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Abstract 

Climate change might de-couple plant-pollinator relationships if species respond 

differentially to environmental cues, such as temperature, but studies have been 

hindered by lack of long-term data. This research validates natural history collections 

as a source of long-term phenological data and, using these data, investigates the 

phenological responses to temperature of flowering in British orchids and flight in 

their pollinators. 

Herbarium specimens of O. sphegodes collected in the UK between 1848 and 1958 

were compared to direct observation of peak flowering time in one population located 

in Southern England between 1975 and 2006. The response of flowering time to 

variation in mean spring temperature was statistically identical in both sets of data, 

providing the first direct validation of the use of herbarium collections to examine the 

relationships between phenology and climate. Using three important pollinator models:  

the solitary bee Andrena nigroaenea the digger wasp Argogorytes mystaceus, and the 

moth Euclidia glyphica, museum specimens and field observation gave statistically 

identical results, confirming the value of museum collections as a source of long-term 

phenological data for insects.  

For twelve of the fifteen orchid species studied, flowering advanced between 4.2 and 

8.6 days for each 1°C increase in mean spring temperature, establishing phenological 

signals of flowering response to temperature. For all species mean monthly 

temperature in March, April or May was identified as a key temperature variable. 

For the sexually deceptive orchid O. sphegodes there is considerable potential for a 

loss of synchrony between peak flowering time and peak flight of the primary 

pollinator, males of A. nigroaenea with further rises in spring temperature. The 

advancement in peak flight of the female bee with climate warming exacerbates the 

potential for disruption of pollination success.  

Findings of this research reaffirm the need for detailed knowledge at species level in 

understanding the consequences of climate-driven phenological shifts for plants and 

their pollinators. 

Key words: Central England Temperature (CET), climate change, flight time, 

flowering time, herbarium specimens, Hymenoptera, Lepidoptera, museum records, 

natural history collections, Orchidaceae, phenology  
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Chapter 1 

Introduction 

1.1 Background to the phenology of orchids and their pollinators in Britain: an 

assessment using herbarium and museum collections 

1.1.1 Climate change and phenology 

The rise in global surface temperature of approximately 0.74°C in the 100 years 1906-

2005 is primarily attributed to the post-1976 period. Since 1976 the rate of increase has 

been approximately double that of the preceding period of warming, 1910-1945, and is 

more rapid than during any prior period within the last millennium (Walther et al. 

2002; IPCC 2007). It is becoming increasingly apparent that the current period of 

climatic warming is driven, at least in part, by anthropogenic influences (Ulbrich & 

Christoph 1999; Parmesan 2001; Cook, Smith & Mann 2005; IPCC 2007). Within 

Britain, observed warming of mean annual Central England Temperature (CET) 

between 1956 and 2005 of 1°C is significantly above natural trend (HADCM3 control 

model) and is thought unlikely to be due solely to natural climatic variation (Karoly & 

Stott 2006). CET is the longest instrumental continuous surface temperature series 

available, with monthly mean values recorded in tenths of a degree from 1700 to date, 

and with continuous records from 1659 to present (Parker, Legg & Folland 1992; 

Parker & Horton 2005).  

Ecological impacts of climate change across species embrace demographic (Pounds, 

Fogden & Campbell 1999), geographic (Parmesan 1996; Hill, Thomas & Huntley 

1999; Thomas et al. 2001), altitudinal (Wilson et al. 2005) and phenological (Post et 

al. 2001a) effects. The interplay of diverse factors serve to impact on inter-trophic 

relationships and influence ecological interaction in wide-ranging and complex ways 

that are not easy to envisage (Both & Visser 2001; Penuelas & Filella 2001; Miller-

Rushing et al. 2010). However an understanding of the ways in which individual  

species respond to climatic factors is an important step in recognising not only the 

potential threats to individual species but also to the integrity of species webs in the 

wider ecological landscape (Memmott 1999; Thackeray et al. 2010). 

Phenological patterns reflect the timing of recurrent developmental or behavioural 

phases of organisms. The influence of temperature on the timing of key phenological 
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events has been widely reported for both flora (Fitter & Fitter 2002; Menzel et al. 

2006) and fauna (Brakefield 1987; Fleming & Tatchell 1995; Crick et al. 1997; 

Woiwod 1997; Sparks, Jeffree & Jeffree 2000; Both et al. 2006). For temperate flora 

advancing phenologies are reported from Europe (Walkovszky 1998; Chmielewski & 

Roetzer 2001; Menzel et al. 2006; Bolmgren, Vanhoenacker & Miller-Rushing 2012; 

Holopainen et al. 2012), the Mediterranean region (Spano et al. 1999), North America 

(Bradley et al. 1999; Abu-Asab et al. 2001; Miller-Rushing & Primack 2008; Panchen 

et al. 2012) and Japan (Aono & Kazui 2008).  

The interrelation of phenological phases which rely on environmental cues may 

become de-coupled as a consequence of rapid anthropogenic-induced climate change 

(Hughes 2000). This is especially so when species present differential temporal 

responses to environmental cues (Bradley et al. 1999; Thackeray et al. 2010). Whilst 

experimentation has demonstrated potential de-coupling of ecological interaction 

between trophic levels (Harrington, Woiwod & Sparks 1999; Petchey et al. 1999) there 

is little empirical data from field study. Much of the early phenological research has 

been concerned with the differential impact that climate change may exert between 

insect and food host-plant, such as bud burst and egg hatch of insect herbivores, and 

the implications for insect populations of asynchronous phenologies (Watt & 

McFarlane 1991; Buse & Good 1996; Watt & McFarlane 2002; Dixon 2003).  

One phenological dimension which has been largely overlooked until relatively 

recently is the impact on plant-pollinator relationships (Memmot et al. 2007; Pradal, 

Olesen & Wiuf 2009; Rafferty & Ives 2011). The majority of plant species are 

pollinated by several or many pollinator species, often of diverse taxonomic origin 

(Herrera 1988). Apart from the Orchidaceae examples of obligate single-species 

pollination relationships are relatively rare (Bond 1994) and for most species there is 

the prospect that alternative species may replace those which are lost (Bascompte et al. 

2003). 

An experimental study of native plant species of North America did not flag mismatch 

of pollinator mutualisms (Rafferty & Ives 2011), whilst another North American study 

(Bartomeus et al. 2011) suggests that the average rate of advance of emergence of wild 

bees is broadly in line with the average advance of host-plant flowering, at least for 
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generalist species. However the direction and magnitude of response to temperature is 

highly variable and species-specific (Sparks, Jeffree & Jeffree 2000; Miller-Rushing & 

Primack 2008; Bolmgren, Vanhoenacker & Miller-Rushing 2012). To date there have 

been very few relevant studies reported in the literature (Bartomeus et al. 2011), none 

of which has examined specific plant-pollinator relationships. Patterns of flowering 

phenology are shaped in response to multiple selective forces and therefore would be 

expected to echo evolutionary compromises (Brody 1997). Even so spring flowering 

ephemerals would be expected to require close synchronicity with their pollinators 

(Abu-Asab et al. 2001) and highly evolved synchronicities, such as those repeatedly 

seen within orchid-pollinator mutualisms, may be particularly threatened. 

Pollination success can be compromised by a range of factors including habitat loss, 

habitat fragmentation (Kearns, Inouye & Waser 1998), or invasion by non-native 

species (Kremen & Ricketts 2000) all of which may be linked to climate. Since time of 

pollination is a key factor in determining the timing of fruit set and subsequent seed 

dispersal, pollination success may not only have an impact on the plants own fecundity 

but also on that of diverse associated taxa dependent on pollen, nectar or seed 

resources of the host plant (Fitter & Fitter 2002). It follows that significant alteration in 

flowering phenologies have the potential to significantly disrupt ecosystem function 

(Memmot et al. 2007). 

Three major environmental factors would be expected to influence flowering 

phenologies; temperature, photoperiod and precipitation (Rathcke & Lacey 1985) and 

within temperate zones it is clear that climatic factors play a critical role (Fitter & 

Fitter 2002). Whilst the factors contributing to pollination disruption are multifarious, 

potential threats posed by phenological asynchrony are of concern (Augspurger 1981; 

Post et al. 2001b; Parmesan 2006; Memmot et al. 2007; Thackeray et al. 2010). This 

research seeks to quantify species-specific phenology of temperate orchids in Britain 

using long-term data from natural history collection, and to examine specific plant-

pollinator phenologies. Temperate British orchids represent ideal model systems with 

which to study phenological interactions for several reasons: they have been collected 

assiduously since the early 1800’s, enabling long-term datasets to be derived for a 

range of species corresponding to detailed temperature records, they represent a range 
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of pollination systems from rewarding to food deceit and sexual deceit, and for several 

species the main pollinator species are known.  

1.1.2 Datasets for phenological research 

The impact of climate on phenology is species-specific and the key to understanding 

phenological patterns is held in long-term data (Fitter et al. 1995; Penuelas & Filella 

2001; Sparks 2007; Bolmgren, Vanhoenacker & Miller-Rushing 2012). This is 

especially so because detection of phenological trends in relation to long-term climate 

change may be confounded by the influence of short term inter-annual or decadal 

climate variation arising from shorter-term circulation patterns (Badeck et al. 2004; 

Bolmgren, Vanhoenacker & Miller-Rushing 2012). Climate change studies, often with 

low signal-to-noise ratios, require sufficiently long-term data to elucidate any 

underlying trend. However the choice of species for long-term study of phenology has 

been dictated by the availability of suitable records. These are often scarce because of 

the overall shortage of long-term monitoring schemes (Sparks & Carey 1995). 

Despite the instigation of phenology groups such as the European Phenology Network 

(EPN) (van Vliet et al. 2003; Menzel et al. 2006) for many species long-term data 

collected for the purpose of studying climate-induced phenological change are not 

available, or not easily obtained (Sparks 2007; Holopainen et al. 2012). Data collection 

is expensive and time-consuming with the result that datasets are often short-term or 

incomplete (Wolfe et al. 1987). The recent introduction of internet-based resources 

such as the UK Phenology Network established in 2000 and organised jointly by the 

Woodland Trust and the Centre for Ecology and Hydrology (CEH) 

http://www.naturescalendar.org.uk/ represents a valuable resource for promoting the 

relevance of phenology: gathering and collating data for a range of research projects. 

Whilst volunteer recorders provide valuable input there is inevitably an element of 

compromise between control over data quality and data coverage (Magurran et al. 

2010). Recent phenological studies have utilised diverse sources of long-term data as 

an alternative to scarce field observation (Primack & Miller-Rushing 2012) including 

photographs (Miller-Rushing et al. 2006; Sparks, Huber & Croxton 2006; Crimmins & 

Crimmins 2008) and historical archives (Aono & Kazui 2008). But for many species 

the most readily available long-term data are held in natural history collections. The 

http://www.naturescalendar.org.uk/
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Global Biodiversity Information Facility (GBIF), set up in 2001 http://www.gbif.org/ 

is a relatively new internet-based initiative which holds mainly natural history 

collections and facilitates access to these resources  

1.1.3 The role of herbaria and museum collections  

Historical data in the form of herbarium and museum collections are captured in three 

dimensions: physical entity, place and time. The vast number of collections worldwide 

–estimated to be in the order of 2.5 billion–and the increasing accessibility to data via 

the internet, makes this a data source with huge potential in scientific research 

worldwide (Graham et al. 2004).  Whilst the potential contribution of these collections 

for current research had been largely overlooked (Suarez & Tsutsui 2004) until 

recently their relevance is increasingly recognised (Molnár et al. 2012). The use of 

natural history records as a source of biological data is increasingly being reported in 

the literature. For plants, information derived from herbarium specimens has been used 

to analyse changes in species distribution and abundance (McGraw 2001; Jacquemyn 

et al. 2005; Chauvel et al. 2006; Case et al. 2007), assess vulnerability under IUCN 

Red List Criteria (Willis, Moat & Paton 2003; Rivers et al. 2010), track patterns of 

disease ecology (Malmstrom et al. 2007), and investigate phylogeography (Saltonstall 

2002). Similarly, herbarium and museum specimens have been used to reconstruct 

patterns of historic genetic variation (Cozzolino et al. 2007; Moritz et al. 2008; Rowe 

et al. 2011).  

