically accurate likelihood method that is valid for
any dimension.

• If one computes the rectangle MVN probabilities in (4) with the methods in Joe
(1995), then one is using an approximate likelihood method; see e.g. Joe (1997).

1Both approximations to MVN rectangle in Joe (1995), the 1-dimensional integral in the exchangeable
case, and the method in Schervish (1984), can be computed with the functions mvnapp, exchmvn, and
pmnorm, respectively, in the R package mprobit (Joe et al., 2011). The methods in Genz (1992) can be
computed with the function pmvnorm in the R package mvtnorm (Genz et al., 2012).
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• If one computes the rectangle MVN probabilities in (4) via simulation based on the
method in Genz (1992), then one is using the simulated likelihood method but with
something much better than in Madsen (2009) and Madsen and Fang (2011).

Since both approximations in Joe (1995) are better when the correlations are smaller, we
concentrate on the simulated likelihood method based on the computation of the MVN
probabilities ala Genz (1992).

3.1 Simulated likelihood method via the optimized method of Genz and Bretz
(2002)

For an integral in the context of an MVN rectangle probability,

P (aj < Zj < bj , j = 1, ...d) =

∫ b1

a1

· · ·
∫ bd

ad

φR(z1, . . . , zd)dz1 . . . dzd, (6)

for an MVN density φR with correlation matrix R, Genz (1992) uses a sequence of thee
transformations to transform the original integral into an integral over a unit hypercube,

P (aj < Zj < bj , j = 1, ...d) =

∫ 1

0
· · ·
∫ 1

0
e(v1, . . . , vd−1)dv1 . . . dvd−1,

with,

e(v1, . . . , vd−1) = e1e2(v1)e3(v1, v2) . . . ed(v1, . . . , vd−1),

ej(v1, . . . , vj−1) = εj(v1, . . . , vj−1)− ǫj(v1, . . . , vj−1),

ǫj(v1, . . . , vj−1) = Φ
([

aj −
j−1
∑

k=1

cjkΦ
−1{ǫk(v1, . . . , vk−1) + ukek(v1, . . . , vk−1)}

]

/cjj

)

,

εj(v1, . . . , vj−1) = Φ
([

bj −
j−1
∑

k=1

cjkΦ
−1{ǫk(v1, . . . , vk−1) + ukek(v1, . . . , vk−1)}

]

/cjj

)

;

C = (cjk : 1 ≤ j < k ≤ d) is the matrix used for the Cholesky decomposition of R.
This sequence of transformations reduces the number of integration variables by one,

but, more interestingly, the rectangle integral is converted to a bounded integrand, so that
the rectangle probability can be successfully evaluated via importance sampling based on a
(d− 1)-variate standard uniform random sample Vk,

P (aj < Zj < bj , j = 1, ...d) = m−1
m
∑

k=1

e(vk).

Genz and Bretz (2002) improve the performance of the crude Monte Carlo methods in
Genz (1992) by calling a randomized quasi Monte Carlo method with the use of antithetic
variates. They use approximations of the form,

P (aj < Zj < bj, j = 1, ...d) = m−1
m
∑

k=1

1

2P

P
∑

p=1

(e(|2⌊pp +vk⌋−1|) + e(1− |2⌊pp +vk⌋− 1|).

(7)
In this form, ⌊t⌋ denotes the vector obtained by taking the fractional part of each of the
components of t, and pp, p = 1, . . . , P is a set of quasi-random points.

To sum up, Genz and Bretz (2002) achieve error reduction of Monte Carlo methods
with variance reduction methods as (a) transforming to a bounded integrand, (b) using
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antithetic variates, and (c) using a randomized quasi Monte Carlo method. The test results
in Genz and Bretz (2002, 2009) show that their method is very efficient, compared to other
methods in the literature. Note in passing that the method in Genz and Bretz (2002) is
“optimized” in the mtvnorm R package (Genz et al., 2012). Hence, on the calculation of the
approximation in (7), one doesn’t need to worry about the selection, for example, of the
number of jitters m, or the number of quasi points P .

We implement a simulated likelihood (hereafter SL), where the rectangle MVN proba-
bilities are computed based on the method in Genz and Bretz (2002). Since the estimation
of the parameters of the MVN copula-based models is obtained using a quasi-Newton rou-
tine (Nash, 1990) applied to the log-likelihood in (4), the use of randomized quasi Monte
Carlo simulation to four decimal place accuracy for evaluations of integrals works poorly,
because numerical derivatives of the log-likelihood with respect to the parameters are not
smooth. In order to achieve smoothness, the same set of uniform random variables should
be used for every rectangle probability that comes up in the optimization of the SL. Hence,
our implementation allows estimation of parameters from response vectors of dimension
much larger than three that used in previous theoretical studies and applications (e.g. Song
(2007); Song et al. (2009)).

4 Theoretical efficiency

In this section, we perform several theoretical calculations, similarly to Joe (1995, 2008),
to investigate the accuracy of the “approximate” likelihood methods (Heinen and Rengifo,
2007, 2008; Madsen, 2009; Madsen and Fang, 2011), and the SL method in Subsection
3.1, which is based on evaluating the multidimensional integrals at the likelihood with the
method in Genz and Bretz (2002).