Herbarium records are unique in that they reflect an individual plant’s phenological 

state at the time and location of collection, and therefore may represent an alternative 

for direct field observation. Recent studies suggest that herbarium collections can 

provide data that can be exploited in climate change studies, as reported trends have 

been broadly in line with phenological trends reported elsewhere in the literature 

(Sparks 2007) either as a multi-species average (Primack et al. 2004; Bolmgren & 

Lönnberg 2005; Miller-Rushing et al. 2006; Bowers 2007; Kauserud et al. 2008; 

Panchen et al. 2012) or as a single-species study (Lavoie & Lachance 2006). There has 

been, however, no direct validation of the efficacy of museum collections in 

phenological research as studies have relied heavily on comparison of averaged trends 

in order to corroborate results or have been used to demonstrate average shift toward 

http://www.gbif.org/
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earlier collection. Different species do not respond uniformly to climate change 

(Sparks 2007) and although demonstration of averaged trends in flowering time can be 

insightful, herbarium collections have not been evaluated for their potential as proxy 

field data in the absence of long-term monitoring of individual species.  

1.1.4 Plant- pollinator biology within the Orchidaceae  

The Orchidaceae is a highly diversified family, with species inhabiting most regions of 

the globe and a wide range of ecological niches. There is some fluidity in the total 

estimated number of orchid species reported in the literature ranging between 19,500 

(Jersáková, Johnson & Kindlmann 2006) and 25,000 (Nilsson 1992), but with total 

species numbers of such magnitude this is the most species-rich plant family. 

The Orchidaceae represent a relatively recently evolved family in which individual 

species are now thought to have evolved after key pollinator groups had already 

established mutualisms with angiosperm species (Jersáková, Johnson & Kindlmann 

2006). For many orchid species, evolutionary change is viewed as largely unilateral 

with little evolutionary impact on pollinator traits. This assessment is linked to the high 

incidence of non-rewarding pollination strategies within the family. Such strategies 

exploit existing plant-pollinator mutualisms and sexual behaviour in pollinating insects 

(Jersáková, Johnson & Kindlmann 2006) exerting no selective pressure on pollinators. 

The lack of reward for pollinators, as seen in deceptive orchid–pollinator interactions, 

results in fundamental asymmetry and thus co-evolution does not represent an 

appropriate evolutionary model. 

 Studies report infrequent visitation by pollinating insects, low fruit-to-flower ratios 

and low pollination rate (Darwin 1877; Ackerman & Mesler 1979; Nilsson 1983; 

Neiland & Wilcock 1998). These provide strong evidence that for many orchid species 

reproductive success is pollinator-limited and that optimal pollination is rarely 

achieved (Nilsson 1992; Neiland & Wilcock 1995; Tremblay et al. 2005). The 

amassing of pollen into pollinia is a central element in the patterns of dispersal of 

pollen and is a means of maximizing pollen dispersal under conditions of pollinator 

limitation. 
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The Orchidaceae are notable for the exceptional frequency of pollination mechanisms 

by deception and more than one third of orchid species are pollinated without offering 

reward to the pollinator (Schiestl 2005). Both its prevalence and repeated evolution 

within independent evolutionary lineages demonstrates a highly successful pollination 

strategy (Cozzolino & Widmer 2005). Food deception is the usual pollination strategy 

amongst species of the genera Anacamptis, Dactylorhiza, Neotinea, and Orchis 

(Scopece et al. 2007). In a study of 18 food deceptive Mediterranean orchid species six 

functional pollinator groups were established, although one third of orchids relied on 

pollinators within a single functional group. Hymenoptera represent 89% of all 

pollinators, demonstrating the importance of these aculeates (bees, wasps and ants) 

(Scopece et al. 2007). Lepidoptera (butterflies and moths) are also a significant 

pollinator group for European orchids (Claessens & Kleynen 2011).  

1.1.5 Food deception 

Orchids of food deceptive genera such as Anacamptis, Dactylorhiza and Orchis are 

typically grouped within one of two alternative modes of deception: firstly mimetic-

specific to a particular co-blooming species (Batesian mimicry), or secondly as using a 

generalist deceit strategy (deception without model). The latter is considered the most 

common mode of food deceit (Johnson & Steiner 2000): here the orchid does not 

closely resemble any specific model species; rather it mimics co-flowering 

nectariferous flora in general. In this latter generalist mode plants may exhibit 

pronounced intraspecific floral variation (Johnson & Steiner 2000): naïve insect 

visitors eventually learn to avoid the non-rewarding plants and so floral variation may 

serve to prolong the period of deceit and enhance pollination success. Conversely, 

under Batesian mimicry variation in floral trait is constrained by the pattern of the 

model species.  

 Flowering periods are frequently associated with the period of emergence of insect 

foragers, and optimum reproductive success is linked with the period during which 

inexperienced pollinating insects can be deceived (Nilsson 1992). This temporal 

association is especially important for early flowering species pollinated by newly 

emerged foraging bees, such as Orchis mascula. 
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Timing of flowering is important for food deceptive orchids: improvement in 

pollination success has been demonstrated when co-flowering with nectariferous 

magnet plants (Johnson et al. 2003). The overall effectiveness of food-deceptive 

strategies also relies on relatively low numbers of deceptive plants within a relatively 

large guild of rewarding plants (Scopece et al. 2007).  

1.1.6 Sexual deception 

The Orchidaceae is the only plant family in which pollination by sexual deceit is 

known (Dafni 1984; Nilsson 1992; Schiestl 2005; Tremblay et al. 2005). However 

recent research, demonstrating mating attempts by male bombyliid flies toward insect-

like petal elements of the daisy Gorteria diffusa provide evidence of early stages in the 

evolution of sexual deceit outside of the Orchidaceae (Ellis & Johnson 2010).  

To achieve sexual deceit the orchid mimics the female of the pollinator species, luring 

the male to attempt copulation, during which pollinia may become attached to the 

insect and transferred to another orchid, or received from another orchid. A 

combination of visual, tactile and chemical cues are used to entice the pollinator (Dafni 

1984). Chemical mimicry of the female sex pheromone is the critical factor in 

attracting males over long-range (Schiestl 2005), whilst visual and tactile cues are used  

to stimulate pseudocopulation (Ayasse et al. 2000) . Modes of sexual deception have 

been most comprehensively studied in orchids of the European genus Ophrys which 

characteristically rely on pollination by male bees of the order Hymenoptera (Pedersen 

& Faurholdt 2007; Schiestl & Cozzolino 2008) . Within European orchids Ophrys is 

the only genus to rely on sexual deceit.   

1.1.7 Orchid species within the UK 

Some 56 orchid species are native to the British Isles (Harrap & Harrap 2005). Some 

of these are of Mediterranean origin, and populations in Britain are often toward the 

northern limits of their European range. Conversely there is a small number of 

northern temperate species with a southerly range limit across Britain. 

 For native British orchids soil preferences are the primary factor dictating habitat and 

ecological niche (Foley & Clarke 2005) so that habitat type can usually been assigned 

a distinct orchid flora. As a consequence of strict habitat requirements some species 
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are confined to a very restricted range and with isolated populations. A diverse series 

of habitat type is associated with British orchids; chalk grassland of the downlands of 

Southern England to acid marshlands, dune slacks and machair, ancient woodlands, 

wastelands  and roadside verges (Foley & Clarke 2005; Harrap & Harrap 2005). 

1.2 Thesis outline 

1.2.1 Theme and Hypothesis 

The underlying theme of this thesis is an investigation of the relationships between 

phenology and temperature for both plants and their insect pollinators. The central 

hypothesis of this research is that long-term climatic trends impact both the flowering 

phenology of plants and the flight phenology of pollinator species and that these long-

term-trends will be detectable using natural history collections as a source of long-term 

data. 

The central hypothesis of the thesis is expressed as two parts: firstly an examination 

of the value of herbarium and museum specimens as an alternative source of long term 

data for phenological research; and secondly an investigation of the relationship 

between climatic variables, flowering phenology of selected orchid species and the 

flight phenology of associated pollinators in Britain.  

In temperate climates, characterised by distinct seasonality, developmental cues for 

many taxa may be temperature driven, and the effect of spring temperature is likely to 

be particularly significant (Aono & Kazui 2008; Amano et al. 2010). By quantifying 

changes in both plant and pollinator phenologies for specific species it may be possible 

to predict the potential impact of continued global warming on plant-pollination 

relationships. There may be divergent phenological effects if plants and their 

pollinators are differentially influenced by environmental cues. In such circumstances 

peak flowering times and peak flight times may become, to some degree, 

asynchronous. Orchid–pollinator relationships may be particularly susceptible to 

pollinator disruption since such associations can be highly specific, especially where 

pollination is achieved via sexual deception. Where the mode of pollination is non-

rewarding, whether it be sexual deceit or food deceit, there is likely to be little 

convergent evolutionary pressure between plant and pollinator. For these species 

especially, where climate change is rapid, identification of species-specific 
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phenological trends may enable potential mismatch in plant -pollinator phenologies to 

be predicted. 

1.2.2 Thesis aims 

In order to develop the central theme of the thesis three general aims were addressed:  

(1) to establish whether natural history collections in museums and herbaria serve as 

proxy for field observation, and to assess their limitations for the purpose. 

(2) to use long-term data sets to analyse changes in flowering phenology of a 

representative range of orchid species in Britain and to relate these findings to species-

specific ecology. Similarly long-term data are used to investigate the relationship 

between climate and the flight phenology of relevant pollinator species. Long-term 

data of three broad types was used; specimens held in herbaria and natural history 

collections, observational records held as elements of field studies, and climatic data 

recorded from meteorological stations. The aims were to identify key associations 

between climatic variables and flowering, to assess the degree of significance of 

potential explanatory variables, and to test the results against empirical evidence. 

(3) to examine changes in orchid flowering phenology, and flight phenology of 

pollinating insects for explicit plant-pollinator relationships, and to consider what 

inferences can be made of the impact of future climate warming on these orchid-

pollinator interactions. 

The novelty of this research is threefold: 

 i) Investigation of the relationship between climate and peak flowering for a range of 

orchids in Britain has not been previously explored.  

ii) Whilst natural history collections have previously been used as proxy for field data 

and as sources of data for phenological research their utility has not previously been 

validated. For the first time the value of herbarium and museum based specimens as 

proxy for field observation has been evaluated.  

iii) Assessment has been made of the impact of climate on the phenologies of specific 

pollinator species in order to evaluate the potential for development of plant-pollinator 

asynchrony at a species level under continued climate warming. 
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1.2.3 Thesis structure  

 

Chapter 1
Introduction and  background to the 
phenology of orchids  and  their pollinators.
Outline  of thesis aims and hypothesis.

Chapter 2
An assessment of herbarium 
specimens as  a source of phenological
data for climate change studies. 

Chapter 3
An assessment of  the phenology of 
selected British orchids, using herbarium 
data.

Chapter 4
The phenology of  two 
sexually deceptive  orchids 
and their pollinators: an 
assessment using  museum 
and herbarium data.

Chapter 5
The phenology of  both  
food -deceptive  and  food-
rewarding orchids: an 
assessment using museum 
and herbarium data

Chapter 6
Summary of thesis findings and overall 
conclusions.
Discussion of the potential for future work.

 

 

Figure 1-1. A schematic overview of the thesis, summarising the contribution of each 

chapter.  

In Chapter 2 the issue of whether herbarium specimens could represent a reliable 

proxy for direct field observation of peak flowering is addressed. First flowering can 

be an unreliable phenological data source and dates on which phenological stages 

reach their peak are preferable. However, such long-term field-based records are 

extremely rare. Ophrys sphegodes was used as the study species because it was the 

single orchid for which direct field observational data of peak flowering were available 

The field dataset was obtained from Professor Michael Hutchings at the University of 

Sussex and comprised a robust, contemporary 32-year population study of peak 
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flowering of O. sphegodes at a single site on the South Downs in Sussex between 1975 

and 2006. This field-based dataset was compared to a long-term dataset constructed 

from historical herbarium specimens from the Natural History Museum, London (BM) 

and the Royal Botanic Gardens, Kew (Kew) collected over a 110 year period from 

1848 to 1958. 

In Chapter 3 herbarium specimens held at the Natural History Museum, London (BM) 

and at the Royal Botanic Gardens, Kew (Kew) were used to construct phenological 

datasets for a representative range of British orchids. Fifteen species were selected 

representative of each of the three modes of orchid pollination: sexual deceit, (Ophrys 

sphegodes, O. insectifera), food deceit (Anacamptis morio, A. pyramidalis, 

Cephalanthera longifolia, Dactylorhiza fuchsii, D. praetermissa, Neotinea ustulata, 

Orchis mascula), and food rewarding (Epipactis purpurata, Gymnadenia conopsea, 

Neottia ovata, Platanthera bifolia, P. chlorantha, Spiranthes spiralis). The selected 

species also represented early, mid and late season flowering species and varying 

habitat type. This enabled flowering phenologies to be assessed across flowering 

period, pollination strategy and habitat type.  