4.1 Asymptotics

In this subsection, we study the asymptotics of the HR and SL methods, and we assess the
accuracy based on the limit (as the number of clusters increases to infinity) of the maximum
surrogate likelihood estimate (HRMLE) and the maximum SL estimate (MSLE). By varying
factors such as dimension d, regression and not regression parameters, the amount of dis-
creteness (binary versus count response), and latent correlation for exchangeable structures,
we demonstrate patterns in the asymptotic bias of the HRMLE and MSLE, and assess the
performance of HR and SL. For the cases where we compute the probability limit, we will
take a constant dimension d that increases. We will also conveniently use discrete covariates
so that we can assume that there are a finite number of distinct values. The idea of the
continuous extension is to replace a numerically more difficult MVN rectangle probability
calculation with a simpler MVN density value, and hence it is discrete responses that matter
and not the type of covariates. The pattern should be similar with continuous covariates
but the bias cannot be determined as easily.

Let the T distinct cases for the discrete response and the covariates be denoted as

(y(1),x(1)), . . . , (y(T ),x(T )),

where y(t) = (y
(t)
1 , . . . , y

(t)
d ), x(t) = (x

(t)
1 , . . . ,x

(t)
d ), t = 1, . . . , T. In a random sample of size

n, let the corresponding frequencies be denoted as n(1), . . . , n(T ). Assuming a probability
distribution on the covariates, for t = 1, . . . , T , let p(t) be the limit in probability of n(t)/n

7



as n → ∞. For the simulated likelihood in (4), we have the limit,

n−1ℓ(β,γ, ρ) →
T
∑

t=1

p(t) log hY(y
(t)
1 , . . . , y

(t)
d ;x

(t)
1 , . . . ,x

(t)
d ), (8)

where hY(y(t);x(t)) is computed using the method in Genz and Bretz (2002). The limit of
the MSLE (as n → ∞) is the maximum of (8); we denote this limit as (βSL,γSL, ρSL). Note
in passing that the limit of the standard MLE (as n → ∞) is the maximum of (8) where
hY(y(t);x(t)) is computed with the 1-dimensional integral method in Johnson and Kotz
(1972).

The surrogate log-likelihood based on the MVN density with exchangeable dependence
structure is,

ℓHR(β,γ, ρ) =

n
∑

i=1

log
[

c(ui1, . . . , uid; ρ)

d
∏

j=1

fYj
(yij ;xij)

]

,

where c(ui1, . . . , uid; ρ) =
1√

[1+(d−1)ρ](1−ρ)d−1
e

−ρ

2(1−ρ)[1+(d−1)ρ]

(

(d−1)ρ
∑d

j=1 q
2
ij−2

∑
j<k qijqik

)

(Žežula,

2009) with qij = Φ−1(uij) = Φ−1[FYj
(yij−1;xij)+vijfYj

(yij ;xij)] as realizations of standard
normal random variables. Therefore n−1ℓHR(β,γ, ρ) is,

−1

2
log[1 + (d− 1)ρ]− d− 1

2
log(1− ρ)− n−1 ρ

2(1− ρ)[1 + (d− 1)ρ]
×

[

(d− 1)ρ

n
∑

i=1

d
∑

j=1

q2ij − 2

n
∑

i=1

∑

j<k

qijqik

]

+ n−1
n
∑

i=1

d
∑

j=1

log fYj
(yij ;xij).

Then as n → ∞, the limit in probability of n−1ℓHR(β,γ, ρ) is,

T
∑

t=1

p(t) ×
[

−1

2
log[1 + (d− 1)ρ]− d− 1

2
log(1− ρ)− ρ

2(1− ρ)[1 + (d− 1)ρ]
×

{

(d− 1)ρ

d
∑

j=1

ξ
(t)
j − 2

∑

j<k

ζ
(t)
j ζ

(t)
k

}

+

d
∑

j=1

log fYj
(y

(t)
j ;x

(t)
j )
]

, (9)

where ζ
(t)
j , ξ

(t)
j , j = 1, . . . , d, t = 1, . . . , T are conditional expectations for the truncated

normal distribution that have closed forms. Further details are given in the Appendix.
The limit of the HRMLE (as n → ∞) is the maximum of (9); we denote this limit as
(βHR,γHR, ρHR).

We will compute these limiting HRMLE and MSLE in a variety of situations to show
clearly if the HR and SL methods are good. By using these limits, we do not need Monte
Carlo simulations for comparisons, and we can quickly vary parameter values and see the
effects. The p(t) in (8) and (9) are the model based probabilities hY(y(t);x(t)), and computed
with the 1-dimensional integral method in Johnson and Kotz (1972). For marginal models
we use Bernoulli(µ), Poisson(µ), and negative binomial (NB). For the latter model, we
use both the NB1(µ, γ) and NB2(µ, γ) parametrization in Cameron and Trivedi (1998);
the NB2 parametrization is that used in Lawless (1987). For a count response, we get a
finite number of y(t) vectors by truncation. The truncation point is chosen to exceed 0.999
for total probabilities. Further, we use only one binary covariate, which is the same for
each cluster; this scenario is typical for longitudinal data with time-independent covariates.
Other discrete (and time-dependent) covariates can be used, but computations are more
time consuming because T is larger.
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d ρ ρHR β0 βHR
0

β1 βHR
1

2 0.3 0.120 -0.5 -0.499 0.5 0.499
2 0.6 0.255 -0.5 -0.497 0.5 0.497
2 0.8 0.368 -0.5 -0.493 0.5 0.493
5 0.3 0.120 -0.5 -0.498 0.5 0.498
5 0.6 0.255 -0.5 -0.491 0.5 0.491
5 0.8 0.368 -0.5 -0.479 0.5 0.479
10 0.3 0.120 -0.5 -0.496 0.5 0.496
10 0.6 0.255 -0.5 -0.484 0.5 0.484
10 0.8 0.369 -0.5 -0.467 0.5 0.467

Table 1: Limiting HRMLE for MVN copula-based models with marginal logistic regression.

Representative results are shown in Tables 1 and 2 for logistic and NB2 regression, with
MSLE results omitted because they were identical with MLE up to three or four decimal
places. Therefore, the SL method leads to unbiased estimating equations. Regarding the
HR method, by varying the latent correlation ρ and dimension d, results are similar for
the binary and count responses. There is substantial asymptotic downward bias for the
HRMLE of the latent correlation (ρHR), and it seems that there is negligible asymptotic
bias for the HRMLE for the parameters that are regression coefficients (βHR

0 , βHR
1 ); note

that this slightly increases as either d or ρ increases. Calculating the limit for HRMLE of γ
(γHR) for NB2 regression, it can also be seen that there is substantial asymptotic downward
bias for the univariate marginal parameters that are not regression coefficients as the latent
correlation ρ increases. The results in Tables 1 and 2 show that the HR method is adequate
with regard to the univariate marginal parameters that are regression coefficients.

d ρ ρHR β0 βHR
0

β1 βHR
1

γ γHR

2 0.3 0.191 -0.5 -0.498 0.5 0.495 0.5 0.480
2 0.6 0.397 -0.5 -0.492 0.5 0.483 0.5 0.410
2 0.8 0.550 -0.5 -0.481 0.5 0.466 0.5 0.302
3 0.3 0.191 -0.5 -0.497 0.5 0.492 0.5 0.468
3 0.6 0.394 -0.5 -0.484 0.5 0.472 0.5 0.361
3 0.8 0.545 -0.5 -0.466 0.5 0.446 0.5 0.214

Table 2: Limiting HRMLE for MVN copula-based models with marginal NB2 regression.
The truncation point is 10.

After evaluating the adequacy of the MF and SL log-likelihood on finding the peak
(MLE), we evaluate if the curvature (Hessian) is also correct for the cases where the HRMLE
and MSLE are correct. To check this, we also computed the negative inverse Hessian H
of the limit of the surrogate log-likelihood in (9) and the simulated log-likelihood in (8);
because these are limits as n → ∞ of n−1 times the log-likelihood, H is the inverse Fisher
information, or equivalently, the covariance matrix for sample size n is approximately n−1H.
For a comparison, we have also calculated the Hessian at the limit for the standard MLE.
For simpler comparisons, we convert to standard errors (SE), say for a sample size of
n = 100 (that is, square roots of the diagonals of the above matrices divided by n). Some
representative results are given in Table 3 and Table 4 for an MVN copula-based model with
marginal logistic and NB2 regression, respectively, with the MSLE results omitted because
they were again identical with MLE up to three or four decimal places.

The results in Tables 3 and 4 show that the HR method slightly underestimates the SE
for the regression parameters. Underestimation of the curvature increases as the dimension
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d ρ β0 β1 ML HR ML HR ML HR

SE(β̂0) SE(β̂1) SE(ρ̂)
2 0.3 -0.5 0.5 0.16 0.15 0.22 0.21 0.11 0.07
2 0.6 -0.5 0.5 0.17 0.16 0.24 0.22 0.08 0.06
2 0.8 -0.5 0.5 0.18 0.16 0.26 0.22 0.05 0.06
5 0.3 -0.5 0.5 0.12 0.10 0.17 0.14 0.05 0.03
5 0.6 -0.5 0.5 0.15 0.11 0.21 0.16 0.05 0.03
5 0.8 -0.5 0.5 0.17 0.12 0.23 0.17 0.03 0.03
10 0.3 -0.5 0.5 0.11 0.08 0.15 0.11 0.03 0.02
10 0.6 -0.5 0.5 0.14 0.09 0.19 0.12 0.04 0.02
10 0.8 -0.5 0.5 0.16 0.09 0.22 0.13 0.03 0.02

Table 3: Standard errors (SE) of the limiting HRMLE and MLE for MVN copula-based
models with marginal logistic regression.

d ρ β0 β1 γ ML HR ML HR ML HR ML HR

SE(β̂0) SE(β̂1) SE(γ̂) SE(ρ̂)
2 0.3 -0.5 0.5 0.5 0.11 0.11 0.15 0.14 0.15 0.14 0.08 0.07
2 0.6 -0.5 0.5 0.5 0.13 0.11 0.16 0.15 0.15 0.13 0.06 0.06
2 0.8 -0.5 0.5 0.5 0.13 0.12 0.17 0.15 0.17 0.12 0.04 0.04
3 0.3 -0.5 0.5 0.5 0.10 0.09 0.13 0.12 0.12 0.11 0.06 0.04
3 0.6 -0.5 0.5 0.5 0.12 0.10 0.15 0.13 0.13 0.10 0.05 0.04
3 0.8 -0.5 0.5 0.5 0.13 0.10 0.16 0.13 0.15 0.09 0.03 0.03

Table 4: Standard errors (SE) of the limiting HRMLE and MLE for MVN copula-based
models with marginal NB2 regression. The truncation point is 10.

d and/or the latent correlation ρ increases. The HR method leads to underestimation of
the SE, because it is using information on jitters that are not in the observed data.

To sum up, the asymptotics show that the maximum SL method is as good as maximum
likelihood, while the maximum surrogate log-likelihood using the CE leads to approximate
asymptotic unbiasedness for (some) univariate marginal parameters and not for the latent
correlation parameters, because the jittering is univariate and does not account for depen-
dence. Although we show the details only for exchangeable dependence, we expect the
above results to hold in general, as well as to apply to different dependence structures.
Section 5 contains small sample efficiency calculations using both exchangeable and AR(1)
dependence.