In Chapter 4 flight phenologies of two Hymenoptera pollinator species are 

investigated using long-term data constructed from museum specimens held at the 

Natural History Museum, London (BM), Oxford University Museum of Natural 

History (OUM), and the University Museum of Zoology, Cambridge (UMZC). A 

secondary theme of this chapter is to validate the use of these entomological 

collections as proxy for field observation. Hymenoptera is an important pollinator 

group for several British orchid species including O. sphegodes and O. insectifera. The 

primary theme of this chapter is to investigate the phenological relationships between 

these two orchid species and their respective Hymenoptera pollinators (Andrena 

nigroaenea and Argogorytes mystaceus). Phenological interactions are examined and 

the potential for asynchrony between plant and pollinator is explored.  

In Chapter 5 flight phenologies of three Lepidoptera pollinator species (Euclidia 

glyphica, Melanargia galathea, Deilephila elpenor) are investigated from long-term 

data constructed from museum specimens held at the Natural History Museum, 

London (BM). A secondary theme of this chapter is to validate the use of these 
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entomological collections as proxy for field observation. Here museum records are 

compared directly to field observation and to relevant studies published in the 

literature. Lepidoptera are a major pollinator group for many orchid species in the 

British Isles. The primary theme of this chapter is an investigation of the comparative 

phenologies of selected British orchids (Anacamptis pyramidalis, Platanthera bifolia, 

P. chlorantha) and associated Lepidoptera pollinators, and an evaluation of the 

potential for asynchrony  

 The concluding remarks in Chapter 6 summarise and discuss the results within the 

framework of the central theme of the thesis and places them in the context of related 

studies. Finally, proposed areas for the development of further work are outlined. 

1.3 Orchid and pollinator species in this study  

Native British orchid species included in this study are drawn from the Subfamily 

Epidendriodeae, tribe Neottieae (Cephalanthera, Neottia and Epipactis); Subfamily 

Orchidoideae, tribe Cranichideae (Spiranthes); and Subfamily Orchidoideae, tribe 

Orchideaea, subtribe Orchidinae (Dactylorhiza, Gymnadenia, Platanthera, Orchis, 

Neotinea, Anacamptis and Ophrys). Summaries of the life history of each of the fifteen 

species included in this thesis are outlined in chapters two and three.  

Life histories of each of the selected insect pollinator species in this thesis are outlined 

in chapters four and five. These include two aculeates of the Order Hymenoptera, 

Superfamily Apoidea; Family Andrenidae, (Andrena nigroaenea); and Family 

Sphecidae, (Argogorytes mystaceus). Also included are the diurnal moth Euclidia 

glyphica (Burnet Companion), Family Noctuidae; the nocturnal moth Deilephila 

elpenor (Elephant Hawkmoth), Family Sphingidae; and the butterfly Melanargia 

galathea (Marbled White), Family Satyridae. 
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Chapter 2 

A validation of the use herbarium records as proxy for direct field 

observation: a case study with the orchid Ophrys sphegodes 

An abbreviated version of this chapter has been published (full details can be found at 

Appendix 2). 

Summary 

1. The scarcity of reliable long-term phenological data has severely hindered study of 

the responses of species to climate change. Biological collections in herbaria and 

museums are potential sources of long-term data for such study, but their use for this 

purpose has lacked independent validation. This study represents a rigorous test of the 

validity of using herbarium specimens for phenological studies, by comparing 

relationships between time of peak flowering and climate derived from herbarium 

records and from direct field-based observations, for the terrestrial orchid Ophrys 

sphegodes in the UK. 

2. Herbarium specimens of O. sphegodes collected in the UK between 1848 and 1958 

were compared to direct observation of peak flowering time in one population located 

in Southern England between 1975 and 2006. The response of flowering time to 

variation in mean spring temperature (March-May) was virtually identical in both sets 

of data, even though they covered different periods of time which differed in extent 

and rate of anthropogenic temperature change. In both cases flowering was advanced 

by c. 6 days per 1°C rise in average spring temperature. 

3. Predictions of peak flowering time based on the herbarium data corresponded 

closely with observed peak flowering times in the field, indicating that flowering 

response to temperature had not altered between the two periods over which the data 

were collected. 

4. These results provided the first direct validation of the use of herbarium collections 

to examine the relationships between phenology and climate when field-based 

observational data are not available. 
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2.1 Introduction 

Phenological events respond directly to climate. Recent climate change has 

undoubtedly affected the timing of development and seasonal events in many groups 

of organisms, including amphibians (Beebee 1995), birds (Crick et al. 1997), fungi 

(Kauserud et al. 2008) and plants (Sparks & Carey 1995; Fitter & Fitter 2002). 

Understanding the effects of recent climate change is a vital step towards predicting 

the consequences of future change. Moreover, only by elucidating the responses of 

individual species will we be able to predict the potentially disruptive effects of 

accelerating climate change on species interactions. 

Detecting phenological trends in relation to long-term climate change is not 

straightforward. Since trends can be concealed by short-term inter-annual climate 

variation (Badeck et al. 2004), long datasets are needed. Despite the initiation of 

databases such as the European Phenology Network, for most species data collected 

specifically for the study of climate-induced phenological change are not available, or 

are difficult to find, reflecting the scarcity of long-term monitoring schemes (Sparks & 

Carey 1995). The choice of species for long-term studies of phenology has thus been 

dictated up to now by the availability of suitable field records. A further major obstacle 

is that most long-term data only record the beginning of phenological events in 

populations, such as dates of first flowering. Miller-Rushing, Inouye & Primack (2008) 

have shown that the use of such data to infer changes in phenology can be unreliable, 

and they advise that dates on which phenological stages reach their peak are 

preferable. However, long-term field-based records of the dates on which phenological 

events are at their peak are extremely rare. 

Specimen-based records in biological collections are an alternate potential source of 

data, verifiable in both place and time, for the study of climate-induced phenological 

change. Until recently, the potential of such records has been largely overlooked 

(Suarez & Tsutsui 2004), even though the only data available for studying 

phenological trends in many species are those held in natural history collections in 

museums or herbaria. Recent phenological studies have utilised a range of less 

orthodox data sources, including historical archives (Aono & Kazui 2008), 

photographs (Miller-Rushing et al. 2006; Sparks, Huber & Croxton 2006; Crimmins & 
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Crimmins 2008) and herbarium specimens (Primack et al. 2004; Bolmgren & 

Lönnberg 2005; Lavoie & Lachance 2006; Miller-Rushing et al. 2006; Bowers 2007; 

Kauserud et al. 2008; Gallagher, Hughes & Leishman 2009). Herbarium records are 

unique amongst these alternative sources of information in that they represent a 

material specimen encapsulating an individual plant’s phenological state at the time 

and location of collection, and therefore may represent a reliable substitute for field 

observation. Herbarium specimens are also likely to have been collected when 

phenological stages such as flowering are near their peak, rather than at an early or late 

stage in such seasonal events.  

Recent studies undoubtedly suggest that herbarium collections may provide data that 

can be exploited in climate change studies, as findings have been broadly in line with 

trends reported in the phenological literature (Sparks 2007) and have supported the 

predictions of physiological models of phenological events such as flowering (Bowers 

2007). Nevertheless, they depend on averaging-out the numerous possible influences 

and biases involved in a collection process that was not designed with the study of 

phenology in mind, within which the climatic signal-to-noise ratio might be low. 

Given the absence of long-term monitoring for most species, there is little direct 

evidence from which to evaluate the potential of averaged trends in events such as 

flowering time, derived from herbarium collections, as proxies for field data. 

The aim of this research was to test the specific hypotheses (i) that flowering date 

would be advanced by warmer springs, (ii) that the relationship between flowering date 

and mean spring temperature would be the same in data derived from herbarium 

records and from field observations, and therefore (iii) that in the particular species for 

which this test was possible, herbarium records would be validated both as an effective 

proxy for long-term monitoring in climate-change research and as a predictor of 

phenological responses to future climate change. 
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2.2 Methods 

2.2.1 The study species 

Ophrys sphegodes Mill.  Early Spider Orchid 

Ophrys sphegodes (early spider orchid) is a species of southern and central Europe, 

with a northern range limit that includes southern England. It is associated with 

established, species-rich grassland over calcareous soils. The species is now rare in the 

UK, and largely confined to Dorset, West and East Sussex and Kent (Lang 1989; 

Harrap & Harrap 2005; BSBI 2011). The rapid decline in its range, which has been 

apparent in Britain since the 1930’s, is attributed largely to habitat destruction through 

ploughing and altered grazing regimes (Fig. 2-1) (BSBI 2011).  

 

                       

Figure 2-1. Distribution of O. 

sphegodes in the U.K., recorded 

by the Botanical Society of the 

British Isles (BSBI) (1930-2010) 

http://www.bsbimaps.org.uk/atlas/map_page.php?spid=1385.0  

 

Although the length of the mycotrophic, subterranean phase of the life cycle of O. 

sphegodes is unclear (Hutchings 1989) it is a short-lived species after its first 

appearance above ground. Few plants survive for more than 10 years after initial 

Years Occupancy 

(No of hectads) 

 -1930 47 

  1930-1969 22 

  1970-1986 14 

  1987-1999 26 

  2000-2009 9 

  2010 6 

http://www.bsbimaps.org.uk/atlas/map_page.php?spid=1385.0
http://www.bsbimaps.org.uk/atlas/map_page_dc0.php?spid=1385.0&sppname=Ophrys sphegodes&commname=Early Spider Orchid
http://www.bsbimaps.org.uk/atlas/map_page_dc1.php?spid=1385.0&sppname=Ophrys sphegodes&commname=Early Spider Orchid
http://www.bsbimaps.org.uk/atlas/map_page_dc2.php?spid=1385.0&sppname=Ophrys sphegodes&commname=Early Spider Orchid
http://www.bsbimaps.org.uk/atlas/map_page_dc3.php?spid=1385.0&sppname=Ophrys sphegodes&commname=Early Spider Orchid
http://www.bsbimaps.org.uk/atlas/map_page_dc4.php?spid=1385.0&sppname=Ophrys sphegodes&commname=Early Spider Orchid
http://www.bsbimaps.org.uk/atlas/map_page_dc5.php?spid=1385.0&sppname=Ophrys sphegodes&commname=Early Spider Orchid
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emergence (Hutchings 1987; Hutchings 2010) and rarely flowering for more than 3 

consecutive years (Hutchings 1987). Most plants survive for less than three years 

(Hutchings 1989) and many individuals flower only once, and in their first year above 

ground (Hutchings 1987 ). In contrast to many orchid species which may spend several 

years in a vegetative state prior to first flowering (Wells 1981), the probability of O. 

sphegodes flowering in its first year above ground exceeds 0.7 (Hutchings 1987 ).The 

short life cycle makes the success of flowering, pollination and seed production highly 

important for population persistence (Hutchings 1987) . The importance of sexual 

reproduction is compounded by the low rate of vegetative propagation (Hutchings 

1987). Seed set is reportedly low (Ayasse et al. 2000); rates of 6-18% have been 

recorded in Sussex, but higher rates have been reported for some populations in Kent 

(Lang 2004). Self fertilisation is inefficient, with low rates of seed production 

(Hutchings 1987). 

In the UK the leaves of O. sphegodes usually emerge above ground in autumn 

(Hutchings 1989), forming rosettes of three or four leaves which attain full size by late 

autumn. These rosettes will overwinter, from which flower spikes emerge during 

April/May (April in Dorset, May in Sussex) (Hutchings 1987).  

The flowering period is relatively short, commencing during late April or early May, 

and usually ending by late May (Lang 1989). In most populations in the UK 

inflorescences can bear up to six flowers but more plants bear four or fewer. Flowers 

open in succession from the base of the inflorescence, and most remain open 

simultaneously.  

Pollination in Ophrys sphegodes is achieved as a consequence of sexual deceit of the 

males of the solitary bees Andrena nigroaenea (Schiestl 2005; Vandewoestijne et al. 