Closing this section, we explain why the the surrogate log-likelihood using the CE fails.
It is easiest notationally to indicate what is happening with bivariate discretized normal:

Y1 = j1, Y2 = j2 iff z1,j1−1 < Z1 ≤ z1,j1 , z2,j2−1 < Z2 ≤ z2,j2

where z1,j , z2,j are cutpoints, and (Z1, Z2) is bivariate standard normal with correlation ρ.
Then conditioned on {Y1 = j1, Y2 = j2}, (Z1, Z2) is dependent with a truncated bivariate
normal distribution. This means the jittered variables (V1, V2) have to be dependent to
get the correct conditional distribution. So, for jittering to be asymptotically unbiased, a
sequential approach would be needed based on the previous estimates of the latent correla-
tions.
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4.2 Computation of MVN rectangle probabilities

In this section, we describe how the high-dimensional multivariate normal rectangle proba-
bility is computed by Madsen (2009) and Madsen and Fang (2011) using importance sam-
pling, and compare it with the naive simulation method, and the method in Genz and Bretz
(2002).

For an integral in the context of an MVN rectangle probability in (6), naive simulation
uses,

m−1
∑

1(aj < zj < bj, j = 1, ..., d),

where 1(A) denotes the indicator function of the set A and z1, ..., zd are m iid variates from
φR. Importance sampling gives,

∫ b1

a1

· · ·
∫ bd

ad

[

φR(z1, . . . , zd)/g(z1, . . . , zd)
]

g(z1, . . . , zd)dz1 . . . dzd,

where g is a closed-form density from which it is easy to simulate.
Estimation is via,

m−1
∑

φR(z1, . . . , zd)/g(z1, . . . , zd),

where z1, ..., zd are iid simulated from g. Better choices of g have small variance for w =
φR/g, such that w is bounded (in which case one can bound the variance). The penalty
for a bad g can be longer run times than for a general Monte Carlo simulation without
importance sampling.

Madsen (2009) and Madsen and Fang (2011) implement the integration in (6) by trans-
forming z1 = Φ−1(ω1), . . . , zd = Φ−1(ωd) to get,

∫ Φ(b1)

Φ(a1)
· · ·
∫ Φ(bd)

Φ(ad)

φR

(

Φ−1(ω1), . . . ,Φ
−1(ωd)

)

φ
(

Φ−1(ω1)
)

· · · φ
(

Φ−1(ωd)
) dω1 . . . dωd,

where φ is the standard normal density. The Denuit and Lambert (2005) uniform extension
in this case corresponds to evaluating the above integral based on a d-variate uniform
random sample Ωk = (Ω1,k, . . . ,Ωd,k), where Ωj,k, j = 1, . . . , d are uniform in the interval
Φ(aj) to Φ(bj) for j = 1, . . . , d. Approximation is via,

m−1
m
∑

k=1

φR

(

Φ−1(ω1,k), . . . ,Φ
−1(ωd,k)

)
∏d

j=1

(

Φ(bj)− Φ(aj)
)

φ
(

Φ−1(ω1,k)
)

· · ·φ
(

Φ−1(ωd,k)
) ,

where ωk = (ω1,k, . . . , ωd,k) are realizations of the jitters Ωk.
In Table 5, comparisons of the accuracy of the MF (m = 103 and m = 104), the

naive (m = 104) method, and the method in Genz and Bretz (2002) are presented. The
accuracy comparisons are for the computation of the equicorrelated rectangle probability
of the form Pr(−a ≤ Zj ≤ a, j = 1, . . . , d) for dimensions d = 5, 10, 20 and correlations
ρ = 0.3, 0.6, 0.8. These probabilities are also computed with the numerically accurate
method in Johnson and Kotz (1972), and the results are identical up to three or four decimal
places with the ones found by the method in Genz and Bretz (2002). For these MVN
rectangle probabilities, we simulate based on the MF method, keeping track of the values
of w(·) when simulating from the d-variate uniform random sample. Based on the sample
variance of w(·), we estimate the achieved accuracy at the number of replications m, that
is, SD=

√

V ar[w(·)]/m < accuracy. This calculation is simple for the naive method.
In Table 5, it is clear that the MF method (even with m = 104) gets worse as

1. the dimension d increases;
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d a ρ GB MF SD MF SD Naive SD
m = 103 m = 104 m = 104

5 1 0.3 0.176 0.176 0.001 0.176 < 10−3 0.176 0.004
0.6 0.266 0.266 0.005 0.267 0.001 0.267 0.004
0.8 0.391 0.382 0.014 0.395 0.005 0.393 0.005

2 0.3 0.808 0.823 0.023 0.809 0.006 0.809 0.004
0.6 0.847 0.863 0.064 0.850 0.016 0.847 0.004
0.8 0.883 0.808 0.109 0.862 0.033 0.883 0.003

4 0.3 1.000 1.049 0.055 0.996 0.012 1.000 < 10−3

0.6 1.000 1.025 0.133 0.981 0.032 1.000 < 10−3

0.8 1.000 0.805 0.112 0.915 0.044 1.000 < 10−3

10 1 0.3 0.038 0.037 < 10−3 0.038 < 10−3 0.039 0.002
0.6 0.110 0.107 0.003 0.111 0.001 0.113 0.003
0.8 0.267 0.244 0.020 0.270 0.007 0.270 0.004

2 0.3 0.674 0.641 0.040 0.677 0.010 0.675 0.005
0.6 0.768 0.741 0.192 0.753 0.033 0.763 0.004
0.8 0.840 0.647 0.293 0.659 0.063 0.837 0.004

4 0.3 0.999 0.912 0.111 0.972 0.024 1.000 < 10−3

0.6 0.999 1.001 0.420 0.890 0.057 1.000 < 10−3

0.8 1.000 0.621 0.289 0.624 0.069 1.000 < 10−3

20 1 0.3 0.002 0.002 < 10−3 0.002 < 10−3 0.002 < 10−3

0.6 0.024 0.023 0.001 0.025 < 10−3 0.025 0.002
0.8 0.156 0.121 0.024 0.168 0.010 0.159 0.004

2 0.3 0.493 0.422 0.016 0.498 0.019 0.496 0.005
0.6 0.670 0.354 0.064 0.633 0.047 0.671 0.005
0.8 0.792 0.478 0.451 0.673 0.283 0.792 0.004

4 0.3 0.999 0.672 0.036 0.959 0.091 0.998 < 10−3

0.6 0.999 0.347 0.107 0.748 0.073 0.999 < 10−3

0.8 0.999 0.514 0.503 0.699 0.341 0.999 < 10−3

Table 5: Comparisons of the accuracy of the MF, the naive method, and the method
in Genz and Bretz (GB, 2002) for the equicorrelated rectangle probability of the form
Pr(−a ≤ Zj ≤ a, j = 1, . . . , d) for dimensions d = 5, 10, 20 and correlations ρ = 0.3, 0.6, 0.8.
The computed probabilities with the GB method are identical up to three or four decimal
places with the ones found by the numerically accurate method in Johnson and Kotz (1972).

2. the latent correlation ρ increases;

3. the limits (integrated region) increase;

and even the naive method is much better; it has 2 decimal place accuracy for m = 104

replications. The use of jitters with m = 103, as in Madsen and Fang (2011), is highly
inefficient even in a low dimension. Therefore, the MF method is a very inefficient way to
compute a multivariate normal rectangle probability, which means that even m = 104 is far
from sufficient to achieve a desired accuracy. It is also shown to be difficult to even estimate
the SD, because the integrand has no bound.

Regarding equation (3), this is much worse than approximating many d-dimensional
MVN rectangle probabilities separately, that is, separate jitters of each d-dimensional prob-
ability. This is actually a worse way to do simulated likelihood compared with what we
mention above.
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5 Simulations

In this section we performed several simulation studies to assess the performance of the
HR, MF, and SL methods. We used structured latent correlation matrices for the MVN
copula. For exchangeable dependence, we took R as (1−ρ)Id+ρJd, where Id is the identity
matrix of order d and Jd is the d× d matrix of 1s. For AR(1) dependence, R was taken as
(ρ|j−k|)1≤j,k≤d.

For marginal models we used Bernoulli(µ), Poisson(µ), NB1(µ, γ), and NB2(µ, γ) par-
ametrization of the negative binomial distribution. For the covariates and regression pa-
rameters, we chose p = 2,xj = (1, xj)

⊤, where xj drawn from a U [−1, 1], and let µ depend
on the covariates, that is η(µj) = (β0 + β1xj), j = 1, . . . , d, where β1 = −β0 = 0.5. For the
link function η, we took the log link function for Poisson and NB regression, and the logit
link function or the probit link function for binary regression. Note also that binary and
Poisson regression γ is null, while for NB1 and NB2 regression γ is scalar (r = 1).

5.1 Assessing the variability due only to jittering

As a first step, we assess the variability of the HR and MF estimates over different sets of
jitters Vk, k = 1, . . . ,m. Our goal is to define the value of m for which different sets of
jitters for the same data set reproduce the same results. To this end, we fixed one simulated
dataset and used 5 sets of random jitters Vk, k = 1, . . . ,m; the number of jitters m was
set at m = 10, 102, 103, 104. The following experiments are typical of the results that were
obtained.

We fixed one simulated data set with n = 100 observations from the bivariate normal
copula with exchangeable moderate dependence (ρ = 0.5) and marginal logistic regression.
Table 6 shows the variability of the HR and MF estimators over 5 different sets of jitters as
compared with ML estimates and standard errors; for d = 2 there is a numerical accurate
calculation of the bivariate normal rectangle probabilities in (4). To investigate if these
results hold for higher dimensions, we also fixed one simulated data set with n = 100
observations from the MVN (d = 5) copula with strong AR(1) dependence (ρ = 0.8), and
NB2 regression with large overdispersion γ = 2. Table 7 shows the variability of the HR
and MF estimators over 5 different sets of jitters as compared with maximum SL estimates
and standard errors. These results and other computations that we have done with latent
correlation ρ varying from 0 to 0.9 in 0.1 increments confirm that for the HR (MF) method,
m = 100 (m = 1000) is sufficient to produce the same estimates over different sets of jitters.
Note that the SEs of the ML and maximum SL estimates are obtained via the square roots of
the diagonals of the inverse Hessian computed numerically during the maximization process.

5.2 Small-sample efficiency

In this subsection, we gauge the small-sample efficiency of the HR, MF, and SL meth-
ods. The number of jitters was set at m = 10, 102, 103, 104, and the sample size at
n = 100, 300, 500. The following experiments are typical of the results that were obtained.
We report simulations from small sample sizes (n = 100), since the additional simulation
results do not show sensitivity to n. Note that the theoretical variances of the maximum
SL and MF estimates are obtained via the gradients and the Hessian computed numerically
during the maximization process, while the HR variances are obtained by averaging the
latter over m runs.