2009). A combination of visual and chemical mimicry of the receptive female lure the 

male bee attempts to copulation, and in doing so pollen transfer from one flower to 

another may be achieved (Schiestl et al. 1997; Ayasse et al. 2000). However visitation 

numbers are not high and, since the female insects are more attractive to the males than 

the floral mimic (Nilsson 1992) it is likely that visitation rates fall once the females 

emerge. Pollination rates are generally low (Ayasse et al. 2000) and successful 

pollination is followed by rapid withering of the flower. Sanger and Waite (1998) 
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found that the number of inflorescences bearing ripening seed peaked at the end of 

June and that rapid dieback of the plant ensued. Flowering period is short irrespective 

of pollination success; few plants remain above ground at the end of July (Sanger & 

Waite 1998). This relatively short reproductive period would be expected to conserve 

any climatically-induced phenological signal. 

2.2.2 Herbarium data 

All 192 specimens of O. sphegodes held in herbaria at the Natural History Museum, 

London (BM, 133 specimens) and Royal Botanic Gardens, Kew (K, 59 specimens) 

were examined to verify identification (Fig. 2-2). Location, vice county, collector, 

habitat, and any notes on associated vegetation were recorded. Specimens with 

incomplete collection date were discarded All of the specimens originated from 

southern coastal counties of England (Dorset, Isle of Wight, Hampshire, East and West 

Sussex, and Kent), reflecting the sparse historical distribution of O. sphegodes (Fig. 2-

3) (Carey & Dines 2002).  

(a) (b) 

  

 

Figure 2-2. Representative herbarium specimens of Ophrys sphegodes held at (a) the 

Royal Botanic Garden, Kew (K) and (b) the Natural History Museum, London (BM) 
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Because of the rarity of O. sphegodes in the UK, the dataset was comparatively small 

and therefore it was important to ensure that the records represented the peak flowering 

stage as closely as possible. For each herbarium specimen total number of florets per 

spike, and stage of flowering (bud, open flower, senescent flower, and developed 

ovary) has been calculated and expressed as a percentage. Individuals in fruit or with 

senescent flowers were excluded. To ensure the dataset represented peak flowering, 

only specimens with at least 60% of their flowers open were included; whilst the 

flowers open sequentially from the base of the inflorescence normally most of the 

flowers become open at the same time in O. sphegodes. Some of the herbarium sheets 

consisted of multiple specimens mounted together. Where they had been collected by a 

single collector, on the same day and at the same location, they were treated as non-

independent and the mean percentage of open flowers was derived.  

Fifty three percent of the 192 specimens were rejected: 2 were damaged, 9 had unclear 

or illegible records of collection date, 31 were not dated, 60 were imprecisely dated 

(only the month or year), 3 were in seed, and 1 presented fewer than 60% of flowers 

open. Nine specimens were duplicates (multiple specimens) and therefore mean results 
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were used. The final data set comprised 77 specimens providing at least one data point 

for each of 57 years, spanning a 111-year period from 1848 to 1958. Collection 

activity was at its peak during the late 1800s and early 1900s (Fig. 2-4). 
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Figure 2-4. Distribution over time of dated herbarium records from the Natural 

History Museum (BM) and Royal Botanic Garden, Kew (K) for Ophrys sphegodes 

(years 1848-1958), n = 77 

2.2.3. Field Data 

Records of the peak flowering time of O. sphegodes were made in 25 of the 32 years 

between 1975 and 2006 in a demographic study of a population consisting of many 

thousands of plants at Castle Hill National Nature Reserve, East Sussex, UK 

(Hutchings 2010). The precise grid reference and co-ordinates of the study site (Fig. 2-

5) are: grid reference TQ 376066; 50.842572 decimal degrees latitude; -0.046993 

decimal degrees longitude. Peak flowering was based on assessment of the entire 

population to give a central tendency that would fit the flowering phenology of as 

many individual plants as closely as possible. This was done via inspection of 

flowering of the population at frequent intervals during the flowering period. Peak 

flowering was identified as the date when the population as a whole was at its height of 

flowering. This data was provided by Professor M.J. Hutchings of Sussex University, 

UK. 
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2.2.4.Meteorological Data 

Mean monthly Central England Temperature (CET) records for the period 1848-2006 

(Parker et al. 1992) were obtained from the UK Meteorological Office 

(http://hadobs.metoffice.com/hadcet/cetml1659on.dat). This is the only complete 

climate record available for the years during which the herbarium records and field 

data were collected. However, data for Central England are strictly representative only 

for a roughly triangular area enclosed by Bristol, Preston and London (Parker, Legg & 

Folland 1992). This is to the north of the distribution range of O. sphegodes. Three-

month mean temperature data was calculated for each year (Winter- December (the 

prior year), January, February; Spring-March, April, May; Summer-June, July, 

August; Autumn-September, October, November). 

Monthly mean temperatures were available from two Meteorological Office weather 

stations on the south coast, in locations corresponding with eastern and western centres 

of the distribution of O. sphegodes. Eastbourne, East Sussex UK, 21 km east of the 

Castle Hill field site, operated for the period during which the field records were 

collected. 

Monthly minimum and maximum temperature data were available for Southampton, to 

the west, for all but 5 of the 111 years of the collection period covered by the 

herbarium specimens. Data from both of these collection sites would be expected to 

represent the climate within the distribution range of O. sphegodes better than the 

climate records available from CET. The means of monthly minimum and maximum 

temperature were used for both stations. Historical temperature data were not available 

closer to any of the sites of collection of the individual specimens in the herbarium 

records. 

 

 

 

 

 

http://hadobs.metoffice.com/hadcet/cetml1659on.dat
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(a) (b) 

  

(c) (d) 

  

  

Figure 2-5. (a) Field Study Site; Castle Hill National Nature Reserve, East Sussex 

(Grid reference TQ 376066), and (b), (c), (d), Ophrys sphegodes in flower at this site 

on 28 April 2012  

 

 



 

 

Chapter 2                                                                                                       

42 
 

Mean monthly England and Wales’s precipitation (EWP) figures for the period 1848-

2006 were obtained from the Met Office website: 

http://www.metoffice.gov.uk/research/hadleycentre/CR_data/Monthly/HadEWP_act.tx

t. This was the only available historical record of precipitation to cover the whole of 

England. 

Mean seasonal precipitation figures calculated for each year (Winter-December (the 

prior year), January, February; Spring-March, April, May; Summer-June, July, 

August; Autumn-September, October, November).  

2.2.5 Geographical variation 

The location of each specimen was initially assigned to vice county, and for those 

specimens where details of the collection site were recorded in sufficient detail, the 

actual coordinates of location site were calculated. Decimal latitude and decimal 

longitude were determined using the UK grid reference finder 

http://gridreferencefinder.com/index.php?lt=51.505505&lg=-0.07533989. Partial 

correlation analysis was conducted to separate the effects of latitude and longitude 

from temperature per se. 

2.2.6 Analysis  

The distribution of collection dates in the herbarium dataset for 1848-1958, were 

expressed as number of days after 1 April. The peak flowering date for the Castle Hill 

population in the years 1975-2006 was similarly expressed as days after 1 April. Both 

datasets were checked for normality and presence of outliers. 

Both sets of flowering phenology data were examined for correlations with mean CET 

temperature data from the 9 months prior to the flowering season (i.e. the period of 

growth following breaking of tuber dormancy the previous summer). These data 

included mean monthly temperature and its averages over successive 3-month periods 

(September-November, December-February and March-May). 

The period over which mean temperature and peak flowering date had the highest 

Pearson correlation coefficient (March-May) in both sets of data (see results) was 

designated ‘spring’; multiple regression was used to investigate models of the 

dependence of flowering time on mean temperatures for different periods, resulting in 

http://www.metoffice.gov.uk/research/hadleycentre/CR_data/Monthly/HadEWP_act.txt
http://www.metoffice.gov.uk/research/hadleycentre/CR_data/Monthly/HadEWP_act.txt
http://gridreferencefinder.com/index.php?lt=51.505505&lg=-0.07533989
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the adoption of mean spring temperature as the predictor variable (see results). In order 

to investigate the sensitivity of these models to the proximity of the temperature 

record, the analysis was repeated using Eastbourne mean spring temperature data for 

the field phenological regressions and equivalent Southampton data for the herbarium 

phenological regressions. 

The linear regression model derived from the herbarium data and CET was used to 

predict peak flowering dates from mean spring temperature for the years between 1975 

and 2006 for which field observations were available. Regression analyses were 

carried out with SPSS 16 (SPSS Inc., Chicago, IL, USA). Slopes and intercepts of 

regressions were compared via analysis of covariance (ANCOVA) (Zar 1984) using 

Graphpad Prism 5 (Graphpad Software Inc., La Jolla, CA, USA). Predicted flowering 

dates were compared with those actually observed using principal axis regression 

(Sokal & Rohlf 1969). 

Both sets of flowering phenology data were also examined for correlations with mean 

EWP precipitation data from the 9 months prior to the flowering season (i.e. the period 

of growth following breaking of tuber dormancy the previous summer). These data 

included mean monthly precipitation and its averages over successive 3-month periods 

(September-November, December-February and March-May). 

2.3 Results  

Data derived from herbarium specimens over the 111-year period from 1848 until 

1958, and recorded in the field between 1975 and 2006, both demonstrated the 

importance of spring temperature in determining flowering time. Significant 

correlations were found between peak flowering date and several measures of mean 

temperature in the CET records in the preceding months (Table 2-1).  

2.3.1 Herbarium data 

For herbarium material, there were significant correlations with mean temperature in 

March and May of the year of flowering but the highest correlation was with mean 

temperature over the 3-month period from March to-May (Table 2-1). No significant 

correlation was found between any measure of EWP and peak flowering time (Table 2-

2).  
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2.3.2 Field data 

Results for the field data were similar, but with significant negative correlations 

between peak flowering date and mean temperature for January, February, March, 

April and May (Table 2-1). The strongest correlation was again with the mean for the 

period March-May. There was also a significant negative correlation with mean winter 

temperature (December-February) but because of co-linearity between the variables, 

its addition to a multiple regression did not significantly improve the fit obtained with 

spring temperature alone. Inclusion of February mean temperature did not significantly 

improve the fit, and the inclusion of mean January temperature resulted only in a 

marginal improvement. Consequently, average temperature for March-May was the 

strongest basis for comparing herbarium- and field-based data for responses of 

flowering to temperature. 

There was significant positive correlation with mean EWP for March prior to start of 

flowering and significant negative correlation with mean EWP for October of the 

autumn prior to flowering (Table 2-2). However, neither variable was included in a 

multiple stepwise forward regression model, indicating that, presumably due to co-

linearity, neither variable significantly improved the fit in linear regression (Table 2-3). 
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Table 2-1. Comparison of correlations between flowering date and temperature for 

herbarium records and field data. Correlations are shown with mean temperatures for 

3-monthly periods and individual months in the same year as flowering (January-May) 

or in the year previous to flowering (September-December). A negative correlation 

indicates that a higher mean temperature is associated with an earlier flowering date 

 

 Herbarium data 

 

Field data 

 
 (1848-1958) 

 

(1975-2006) 

 
Period of mean temperature n = 77 n = 25 

   

Seasons:   

September-November -0.004 -0.072 

December-February -0.065    -0.610** 

March-May     -0.426**    -0.801** 

   

Months:   

September 0.008 -0.273 

October 0.108 0.226 

November -0.106 -0.171 

December 0.047 -0.085 

January -0.003    -0.579** 

February -0.159    -0.549** 

March    -0.396**    -0.609** 

April -0.153  -0.405* 

May -0.259*    -0.592** 

Significance: ** P < 0.01; * P < 0.05   
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Table 2-2. Comparison of correlations between flowering date and precipitation for 

the herbarium records and the field data. Correlations are shown with mean 

precipitation for 3-monthly periods and individual months in the same year as 

flowering (January-May) or in the year previous to flowering (September-December). 

A negative correlation indicates that a higher mean precipitation is associated with an 

earlier flowering date 

 Herbarium data 

 

Field data 

 
 (1848-1958) 

 

(1975-2006) 

 
Period of mean precipitation n = 77 n = 25 

   

Seasons:   

September-November (p.y.) 0.042 -0.345* 

December-February 0.110 0.275 

March-May 0.158 0.161 

   

Months:   

September  0.055 0.090 

October -0.024    -0.536** 

November  0.038 -0.132 

December  0.144   0.409* 

January -0.012 0.020 

February 0.051 0.069 

March 0.077    0.465** 

April 0.165 -0.200 

May 0.054 0.053 

Significance: ** P < 0.01; * P < 0.05   

 

Table 2-3. Stepwise (forward) linear regression of field data (1975-2006), n = 25 

 r r
2
 Std. error of estimate F Change Sig. F Change 

      

Model 1* 0.609 0.371 5.329 13.571 0.001 

Model 2** 0.740 0.547 4.625 8.540 0.008 

Model 3*** 0.840 0.706 3.816 11.317 0.003 

Dependent variable: Field Data (1975-2006); Predictors:*March Temp: ** March, April 

Temp.;*** March, April, January Temp. 
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2.3.3 Comparing herbarium and field-based data for responses of flowering to 

temperature 

As predicted, warmer years were associated with earlier flowering. The regression of 

flowering date obtained from the herbarium specimens on mean March-May (spring) 

temperature (Fig. 2-6a) accounted for 18% of the variation in flowering time. A 1 °C 

increase in mean temperature between March and May was associated with an advance 

in flowering of 6.5 days. Analysis of the field data yielded strikingly similar results. 