For n = 100, 104 random samples of size n were generated from the bivariate normal
copula with exchangeable moderate dependence (ρ = 0.5), and marginal logistic regression.
Table 8 contains the parameter values, the bias, variance (Var), and mean square errors
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MF (m = 10) HR (m = 10)

set β̂0 β̂1 ρ̂ β̂0 β̂1 ρ̂

1 -0.51 0.40 0.20 -0.51 0.40 0.15
2 -0.54 0.44 0.33 -0.51 0.42 0.18
3 -0.52 0.41 0.27 -0.51 0.41 0.16
4 -0.50 0.45 0.27 -0.51 0.42 0.16
5 -0.51 0.41 0.25 -0.51 0.41 0.21

MF (m = 102) HR (m = 102)

set β̂0 β̂1 ρ̂ β̂0 β̂1 ρ̂

1 -0.52 0.33 0.39 -0.51 0.41 0.16
2 -0.52 0.45 0.32 -0.51 0.42 0.18
3 -0.52 0.47 0.39 -0.51 0.42 0.18
4 -0.52 0.41 0.33 -0.51 0.42 0.17
5 -0.49 0.46 0.30 -0.51 0.42 0.17

MF (m = 103) HR (m = 103)

set β̂0 β̂1 ρ̂ β̂0 β̂1 ρ̂

1 -0.52 0.44 0.35 -0.51 0.42 0.17
2 -0.51 0.45 0.38 -0.51 0.42 0.17
3 -0.51 0.45 0.36 -0.51 0.42 0.17
4 -0.49 0.49 0.42 -0.51 0.42 0.17
5 -0.50 0.47 0.32 -0.51 0.42 0.17

MF (m = 104) HR (m = 104)

set β̂0 β̂1 ρ̂ β̂0 β̂1 ρ̂

1 -0.51 0.45 0.36 -0.51 0.42 0.17
2 -0.52 0.46 0.38 -0.51 0.42 0.17
3 -0.51 0.45 0.38 -0.51 0.42 0.17
4 -0.50 0.46 0.37 -0.51 0.42 0.17
5 -0.51 0.45 0.34 -0.51 0.42 0.17

ML β̂0 SE β̂1 SE ρ̂ SE
-0.51 0.03 0.47 0.07 0.43 0.02

Table 6: Variability of the MF and HR estimates with different sets of jitters Vk, k =
1, . . . ,m, along with ML estimates and standard errors (SE) for a fixed simulated data
set with n = 100 observations from the bivariate normal copula model with moder-
ate dependence (ρ = 0.5) and logistic regression. The number of jitters was set at
m = 10, 102, 103, 104.

(MSE) of the MF, HR and ML (for d = 2 there is a numerical accurate calculation of the
bivariate probabilities) estimates, along with the average of their theoretical variances (V̄ ).

For n = 100, 104 random samples of size n were generated from the MVN (d = 5) copula
with strong AR(1) dependence (ρ = 0.8) and NB2 regression with large overdispersion
γ = 2. Table 9 contains the parameter values, the bias, variance (Var) and mean square
errors (MSE) of the MF, HR and maximum SL estimates, along with the average of their
theoretical variances (V̄ ). Because HR and MF likelihood takes much longer with larger
m and d, we ran fewer replications on a subset for the 5-dimensional case. With an Intel
Core Duo 2× 2.53Ghz processor, the computing times in an R program for SL, MF and HR
with m = 103 jitters, averaged about 1, 6, and 6 minutes respectively; the time is about 1
hour for HR and MF with m = 104 jitters. To this end, simulations have been restricted to
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MF (m = 10) HR (m = 10)

set β̂0 β̂1 γ̂ ρ̂ β̂0 β̂1 γ̂ ρ̂

1 -0.44 0.49 1.14 0.50 -0.42 0.48 1.14 0.50
2 -0.39 0.49 1.13 0.53 -0.42 0.46 1.14 0.50
3 -0.45 0.53 1.09 0.50 -0.43 0.50 1.11 0.48
4 -0.43 0.42 1.16 0.53 -0.42 0.48 1.15 0.50
5 -0.39 0.56 1.08 0.52 -0.42 0.50 1.14 0.49

MF (m = 102) HR (m = 102)

set β̂0 β̂1 γ̂ ρ̂ β̂0 β̂1 γ̂ ρ̂

1 -0.37 0.54 1.13 0.58 -0.42 0.49 1.13 0.49
2 -0.40 0.47 1.20 0.57 -0.42 0.49 1.12 0.50
3 -0.41 0.47 1.17 0.56 -0.42 0.48 1.12 0.49
4 -0.42 0.50 1.11 0.53 -0.42 0.49 1.13 0.49
5 -0.43 0.51 1.17 0.55 -0.42 0.48 1.13 0.49

MF (m = 103) HR (m = 103)

set β̂0 β̂1 γ̂ ρ̂ β̂0 β̂1 γ̂ ρ̂

1 -0.38 0.48 1.13 0.58 -0.42 0.48 1.13 0.49
2 -0.38 0.46 1.24 0.61 -0.42 0.48 1.13 0.49
3 -0.37 0.48 1.16 0.58 -0.42 0.48 1.13 0.49
4 -0.39 0.48 1.20 0.57 -0.42 0.49 1.12 0.49
5 -0.41 0.49 1.16 0.56 -0.42 0.48 1.13 0.49

SL β̂0 SE β̂1 SE γ̂ SE ρ̂ SE
-0.37 0.15 0.49 0.09 1.96 0.40 0.80 0.03

Table 7: Variability of the MF and HR estimates with different sets of jitters Vk, k =
1, . . . ,m, along with maximum SL estimates and standard errors (SE) for a fixed simulated
data set with n = 100 observations from the MVN (d = 5) copula model with strong
dependence (ρ = 0.8) and NB2 regression. The number of jitters was set at m = 10, 102, 103.

m = 103.
Conclusions from the values in the tables and other computations that we have done

are the following:

1. The SL method is highly efficient according to the simulated biases and variances.

2. The HR and MF methods yield estimates that are almost as good as the ML and
maximum SL estimates for the regression parameters.

3. The HR and MF methods underestimate the univariate marginal parameters that are
not regression coefficients as the latent correlation increases.

4. The efficiency of HR and MF methods is low for the latent correlation, for a wide range
of ρ values. The dependence parameters (latent correlations) are underestimated.

5. For the MF method, it appears that there are improvements with m = 104, so one
might wonder if m = 106 would be better. This number of jitters is prohibitive with
respect to the computational time as the dimension increases. Further, theoretically,
there are still problems; see subsection 4.2.

6. Overall, efficiencies of HR do not change considerably, when m changes.

7. The variances for the MF and HR estimates are underestimated for the non-regression
parameters, the intercept, and the regression parameters of discrete covariates.
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Method m nBias nVar nMSE nV̄

MF 10 -0.56 3.02 3.02 2.61
102 -0.54 3.02 3.02 2.69
103 -0.58 3.03 3.03 2.75
104 -0.63 3.02 3.03 2.80

HR β0 = −0.5 10 -0.60 3.00 3.00 2.48
102 -0.60 2.99 3.00 2.48
103 -0.60 2.99 2.99 2.48
104 -0.60 2.99 2.99 2.47

ML -0.73 3.00 3.00 2.92

MF 10 0.70 6.54 6.54 6.56
102 0.76 6.49 6.50 6.48
103 0.83 6.45 6.45 6.41
104 0.82 6.41 6.42 6.35

HR β1 = 0.5 10 0.70 6.57 6.58 6.67
102 0.70 6.57 6.57 6.67
103 0.70 6.56 6.57 6.67
104 0.70 6.56 6.57 6.67

ML 0.85 6.31 6.31 6.15

MF 10 -20.93 0.77 5.15 0.96
102 -15.17 0.74 3.05 1.00
103 -11.19 0.78 2.03 1.06
104 -8.30 0.87 1.56 1.12

HR ρ = 0.5 10 -30.42 0.42 9.67 0.90
102 -30.40 0.37 9.61 0.90
103 -30.39 0.36 9.59 0.90
104 -30.39 0.36 9.59 0.90

ML -0.73 1.84 1.84 1.82

Table 8: Small sample of sizes n = 100 simulations (104 replications) and resultant biases
and mean square errors (MSE) and variances (Var), along with average theoretical variances
scaled by n, for the MF, HR, and ML of the regression and copula parameters for the
bivariate normal copula model with moderate dependence and logistic regression. The
number of jitters was set at m = 10, 102, 103, 104.

8. The variances for the MF and HR estimates are overestimated for the regression
parameters of continuous covariates that do not vary a lot.

These conclusions justify why Madsen (2009) and Madsen and Fang (2011) do not report
latent correlations to their applications and studies of efficiency.

6 The toenail infection data

In this section we re-analyze the toenail infection data in Madsen and Fang (2011). The data
were obtained from a randomized, double-blind, parallel group, multicenter study for the
comparison of two oral treatments for toenail dermatophyte onychomycosis (De Backer et al.,
1996; Molenberghs and Verbeke, 2005). Subjects were followed during 12 weeks (3 months)
of treatment and followed further, up to a total of 48 weeks (12 months). Measurements
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Method m nBias nVar nMSE nV̄

MF 10 -5.94 2.48 2.84 1.10
102 -5.89 2.49 2.83 1.15
103 -5.82 2.50 2.84 1.19

HR β0 = −0.5 10 -5.88 2.43 2.78 1.03
102 -5.89 2.43 2.77 1.04
103 -5.88 2.43 2.77 1.04

SL -1.36 2.33 2.35 2.28

MF 10 -0.72 1.09 1.10 1.32
102 -0.55 1.07 1.08 1.28
103 -0.35 1.05 1.05 1.26

HR β1 = 0.5 10 -1.06 1.03 1.04 1.39
102 -1.07 1.02 1.03 1.39
103 -1.07 1.02 1.03 1.39

SL 0.12 0.89 0.89 0.83

MF 10 -78.13 8.36 69.41 6.51
102 -77.77 8.13 68.62 6.51
103 -77.18 8.01 67.57 6.54

HR γ = 2 10 -77.27 8.71 68.42 6.62
102 -77.24 8.68 68.34 6.62
103 -77.24 8.68 68.33 6.62

SL -1.32 19.03 19.05 18.59

MF 10 -28.70 0.20 8.44 0.12
102 -25.96 0.18 6.92 0.11
103 -23.95 0.16 5.90 0.11

HR ρ = 0.8 10 -33.23 0.19 11.23 0.13
102 -33.22 0.18 11.21 0.13
103 -33.21 0.18 11.21 0.13