Linear regression of flowering date on mean spring temperature accounted for 64% of 

the variation in flowering time (Fig. 2-6b) and a 1°C increase in mean spring 

temperature was associated with an advance in flowering of 6.7 days. The regression 

models derived from the herbarium data and field data were statistically 

indistinguishable: neither the gradients (F1,98 = 0.0035, P = 0.952) nor the intercepts 

(F1,99 = 0.0908, P = 0.764) were significantly different, indicating that the phenological 

response to temperature was the same during the different periods over which the two 

sets of data were collected. 
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Figure 2-6. Relationships between flowering date (expressed as days after 1 April) and 

mean spring temperature (March-May) in Central England derived from (a) herbarium 

records from 1848 to 1958 (y = 99.54 - 6.51 x, r
2
 = 0.182, P < 0.001, n = 77) and (b) 

field data between 1975 and 2006 (y = 101.88 - 6.69 x, r
2
 = 0.642, P < 0.0001, n = 25) 
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2.3.4 Geographical effects 

Applying the same analysis with more geographically appropriate temperature data for 

the field and herbarium records gave significant and strikingly similar results. Spring 

temperature at Southampton accounted for 13% of the phenological variation in 

herbarium data (Fig. 2-7a) and Eastbourne temperature accounted for 59% of that in 

the field data (Fig. 2-7b). In both cases flowering was advanced by 5.7 days per 1°C 

increase in spring temperature. The two regressions were again statistically 

indistinguishable (gradients, F1,93 = 0.00007, P = 0.993; intercepts, F1,94 = 0.854, P = 

0.358). Furthermore, the gradients of the two regressions of field data on temperature, 

using Eastbourne and CET respectively, were not significantly different (F1,46 = 0.481, 

P = 0.491), and neither were the gradients of the two regressions with herbarium data 

using Southampton and CET temperature records, respectively, significantly different 

(F1,145 = 0.130, P = 0.719); this indicates that responses of the plants were consistent 

irrespective of the temperature records used. In both of these comparisons the 

intercepts were significantly different (field data, F1,47 = 14.6, P = 0.004; herbarium 

data, F1,146 = 10.3, P = 0.002), reflecting the differences between the temperature 

records used. 
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Figure 2-7. Relationships between flowering date (expressed as days after 1 April) and 

mean spring temperature (March-May): (a) between herbarium records from 1855 to 

1958 and temperature at Southampton (y = 99.8 – 5.66 x, r
2
 = 0.134, P = 0.0016, n = 

72); (b) between field data from 1975 to 2006 and temperature at Eastbourne (y = 97.7 

– 5.68 x, r
2
 = 0.586, P < 0.0001, n = 25). 
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For the 69 herbarium specimens with sufficient geo-referencing to identify site 

location there were geographical ranges of 3.5 decimal degrees longitude and 0.8 

decimal degrees latitude. These records were used to investigate the effect of longitude 

and latitude of origin on flowering time. Time to flowering was significantly correlated 

with both decimal longitude (r = 0.468, P < 0.001) and decimal latitude (r = 0.247, P < 

0.05): this is as anticipated since flowering would be expected to be earlier with both 

westing and southing. Flowering was later at more easterly sites by an average of 4.86 

days per degree longitude (Fig. 2-8a), and later at more northerly sites by an average of 

12.17 days (Fig. 2-8b). However the apparent latitude effect was likely to be a spurious 

result of co-linearity between latitude and longitude (r = 0.837, P < 0.001): specimens 

tended to be repeatedly collected from a relatively few sites. The longitude effect 

represents climatic deviations around the underlying temperature trend expressed in 

the CET record. Each of the herbarium specimens was assigned to vice county of 

collection. Applying partial correlation analysis to separate the effects of latitude and 

longitude from temperature per se, the correlation between flowering date and mean 

spring temperature for the 77 herbarium specimens remained highly significant ( r = 

0.326, P < 0.01). 
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Figure 2-8. Relationship between flowering date (expressed as days after 1 April) and 

(a) longitude of collection site for the herbarium records (y = 45.74 + 4.86, r
2
 = 0.219, 

P < 0.0001, n = 69), and (b) latitude of collection site ((y = -574.1 + 12.17, r
2
 = 0.061, 

P < 0.05, n = 69). 
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2.3.5. Using herbarium data to predict flowering phenology 

The regression model derived from herbarium specimens (1848-1958) and CET was 

used to predict flowering dates for each of the 25 years between 1975 and 2006 for 

which there were field records of time of flowering. These predictions were highly 

correlated with the observed peak flowering dates (P < 0.01); the principal axis 

regression between observed and predicted dates had a coefficient close to unity 

(1.021) and accounted for 63% of the variation (Fig. 2-9a). The regression models 

derived from herbarium and field data was also plotted on the same graph to illustrate 

the extent of similarity (Fig. 2-9b).  
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Figure 2-9. (a) Relationship between observed flowering date in the field (y1) in 25 

years between 1975 and 2006, and flowering date predicted from herbarium data for 

the same years (y2). The principal axis regression (solid line) is y1 = -0.173 + 1.021 y2, 

r
2
 = 0.63, P < 0.001, n = 25. The dashed line would apply if there were exact 

correspondence between the observed flowering date and the predicted flowering date. 

(b) Comparison of linear regression equations derived from herbarium (regression line 

coloured red) and field observation (regression line coloured black).  
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2.4 Discussion 

Although biological collections can potentially provide valuable evidence of the 

impacts of climate change on the phenology of plant and animal species (Sparks 2007), 

their value as a proxy for field data has not previously been tested independently for 

any species. Miller-Rushing et al. (2006) compared flowering dates in recent 

benchmark years with those derived from historical photographs and herbarium 

specimens (1900-1921) for a range of species and found that not only were the 

deviations highly correlated with the corresponding differences in spring temperature 

but they yielded a trend that was very similar to that observed in independent field data 

of first flowering for the years 1887-1903. Bolmgren & Lönnberg (2005) established 

correspondence between flowering times derived from herbarium records and 

phenological observations, but did not investigate the underlying climatic drivers. The 

power of historical collection data to predict the consequences of future climate change 

needed to be tested directly.  

The availability of field data for the rare terrestrial orchid Ophrys sphegodes, recorded 

at a single site in the UK over a 32-year period, provided a unique opportunity to 

validate the relationship between flowering date and mean spring temperature that was 

apparent from analysis of data from herbarium specimens collected over a much longer 

period. The comparison was greatly strengthened by the fact that peak flowering time 

was recorded in the field, rather than date of first flowering, which is more common in 

long-term phenological records. It is now clear that first flowering dates may not be 

ideal measures of plant responses to climate change, because the extremes of flowering 

distributions are more susceptible to confounding effects than central values (Miller-

Rushing, Inouye & Primack 2008). Herbarium collections also tend to reflect peak 

flowering, as collectors generally aim to obtain prime specimens in full flower, as 

testified by the fact that only one specimen had to be discarded in which too few 

flowers were open to satisfy the sampling criterion.  

Both historical and contemporary data showed that the peak flowering date of O. 

sphegodes was earlier in years with warmer springs, as expected (Hutchings 2010). 

This was the case both when phenological records were related to a common 

temperature record (CET) and when field and herbarium records were related to 
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different but more geographically focussed temperature records (Eastbourne and 

Southampton respectively). 

The close correspondence between field and herbarium regressions, irrespective of the 

geographical locations of the temperature records tested, argues for the robustness of 

the relationships. The relationship with mean spring temperature remained highly 

significant using partial correlation analsysis to separate the effect of latitude and 

longitude from temperature for the herbarium data. Furthermore, using geographically 

different temperature records did not significantly alter the results for either 

contemporary or historical records.  

Previous phenological studies have found similar correlations between flowering date 

and measures of spring temperature in spring- and summer-flowering species. The 

estimated advance in peak flowering date of 5.7 - 6.5 days per 1°C rise in temperature 

in O. sphegodes is within the range reported for advance in first flowering date in other 

species. Fitter et al. (1995) reported a mean advance of first flowering date of 4.4 days 

per 1 °C for 243 species at a single locality but with considerable differences between 

species; similarly, mean flowering dates of 24 species, averaged across the UK, 

advanced between 2 and 10 days per 1 °C (Sparks, Jeffree & Jeffree 2000). 

The relationships between peak flowering date and spring temperature derived from 

contemporary and historical data for O. sphegodes were nearly identical, indicating a 

common response to spring temperature, notwithstanding that the historical collection 

and field observation periods were dissimilar in length, separated in time and different 

in geographical extent. This consistent response is important, as the pace of climate 

change has accelerated since 1975 when the field studies were initiated (IPCC 2007). 

None of the herbarium specimens was collected after 1958 and they therefore largely 

pre-date the period of fastest anthropogenic climate change.  

Since the field and herbarium data were independent, it was possible also to test the 

power of the earlier herbarium records to predict the effects of subsequent climatic 

warming. Importantly, although there was some variation between years in the 

accuracy of predictions, the overall predictive power was extremely good, with the 

principal axis regression line for predicted and observed values lying close to the ideal 

1:1 relationship. 
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Rigorous validation of the type presented here, although based to date on data for a 

single species, serves to increase confidence in the use of biological collections for 

predicting future phenological responses to climate change. Despite the strong 

underlying mean temperature signal, variation in flowering time may be influenced by 

a myriad of factors, and there are likely to be more confounding factors in the 

herbarium record than in the field data, because it includes specimens taken from a 

wider range of geographical locations and micro-habitats. Predictions based solely on 

mean spring temperature in Central England accounted for 18% of the variation in 

flowering date seen in herbarium specimens, but 64% of variation in flowering date in 

the field records from a single site. Use of more local temperature records in fact 

accounted for slightly (but not significantly) less variation in both cases, possibly 

because of the use of minimum and maximum temperatures averaged on a monthly 

rather than daily basis. 

Despite the lower signal-to-noise ratio in the herbarium record, the signal was the same 

as in the field data and it was applicable over a much longer period. Bowers (2007) 

used physiological models based on previously determined flowering requirements 

(trigger dates and heat sums above a 10°C threshold) to predict, retrospectively, 

advancing flowering dates of shrubs in the Sonoran desert through the 20th century. A 

correlated tendency towards earlier collection dates in herbarium material over the 

same period supported the hypothesis that there had been a genuine response to 

changing climate, especially as there was no evidence that collector activity had 

changed over the period of study. However, the use of herbarium specimens assumes 

that they are representative samples of the population from which they are drawn.  

The potential for bias resulting from variation in collection effort has been voiced as a 

concern by previous authors (Case et al. 2007). This study has demonstrated both that 

collector bias is not a problem when the herbarium data accepted for use in scientific 

studies are subjected to carefully controlled selection criteria, and that it is not 

necessary to have hundreds of specimens in order to extract useful information about 

the relationships between climate and time of flowering. However, although further 

validation using additional species with different phenologies is desirable, the extreme 

scarcity of suitable field observations limits opportunities for this to be achieved at the 
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present time. As a spring-flowering plant, O. sphegodes falls into a group identified as 

having flowering phenologies that are likely to be particularly sensitive to temperatures 

early in the year (Fitter et al. 1995).  

Species that flower later in the summer may be less sensitive to warmer temperatures, 

and species that reproduce in the autumn may be sensitive in a converse sense; analysis 

of 34,500 dated herbarium records of autumn-fruiting of mushrooms in Scandinavia 

has revealed an average delay of 12.9 days since 1980, as the growing season has been 

extended by warming (Kauserud et al. 2008). 

For most species of plants and animals, biological collections are the only source of 

long-term phenological data. It is estimated that some 2.5 billion specimens of flora 

and fauna are held in biological collections worldwide (Graham et al. 2004). The 

current drive toward digitisation of collections is facilitating the dissemination of the 

information they contain. An estimated 60 million records are already available for a 

wide range of taxa via internet information networks such as the Global Biodiversity 

Information Facility and HerpNET (Graham et al. 2004). With appropriate validation, 

the exploitation of this resource will have increasing relevance and value (Prather et al. 