SL 0.88 0.11 0.12 0.11

Table 9: Small sample of sizes n = 100 simulations (104 replications) and resultant biases
and mean square errors (MSE) and variances (Var), along with average theoretical variances
scaled by n, for the HR, MF, and SL of the regression and copula parameters for the MVN
(d = 5) copula model with strong dependence and NB2 regression. The number of jitters
was set at m = 10, 102, 103.

were taken at baseline, every month during treatment, and every 3 months afterwards, re-
sulting in a maximum of 7 measurements per subject. The observations are coded as 1 if
the subject’s infection was severe and 0 otherwise. The question of interest was whether
the percentage of severe infections decreased over time, and whether that evolution was
different for the two treatment groups. In accordance with Madsen and Fang (2011), we
use the 224 subjects observed at all seven time points, though the SL method does not
depend on a constant “cluster” size d. In this data example, Madsen and Fang (2011) as-
sumed an exchangeable structure for the MVN copula with logistic regressions, and hence
this can be easily analyzed with the standard ML method. ML estimation is possible for an
exchangeable structure, since the 7-dimensional rectangle reduces to 1-dimensional integral.

However, for longitudinal data, it is common practice to use various parametric cor-
relation matrices, so we have also calculated the estimates under an AR(1), and Markov
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Dependence AR(1) Markov
Link probit logit probit logit

Est. SE Est. SE Est. SE Est. SE

Intercept -0.418 0.116 -0.642 0.189 -0.385 0.119 -0.587 0.194
Treatment -0.006 0.160 0.009 0.262 -0.011 0.165 -0.006 0.268

Time -0.099 0.016 -0.188 0.032 -0.111 0.016 -0.208 0.033
Trt.×time -0.022 0.023 -0.054 0.048 -0.021 0.024 -0.048 0.048

ρ 0.923 0.015 0.924 0.015 0.952 0.010 0.952 0.010

ℓ -412.58 -410.06 -405.71 -403.49

Table 10: Maximum SL log-likelihoods (ℓ’s), estimates and standard errors (SE) for the the
toenail infection data.

dependence with the SL method. Using a Markov model, the AR(1) model is generalized
to times that are unequally-spaced, and this is the case for toenail infection data. For
Markov dependence, R is taken as (ρ|tj−tk |)1≤j,k≤d. Further, both logit and probit links
are used for the marginal binary regressions. In Table 10, we report the resulting maxi-
mum SL log-likelihoods (ℓ’s), estimates and standard errors (SE) of the MVN copula-based
models with binary regression. The SL log-likelihoods show that Markov dependence is
marginally better than AR(1) dependence, and both are far better than exchangeable de-
pendence (Sabo and Chaganty, 2011, Table 1). Further, logistic regression is slightly better
than probit regression.

Based on our analysis and the exchangeable analysis, the standard errors show the time
effect to be highly significant, and the treatment by time interaction insignificant; hence
there is no (significant) difference in evolution between both treatment groups. However,
for an AR(1) or Markov structure, the p-value for the treatment by time interaction is
smaller than its counterpart for the exchangeable analysis. Generally speaking, this implies
that ignoring the actual correlation structure in the data could lead to invalid conclusions,
although this was not crucial in this example.

7 Discussion

In this paper we have studied two “approximate” likelihood estimation methods based on
the CE of a discrete random variable. For the binary, Poisson, and negative binomial regres-
sion models with the MVN copula, we have shown that these methods lead to substantial
downward bias for the estimates of the latent correlation and the univariate marginal pa-
rameters that they are not regression coefficients; for the latter parameters only for strong
dependence.

We have shown that the simulated likelihood in Madsen (2009) and Madsen and Fang
(2011) is a very inefficient way to compute a multivariate normal rectangle probability,
since the importance weight is not bounded, and even the naive method is much better.
The inefficiency of their method also yields to the claim that the GEE (Liang and Zeger,
1986) is more efficient than the ML. A moment based estimate cannot be better than a
maximum (simulated) likelihood estimate, and this has to do with the inefficiency of the
MF method. See Sabo and Chaganty (2011) and Song et al. (2011) for further criticism.

We have implemented a simulated likelihood method, where the rectangles are con-
verted to bounded integrands via the method in Genz and Bretz (2002), and hence the
computational and statistical efficiency of simulated likelihood is substantially improved,
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and actually is as good as maximum likelihood as shown for dimension 10 or lower. We
expect our findings to hold in higher dimensions. Although there is an issue of computa-
tional burden as the dimension and the sample size increase, this will become marginal, as
computing technology is advancing rapidly.

Appendix. Derivation of ξ
(t)
j and ζ

(t)
j

Split the n observations into the distinct sets n(t) = {i : yi = y(t),xi = x(t)}. As n → ∞,
then with convergence in probability,

n−1
∑

i∈n(t)

q2ij = n−1
∑

i∈n(t)

[Φ−1{FYj
(yij − 1;xij) + vijfYj

(yij;xij)}]2

→ p(t)
∫ 1

0
[Φ−1{FYj

(y
(t)
j − 1;x

(t)
j ) + vfYj

(y
(t)
j ;x

(t)
j )}]2dv

:= p(t)ξ
(t)
j

and

n−1
∑

i∈n(t)

qijqik = n−1
∑

i∈n(t)

Φ−1{FYj
(yij − 1;xij) + vijfYj

(yij;xij)} ×

Φ−1{FYj
(yik − 1;xik) + vikfYj
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→ p(t)
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(t)
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(t)
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(y
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Note that ξ
(t)
j , ζ

(t)
j , j = 1, . . . , d, t = 1, . . . , T are conditional expectations that have closed

forms. For example with Z ∼ N(0, 1),

ζ
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j =
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and
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]

.
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