2004) for phenology studies which seek to understand and predict the consequences of 

continuing climate change.  

In conclusion, this study represents the first rigorous validation of the use of herbarium 

specimens as proxy for field data, using the terrestrial orchid Ophrys sphegodes in the 

UK as a case study. Rigorous population studies are rare and the data from a one such 

study of a population at a site near the South Coast provided an exceptional 

opportunity to validate the method. The results of this study establish that the data 

derived from herbarium specimens have the capacity to be used for analysis, on an 

individual species basis, of long-term phenological trends. The current and continuing 

push to digitise herbaria and natural history collections, allowing far greater access to 

information and images, will be of substantial benefit to ecologists and other 

researchers seeking to understand the impact of climate warming on the phenology of 

individual species and species interactions. Natural history collections represent a key 

source of long-term phenological data for the majority of species of flora and fauna 

despite the activity of relatively recently established monitoring schemes such as the 
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European Phenology Network. In many cases this type of phenological data may be 

the only source available. 
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Chapter 3 

The flowering phenology of selected British orchids: an assessment 

using herbarium specimens 

Summary 

1. Data derived from herbarium specimens collected over a period of 164 years (1823-

1986) demonstrated the importance of spring temperature in determining flowering 

time for the orchid species in this study. Thirteen of the 15 orchid species (87%) 

showed a significant negative correlation with mean spring (March-May) temperature: 

warmer spring temperatures advanced flowering. 

2. For 12 of the 15 orchid species (80%) in this study flowering advanced between 4.2 

and 8.6 days for each 1°C increase in mean spring temperature. In stepwise forward 

regression mean monthly temperature in March, April or May was identified as a key 

variable for every orchid species irrespective of flowering time. 

3. Spring and early summer flowering orchid species were most strongly correlated 

with temperatures over the three to four months immediately prior to flowering. For 

those species that flowered later in the season, seasonal temperature over spring and 

summer were equally important over the growing season. 

4. In linear regressions of flowering time on mean spring temperature there were no 

significant differences among 12 (92%) of the 13 orchid species for which a test was 

possible.  

5. Findings of a prior study (Molnár et al. 2012b) suggested that pollination mode may 

influence flowering response to temperature. In contrast, the hypothesis in this study 

that flowering response to temperature would be unaffected by pollination mode, 

reward or deceit, was supported by the results presented here. 
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3.1 Introduction 

Flowering is considered one of the most significant phenological stages with which to 

evaluate sensitivity to climate change (Spano et al. 1999). This study investigates the 

relationship between climate and peak flowering time for 15 orchid species resident in 

the British Isles  

Whilst field studies of orchid ecology have previously described how temperature and 

precipitation may be associated with variation in measures of plant performance, such 

as flowering frequency, year on year (Wells 1967; Wells 1981; Wells et al. 1998; 

Pfeifer, Heinrich & Jetschke 2006), only one prior study has examined flowering 

phenology in relation to climate. Hutchings (2010), in a 32-year study of Ophrys 

sphegodes (1975-2006) at a site in East Sussex, found that, on average, flowering 

advanced by 0.5 days per year
-1

 over the period of the study. Flowering was earlier 

after years with higher mean temperature in the year prior to flowering although the 

relationship was not quantified.  

Whilst photoperiod can also be an important factor in flowering phenology many 

empirical studies, based on field observation, have demonstrated significant 

association between flowering phenology and temperature (Beaubien & Johnson 1994; 

Fitter et al. 1995; Sparks & Carey 1995; Walkovszky 1998; Abu-Asab et al. 2001; 

Menzel, Estrella & Fabian 2001; Fitter & Fitter 2002; Penuelas, Filella & Comas 

2002). Geographic variation in flowering time would be expected for many plant 

species across Britain, reflecting both the latitudinal (North-South) temperature cline 

within the British Isles and the continental-oceanic (East-West) effect with warmer 

winters and cooler, wetter summers toward the west.  

Examination of flowering phenology in relation to climatic or other environmental 

conditions is often based either on experimentation (Price & Waser 1998; Dunne, 

Harte & Taylor 2003; Llorens & Penuelas 2005) or long-term observational data 

(Fitter et al. 1995; Sparks, Jeffree & Jeffree 2000). Whilst long-term observational data 

may be preferred, especially when species are endangered (Tamm 1991) the scarcity of 

monitoring data has limited the opportunity for long term studies of flowering 

phenology (Sparks & Carey 1995). Recent studies have used herbarium specimens 

(Primack et al. 2004; Miller-Rushing et al. 2006; Gallagher, Hughes & Leishman 
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2009; Molnár et al. 2012b; Panchen et al. 2012) as an alternative source of ‘field data’ 

and their use as proxy for direct observation of mean flowering time has recently been 

validated (Robbirt et al. 2011). In a recent Hungarian study using herbarium data, 

flowering of the majority of Hungarian orchids had advanced over the last 50 years, by 

an average of 3 days, although the relationship with temperature was not quantified 

(Molnár et al. 2012b).  

This study represents the first to use long-term data to investigate the relationship 

between flowering phenology and climate for a range of species within a single 

taxonomic group. The specific aim of this research was to use the extensive 

compilation of herbarium specimens collected in Britain since the early 1800s and held 

in herbaria of the Natural History Museum (BM), London and the Royal Botanic 

Gardens, Kew (Kew), to construct long-term data of peak flowering for a range of 

British orchids. The exceptionally comprehensive herbarium collections in Britain 

afforded the opportunity to examine more than 4,000 herbarium specimens, spanning 

164 years between 1823 and 1986, for 15 species representing c.30% of the total 

number of orchid species present in the British Isles. The specific hypotheses were that 

i) the datasets would be sufficiently robust to establish phenological signals of 

flowering in relation to temperature, ii) peak flowering would be advanced with 

warmer temperatures prior to flowering and iii) using these herbarium collections, 

flowering phenology could be critically compared between species with differing 

flowering range and differing pollination mode. No difference in flowering response to 

temperature would be expected between orchid species, irrespective of pollination 

mode. 

3.2. Methods 

3.2.1 Herbarium data 

Four thousand and forty six herbarium specimens held at Royal Botanic Gardens, Kew 

(K) and at the Natural History Museum (BM) were examined for the 15 orchid species 

in this study. Species were grouped by pollination mode: whether primarily pollinated 

by Hymenoptera, Lepidoptera or pollinator-generalists, and within this grouping, as 

rewarding or non-rewarding. Usable specimens spanned a collection period of 164 

years between 1823 and 1986. (Fig. 3-1).Those specimens which were damaged, not 
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fully dated, without a location or illegible were discarded. Of those remaining the 

flowering stage of each specimen was assessed (according to criteria in Table 3-1) and 

for multiple specimens that were clearly collected by a single collector at the same 

location and date, the average stage of flowering was calculated. Those specimens with 

senescing flowers or which were in seed were discarded, as were specimens that were 

in bud or with less than 40% open flowers. This assessment of specimens was to 

ensure that only those that were flowering close to the peak flowering period were 

used in the datasets. Since the historic temperature data represented the temperature 

series for Central England it was desirable to confine the herbarium specimens to those 

collected from a geographically compatible region. Thus all specimens collected from 

Scotland, Wales, or the Isle of Man were rejected and neither were specimens 

examined from Ireland or the Channel Islands. 

 

Table 3-1. The flowering stages to which herbarium specimens were assigned 

 

Stage of orchid flower 
 

In bud 
Less than 20% open 

21 - 40% open 
41-60% open 
61-80% open 
81-99% open 
100% open 

Senesced flowers 
In seed 

Unknown stage due to damage or missing spike 
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Figure 3-1. Collection over time of the 1,803 usable herbarium specimens (1823 – 

1986), (grouped for ease of graphics) for; (a) o E. purpurata, □ G. conopsea, ▼N. 

ovata, ● S. spiralis, ▲ N. ustulata; (b) o P. bifolia, □ P. chlorantha, ▼O. insectifera, 
● O. sphegodes, ▲ C .longifolia; and; (c) o  O. mascula, □ D. praetermissa, ▼D. 

fuchsii, ● A. pyramidalis, and ▲ A. morio 

 

 

 



 

 

Chapter 3                                                                                                       

64 
 

3.2.2 The study species 

3.2.2.1 Non-rewarding, Sexually Deceptive Orchids 

3.2.2.1.1 Ophrys sphegodes Mill. Early Spider Orchid 

A full description is provided in Chapter 2, section 2.2.1. (See also Fig. 3-2c, d; Fig. 3-

3a, b). 

(a) (b) 

  

(c) (d) 

  

 

Figure 3-2. Langton Matravers, Dorset (SY 997783) 21 April 2012 (a): coastal site for 

Anacamptis morio (b) and Ophrys sphegodes (c) and (d).  

 

3.2.2.1.2 Ophrys insectifera L. (syn. Ophrys muscifera Hudson 1761) Fly Orchid 

The distribution range of Ophrys insectifera. is centred on the Mediterranean region 

but it also occurs across Western and Central Europe, and as far north as Scandinavia 

(Dorland & Willems 2002). It is widespread but uncommon in the British Isles, 

occurring sporadically as far north as Yorkshire and Westmoreland, and it is classified 
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as vulnerable in the 2005 Red Data List for Vascular Plants for Great Britain 

(Cheffings et al. 2005). The majority of populations are clustered across southern 

counties; especially on the chalk grasslands of Kent, Sussex and Surrey. Despite 

favouring calcareous soils, habitat is very varied: open woodland, particularly beech 

(Fig. 3-4c, d), alkaline fenland and wet margins of seasonal lakes. Within the NVC 

system the species is associated with calcareous grassland (CG), woodland (W12) and 

mire (M13) communities (Rodwell 1991b; Foley & Clarke 2005). In Britain 

populations have been recorded to 390 m above sea level (Pearman & Corner 2003), 

Flowering period is from late April to early July, with a peak in May and June (Harrap 

& Harrap 2005).  

(a) (b) 

  

 

Figure 3-3. Ophrys sphegodes in flower at Langton Matravers, Dorset on 21 April 

2012 (a) and as a herbarium specimen collected from Langton Matravers, Dorset on 3 

May 1894 (b) and held at the Herbarium of the Royal Botanic Garden, Kew (K)  

 

Most pollination is as a result of sexual deceit of the male digger wasp Argogorytes 

mystaceus (van der Pijl & Dodson 1966; Borg-Karlson 1990; van der Cingel 1995; 

Allan 2001; Claessens & Kleynen 2011), although the slightly later emerging A. fargei 
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(van der Cingel 1995; Claessens & Kleynen 2011), which is rare in the UK, is a 

subsidiary pollinator. ‘Pollination rates’ in the British Isles are reported to be less than 

20% (Summerhayes 1968; Harrap & Harrap 2005), and it is probable that this refers to 

fruit set as a proportion of the flowers or plants.  

(a) (b) 

  

(c)  (d) 

  

 

Figure 3-4. Chapetts Copse, Hampshire (SU 654230) 15 May 2011: established 

beechwood site (a) for Cephalanthera longifolia (b), Ophrys insectifera (c) and (d). 
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3.2.2.2 Non-rewarding, Food Deceptive Orchids 

3.2.2.2.1 Orchis mascula (L.) L. Early Purple Orchid 

Orchis mascula is described as a Euoceanic species since its distribution favours the 

north and west of Europe (Kretzschmar, Eccarius & Dietrich 2007). In the Alps it is 

recorded at altitudes of up to 1800 m (Kretzschmar, Eccarius & Dietrich 2007) and to 

880 m in the British Isles (Pearman & Corner 2003). 

The species is widespread throughout Britain including the Hebrides, Orkney, 

Shetland, Isle of Man and Channel Islands although largely absent from parts of 

western Wales (Harrap & Harrap 2005). Whilst not a common species it can be locally 

abundant in favoured habitats: partcularly associated with calcareous grassland (Fig. 3- 

5b) and pasture, open downland, coastal cliffs, hedgerows, sand dunes, roadside verges 

(Foley & Clarke 2005), and woodland habitats (Kretzschmar, Eccarius & Dietrich 

2007; Jacquemyn et al. 2009). Classified within mesotrophic grassland communities of 

NVC Anthoxanthum odoratum- Geranium sylvaticum (MG3), Dryas octopetala-Carex 

flacca heath (CG13), and Luzula sylvatica-Geum rivale tall herb communities (U17)  

(Rodwell 1992).  

In Britain onset of flowering usually occurs during April and peak flowering time is 

between late April and late May. Flowering period is slightly later in northern and 

upland regions, on occasion lasting into early July (Harrap & Harrap 2005).  

The flowers offer no nectar reward, although a sugary sap may be exuded within the 

spur, and are primarily pollinated by bees foraging for nectar after emerging from 

hibernation in spring. The mode of deception is one of generalised food deceit since 

the orchid does not mimic a specific species. Bees within the family Apidae have been 

named as pollinator species: principally Bombus species (Darwin 1877; Cozzolino et 

al. 2005; Kretzschmar, Eccarius & Dietrich 2007; Claessens & Kleynen 2011). In a 

seven-year Swedish study across eight locations the majority of pollinia were observed 

to be transported by Bombus queens, Psithyrus females and bees of the species E. 

longicornis (Nilsson 1983a). Successful pollination may rely on flowering when 

Bombus queens and Psithyrus females emerge from hibernation (van der Cingel 1995).  
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3.2.2.2.2 Anacamptis pyramidalis (L.) Rich. Pyramidal orchid 

Anacamptis pyramidalis has a broad distribution across Europe, being widespread 

across Central and Southern Europe and the Mediterranean region, (Foley & Clarke 

2005; Kretzschmar, Eccarius & Dietrich 2007), also parts of Russia and neighbouring 

countries (Vakhrameeva et al. 2008; Shetekauri & Jacoby 2009).  

The occurrence of A. pyramidalis is fairly widespread across England, Wales and 

Ireland (Preston, Pearman & Dines 2002), where it is restricted to sea level and 

lowland areas up to c.300 m (Wilson 1956). In England it is most frequent in the south 

and east and becomes rarer in the west and north. In Scotland it is scarce and largely 

confined to the Western Isles, and western coastal regions  (McNeill 1910; Clapham, 

Tutin & Moore 1987; Pankhurst & Mullin 1991; Preston, Pearman & Dines 2002), 

rarely reported along the south-eastern coast of Scotland (Preston, Pearman & Dines 

2002). Peak flowering period is late June to mid July (McNeill 1910; Summerhayes 

1968). 

Across Britain it is essentially a species of chalk grassland (Fig. 3-5d) and its primary 

NVC classifications refer to calcareous grassland communities (CG1-CG6), also 

mesotrophic grasslands (MG1, and MG5), sand dunes (SD7, SD8, SD9, SD15b and 

SD18) and occasionally woodland communities (W6d and W21d) (Rodwell 1992; 

Foley & Clarke 2005).  

Pollination is effected by a range of Lepidoptera: including butterflies, plus day-and 

night-flying moths: Fifty seven species of Lepidoptera have been reported carrying 

pollinia of A. pyramidalis, including burnet moths (Zygaenidae), the burnet companion 

Euclidia glyphica and the Marbled White butterfly, Melanargia galathea (Darwin 

1877; van der Pijl & Dodson 1966; Proctor & Yeo 1973; Arditti 1992; Claessens & 

Kleynen 2011).   

 

 

 



 

 

Chapter 3                                                                                                       

69 
 

(a) (b) 

  

(c) (d) 

  

  

Figure 3-5. Noar Hill, Hampshire (SY 740320) 14 June 2008 (a) chalk grassland site 

for; (b) Orchis mascula 5 May 2008, (c) Dactylorhiza fuchsii 14 June 2008 and (d) 

Anacamptis pyramidalis 14 June 2008. 

Rates of fruit set are variable: Lind et al.,(2007) recorded rates between 15 and 74% 

for different populations on the island of Öland, whilst Neiland & Wilcox (1998) 

found lower rates (33%) amongst populations in England.  
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3.2.2.2.3 Anacamptis morio (L.) R.M. Bateman, Pridgeon & W.M. Chase. (syn. Orchis 

morio L.) Green-winged orchid 

Anacamptis morio is fairly widespread across Central and Eastern Europe, North 

Africa, Turkey and parts of the Middle East (Harrap & Harrap 2005; Kretzschmar, 

Eccarius & Dietrich 2007). Distribution in Britain centres across south eastern and 

central England, coastal regions of south and south west England (Fig. 3-2a, b) and 

Wales. (Lang 2004; Harrap & Harrap 2005). It is typically associated with short, 

unimproved grassland over calcareous or neutral soils and can be locally abundant in 

preferred habitats of damp unimproved meadow and old species-rich calcareous 

grassland. Its primary NVC classification is within the Cynosurus cristatus-Centaurea 

nigra grassland community (MG5) (Rodwell 1992). It is essentially a lowland species 

and maximum elevation in the British Isles has been recorded at 300 m (Wilson 1956).  

The species is principally pollinated by foraging Hymenoptera. Bombus queens act as 

primary pollinators (van der Cingel 1995; Johnson, Craig & Ågren 2004), and some 

thirteen species have been identified (Darwin 1877; Nilsson 1984; Smithson 2002; 

Cozzolino et al. 2005; Claessens & Kleynen 2011). No nectar is produced, and the 

mode of pollination has been described as ‘generalized food deception’ since the 

orchid does not mimic a particular rewarding species. Instead it relies on co-flowering 

rewarding plants to serve as magnets for foraging bees. The sweet scent produced by 

A. morio is sufficient to deceive naïve bees, newly emerged from hibernation, into 

foraging amongst the orchid flowers (Johnson, Craig & Ågren 2004).  

3.2.2.2.4 Dactylorhiza fuchsii (Druce) Soó (syn. Orchis fuchsii Druce, Dactylorhiza 

maculata subsp. fuchsii (Druce) Hyl, Dactylorchis fuchsii (Druce) Verm.) Common 

Spotted Orchid 

Widespread across Europe, including Mediterranean regions, Scandinavia, Russia and 

Siberia, Dactylorhiza fuchsii is the most common and widespread orchid in the British 

Isles. It occurs throughout much of Britain and Ireland and across a range of habitat 

including grassland (Fig. 3-5c), open woodland, wet meadows, fens (Fig. 3-6c), 

machair and dune slacks. Whilst favouring calcareous or neutral soils it also occurs in 

mildly acidic heath or moorland (Harrap & Harrap 2005). Favoured communities are 
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mesotrophic grasslands (MG3, MG9) and grasslands of Festuca ovina-Carlina 

vulgaris and Bromus erectus (CG2-3) (Rodwell 1992). 

Flowering occurs between mid May to early August (Lang 2004; Harrap & Harrap 

2005). No free nectar is produced (Darwin 1877) and the species is generally 

considered non-rewarding.  

Pollen analysis has established that the species is visited by a wide range of pollinating 

insects (Neiland & Wilcock 1999). Primary pollinators are Coleoptera; less frequently 

Diptera and Hymenoptera  (van der Cingel 1995; Lang 2004; Claessens & Kleynen 

2011). Seed set is reportedly high (50-90%), especially in the lower flowers which are 

first to open. 

3.2.2.2.5 Dactylorhiza praetermissa (Druce) Soó (Syn. Orchis praetermissa Druce, 

Dactylorchis praetermissa (Druce) Verm.) Southern Marsh Orchid 

This species is restricted to the Atlantic fringe of North West Europe (Foley & Clarke 

2005; Harrap & Harrap 2005). In Britain it is most frequently seen in the south and 

south-east, southern coastal regions of Wales, but is rare in northern areas. Damp 

calcareous habitats are preferred, typically fenland (Fig. 3-6d) and marsh and principal 

communities are mire (M9-13, M22-24), swamp (S24) and dune slack (SD14-16) 

(Rodwell 1991b; Foley & Clarke 2005). In mildly acidic conditions populations are 

relatively small. It is essentially a lowland plant, and rarely occurs above 200 m. 

Flowering period is typically late May to early July, rarely to August.  

There is little documentation of pollinator species: named species are Trichius 

fasciatus (Coleoptera) and Eucera longicornis (Hymenoptera) (Claessens & Kleynen 

2011).  Hybridization does occur with the co-flowering D. fuchsii, hence pollen vectors 

are likely to be comparable.  
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(a) (b) 

  

(c)  (d)  

  

  

Figure 3-6. Noar Hill, Hampshire (SY 740320) chalk grassland site for (a) 

Gymnadenia conopsea 4 June 2012 and (b) Neottia ovata 4 June 2012; Cothill Fen 

Nature Reserve, Oxfordshire (SU 467995) fenland site for (c) Dactylorhiza fuchsii 8 

July 2012; Wicken Fen National Nature Reserve, Cambridgeshire (TL 562705) fenland 

site for (d) D. praetermissa 11 July 2012. 
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3.2.2.2.6 Cephalanthera longifolia (L.) Fritsch (syn. Cephalanthera ensifolia Rich., 

Epipactis ensifolia F.W.Schmidt, Serapias longifolia (L.) Scop.) Sword-leaved 

Helleborine  

This is essentially a European species with a broad latitudinal range from the 

Mediterranean to Scandinavia and Southern Finland. Preferred sites are open areas of 

woodland, especially beech, or mixed ash and oak, over calcareous substrates, and it is 

classified primarily within the Fagus sylvatica-Mercurialis perennis woodland 

community (W12) (Rodwell 1991a). Scattered sites occur in England, western 

Scotland and Wales but strongholds are Argyll and Hampshire. In the UK C. longifolia 

is classified as Vulnerable in the 2005 Red Data List for Vascular Plants (Cheffings et 

al. 2005). The largest population in the UK is at Chapetts Copse in Hampshire (SU 

654230), a beechwood site hosting a population in excess of 2,000 plants (Fig. 3-4a,b) 

(Harrap & Harrap 2005; Rumsey 2010). Flowering period is mid May to mid June, 

slightly later in Scotland. 

The species is pollinated by Hymenoptera: bees of the genera Halictus, Bombus and 

Lasioglossum (Godfrey 1933; Summerhayes 1968; Claessens & Kleynen 2011). 

Flowers are non-rewarding and pollination success relies on co-occurring magnet 

plants: the orchid does not mimic a particular species, rather it exploits facultative 

floral mimicry within a generalized food deceit system (Dafni & Ivri 1981; Hedley 

1999; Rumsey 2010). Plants are capable of self pollination, however selfing is not 

routine given the low rates of seed set, and pollination is presumably limited by the 

low numbers of visiting insects (Proctor & Yeo 1973).   

3.2.2.2.7 Neotinea ustulata (L.) R.M. Bateman, Pridgeon & M.W.Chase (syn. Orchis 

ustulata L.) Burnt-tip Orchid 

This species is found throughout much of Europe, where it occurs as far north as the 

Faroes, Scandinavia, the Urals of Russia and western Siberia. Southern range limits 

pass through Spain, Italy, northern Greece and the Balkans. Once found throughout the 

calcareous regions of England, it has suffered a severe decline over the last 70-80 

years. Populations are now localised and largely confined to protected areas and 

established, undisturbed chalk grassland communities (CG2) (Rodwell 1992) of 

southern England although a few populations remain in the north. The decline in range 
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is considered to be a result of habitat disturbance; altered grazing regimes and changes 

in agricultural techniques (Tali, Foley & Kull 2004).  

Two varieties are recognised: var. ustulata is the more common and flowers from mid 

May to early June, while variety aestivalis flowers during July and August (Tali, Foley 

& Kull 2004). There is little difference in morphology between the two varieties: 

subtle differences in labellum shape and markings which are not wholly consistent in 

British populations (Tali, Foley & Kull 2004).  

Neotinea ustulata is scented but produces no nectar reward (Tali, Foley & Kull 2004; 

Kretzschmar, Eccarius & Dietrich 2007). Information about pollinator vectors is scant 

(Tali, Foley & Kull 2004): tachinid flies Echinomya magnicornis (Diptera) and the 

longhorn beetle Leptura livida (Coleoptera) are named pollinators (van der Cingel 

1995; Tali, Foley & Kull 2004; Claessens & Kleynen 2011).  

3.2.2.3 Rewarding Orchids 

3.2.2.3.1 Gymnadenia conopsea (L.) R. Brown. (syn Habenaria conopsea (L.) Benth., 

Habenaria gymnadenia Druce, Orchis conopsea L.) Chalk Fragrant Orchid 

Relatively recent taxonomic revision of Gymnadenia conopsea  s.l. has resulted in the 

separation of the former complex of three subspecies into three distinct species: G. 

conopsea s.s., G. borealis and G. densiflora (Bateman, Pridgeon & Chase 1997; 

Meekers et al. 2012). There are variations in flowering phenology between the three 

species and whilst relatively minor divergences occur between G. conopsea and G. 

borealis (Harrap & Harrap 2005), the peak flowering period of G. densiflora can be 

several weeks later (Meekers et al. 2012) . The herbarium specimens of G. conopsea 

s.l., held at the Natural History Museum (BM) had not been taxonomically 

differentiated between the three species (formerly subspecies) and hence this collection 

was not used. Herbarium records held at Kew, however, had been taxonomically 

reviewed by R. Bateman: thus specimens of G. conopsea s.s were reliably identified 

and used in this analysis. 

G. conopsea s.s is present throughout England, but is largely restricted to chalk 

grassland habitats (Fig. 3-6a) and limestone pastures; probably most abundant on the 

downlands of southern counties, and is rare in Scotland. Principal communities are 
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mesotrophic (MG3) and chalk (CG2-3, CG8) grasslands (Rodwell 1992). Maximum 

elevation in the British Isles has been recorded as 365 m (Pearman & Corner 2003).  

A strong scent is produced on the surface of the floral parts and relative amounts of 

active compounds alter over a 24 hour cycle, with strongest scent emission at dusk 

(Huber et al. 2005). Nectar is freely produced and key pollinators are day and night-

flying moths as well as butterflies (Meekers et al. 2012). Pollinator species include the 

Sphingidae (hawkmoths) Macroglossum stellatarum and Deilephila porcellus (van der 

Cingel 1995), and moths from the family Noctuidae, including Autographa gamma 

(Darwin 1877; Jersáková & Kindlmann 2004; Claessens & Kleynen 2011) and A. 

bractea (Huber et al. 2005). Other named pollinators include moths of the family 

Zygaenidae including Zygaena filipendulae (van der Pijl & Dodson 1966; van der 

Cingel 1995) and of the family Hesperiidae, such as Ochlodes venata (Huber et al. 

2005; Claessens & Kleynen 2011). Occasional pollinators also include the bumblebee 

species Bombus terrestris and B. pascuorum (Claessens & Kleynen 2011) . Rates of 

fruit set are variable: whilst rates of 78-91% have been reported (Hansen & Olesen 

1999), lower rates have been found in smaller populations (Meekers & Honnay 2011), 

suggesting that fruit set may be pollinator limited in small populations.  

3.2.2.3.2 Platanthera chlorantha (Custer) Rchb. (syn. Gymnadenia chlorantha 

(Custer) Ambrosi, Habenaria chlorantha (Custer) Bab., Orchis chlorantha Custer) 

Greater Butterfly Orchid 

P. chlorantha and P. bifolia are closely related species which frequently occur 

sympatrically (Nilsson 1983b). Recent molecular analysis indicates an exceptionally 

low level of genetic divergence between the species, with less than 0.7% sequence 

divergence in ITS analysis (Bateman et al. 2009). Whilst antheses of the two species 

overlap, P. chlorantha is the earlier to flower and the low levels of hybridisation 

reported are due to the interaction of ethological, morphological and temporal barriers 

(Nilsson 1983b). Following currently recognised taxonomy they are treated in this 

thesis as separate species. 
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P. chlorantha has an broad range across mainland Europe, extending northwards from 

Spain to Scandinavia and eastwards to Turkey, and has been recorded at altitudes of c. 

2,000 m in the Alps (Foley & Clarke 2005).  

In Britain P. chlorantha is in essence a lowland species, but has been recorded at c. 

455 m in Northumberland and at c. 335 m in Scotland (Wilson 1956). Primarily 

associated with base-rich or calcareous soils, but tolerant of mild acidity (Harrap & 

Harrap 2005).. Its principal NVC classification is within the Fraxinus excelsior-Acer 

campestre-Mercurialis perennis woodland (W8) (Rodwell 1991a). It is fairly widely 

distributed across southern, central and north west England, Northern Ireland, and 

Wales but less frequently reported across western Scotland, and is declining in range. 

Flowering period is early May to late July.  

Scent from the flowers is strongest at night, and copious quantities of nectar within the 

spur serve to attract pollinators (Nilsson 1978), chiefly Noctuid (Proctor & Yeo 1973; 

van der Cingel 1995) and Sphingid moths (Claessens & Kleynen 2011). Sphingid 

moths include the Elephant Hawk moth (Deilephila elpenor), the Small Elephant 

Hawk moth (Deilephila porcellus) and the Silver Y moth (Autographa gamma) 

(Nilsson 1978; Claessens & Kleynen 2011).  

3.2.2.3.3 Platanthera bifolia (L.). Rich. (syn. Gymnadenia bifolia (L.) G Mey, 

Habenaria bifolia (L.) R. Br., Orchis bifolia L.) Lesser Butterfly Orchid 

The species is widely distributed in Europe, and its north-south range extends from the 

Mediterranean and North Africa to Scandinavia, and eastwards to Russia.  

Although present throughout the British Isles, it is most frequently recorded in the 

western regions of England and Wales and the north-west of Scotland (Foley & Clarke 

2005).  Essentially a lowland plant in Britain, (Wilson 1956), it is present on both basic 

and acidic soils. In southern England it favours woodland sites, typically over basic 

soils, but also occupies open, damp acidic habitats. In the north and west it favours 

open, acidic, damp conditions such as open heath, moorland and pasture (Foley & 

Clarke 2005). Morphological variation is reported in Britain: woodland forms being 

slightly taller than those of open acidic habitats, with narrower leaves and a looser 

inflorescence (Foley & Clarke 2005). 
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The main distinguishing feature between the two species is the orientation and shape of 

the pollinia, which in P. bifolia are positioned close together and vertically parallel 

(Foley & Clarke 2005). Range in Britain has contracted in many central and Southern 

regions over the last few decades, probably due to habitat loss, and current distribution 

has a distinct western and northern bias (Harrap, 2005). The species is classified as 

Vulnerable in the current Red Data List of Vascular Plants for Great Britain (Cheffings 

et al. 2005). Flowering period is described as late May to June for woodland 

populations and June to July for heathland populations, with southerly populations 

flowering earliest (Harrap, 2005).  

In common with P. chlorantha, the species emits a strong scent. especially at night, 

and offer abundant nectar within the floral spur (Plepys, Ibarra & Löfstedt 2002). 

Primary pollinators are night-flying sphingid and noctuid moths (van der Cingel 1995), 

also geometrid moths (Plepys, Ibarra & Löfstedt 2002). Named pollinator species 

include Deilephila elpenor, D. porcellus, Macroglossum stellatarum, Cucullia 

umbratica, and Autographa gamma (Plepys, Ibarra & Löfstedt 2002; Jersáková & 

Kindlmann 2004; Claessens & Kleynen 2011). 

3.2.2.3.4 Epipactis purpurata Sm. (syn. Helleborine purpurata (Sm.) Druce, 

Helleborine sessilifolia (Peterm.) Druce) Violet Helleborine 

Epipactis purpurata is restricted to western and central Europe, extending north from 

the western Iberian Peninsula, across central Europe to Denmark and eastwards to the 

Balkans and toward Siberia (Foley & Clarke 2005). Within Britain it is a lowland plant 

(Wilson 1956) restricted to the southeast and central England, where it is strongly 

associated with shady woodland habitats, over calcareous substrate (Foley & Clarke 

2005; Harrap & Harrap 2005). Within NVC classification, it is primarily allied with 

Fagus sylvatica-Rubus fruticosus woodland (W14) (Rodwell 1991a). Flowering occurs 

between late June and late September (Harrap & Harrap 2005).  

The primary pollinators of Epipactis species in Europe are reported to be vespid wasps 

(Hymenoptera: Vespidae) (Jakubska-Busse & Kadej 2011). Little is known of the 

specific pollinators for E. purpurata: pollinating wasps include Vespula austriaca 

(Claessens & Kleynen 2011) and V. vulgaris, (Jakubska-Busse & Kadej 2011) and 

short-headed species of the genus Paravespula (van der Cingel 1995; Claessens & 
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Kleynen 2011). In a central European study pollinators were scarce and plants 

exhibited high levels of autogamy (Jakubska-Busse & Kadej 2011).  

3.2.2.3.5 Spiranthes spiralis (L.) Chevall (syn. Spiranthes autumnalis (Balb.) Rich.) 

Autumn Lady’s-tresses 

Spiranthes spiralis is an autumn flowering species, whose flowering period spans 

August and September, into early October. Although widely distributed across 

southern England, occurrence is sporadic further north, reaching its current recorded 

geographic limit in Lancashire (Lang 2004). It is also found in Wales where it occurs 

along coastal fringes, as it does in mid to southern Ireland. Habitat is essentially short 

calcareous grassland, where competition from taller grasses and herbs is limited 

(Harrap & Harrap 2005). It is principally found amongst the CG2 (Festuca ovina-

Avenula pratensis) grasslands (Rodwell 1992) but also occurs within CG10 (Festuca 

ovina-Agrostis capillaris-Thymus polytrichus) communities (Jacquemyn & Hutchings 

2010). In Wales it has also been recorded in Cynosurus cristatus-Centaurea nigra 

(MG5) mestrotrophic grasslands (Jacquemyn & Hutchings 2010). 

S. spiralis is long lived, and total life span above ground has been estimated as c. 60 

years (Wells 1981; Willems & Dorland 2000). During mid-summer plants remains 

underground; peak flowering period is August to September, although plants may still 

be flowering as late as November (Willems & Dorland 2000).  

Hymenoptera are primary pollen vectors (Darwin 1877; van der Cingel 1995; Willems 

& Lahtinen 1997; Jacquemyn & Hutchings 2010). Named pollinators include Bombus 

pascuorum, B. lapidarius, B. terrestris and Apis mellifera (Willems & Lahtinen 1997; 

Claessens & Kleynen 2011).   

3.2.2.3.6 Neottia ovata (L.) R.Br. (syn. Listera ovata (L.) R.Br., Ophrys ovata L.) 

Common Twayblade 

Neottia ovata is widespread and common through much of Europe, and its range 

extends northwards to Scandinavia and eastwards to central Asia (Foley & Clarke 

2005). In the British Isles it is also widespread; habitats include calcareous (Fig. 3-6b) 

and mildly acidic grasslands, woodlands, heathland and dune slacks. Principal NVC 

classifications are the Anthoxanthum odoratum-Geranium sylvaticum (MG3) and 
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Cynosurus cristatus-Centaurea nigra (MG5) mesotrophic grasslands, and chalk 

grassland communitiues (CG6-13) (Rodwell 1992).  

A shallow nectariferous groove runs centrally down the lip from the base, attracting a 

wide range of insects (Lang 1989; Delforge 1995). Flowering occurs from late April 

through to July. N. ovata is rhizomatous, and vegetative growth is an important means 

of reproduction, with seed to plant maturity reportedly up to 15 years (Lang 2004). 

Effective pollinators are small insects (Nilsson 1981), including Hymenoptera, 

Coeloptera and Diptera (Darwin 1877; Nilsson 1981; Claessens & Kleynen 2011).  

Table 3- 2. Summary of study species. 

Species Name Median 

Flowering  

Date 

Pollination 

Mode  

Pollinator 

Assemblage  

Primary 

NVC 

Groups 

Primary 

Geographic 

Regions  

Ophrys sphegodes 
 

17 May Sexual deceit Hymenoptera CG South (S) 

Ophrys insectifera 8 June Sexual deceit Hymenoptera CG; W12; 
M13 

S 

Orchis mascula 13 May Food deceit Hymenoptera CG13; MG3; 
U17 

Widespread, 
but localised  

Anacamptis 
pyramidalis 

6 July Food deceit Lepidoptera CG1-6; MG1; 
MG5 

S; Central (C); 
East (E)  

Anacamptis morio 17 May Food deceit Hymenoptera MG5; CG S; Central (C); 
East (E) 

Dactylorhiza fuchsii 25 June Food deceit Generalist MG3; MG9; 
CG 2-3 

Widespread 

Dactylorhiza 
praetermissa 

17 June Food deceit Generalist M9-13; M22-
24; S24; SD 

S; SE 

Cephalanthera 
longifolia 

5 June Food deceit Hymenoptera W12 S  

Neotinea ustulata 
 

6 June Food deceit Generalist CG2 S 

Gymnadenia 
conopsea s.s. 

24 June Reward Lepidoptera CG2-3; CG8; 
MG3 

Widespread 
 

Platanthera 
chlorantha 

13 June Reward Lepidoptera W8 Widespread, 
but localised 

Platanthera bifolia 
 

17 June Reward Lepidoptera W8 Widespread, 
but localised 

Epipactis purpurata 
 

18 August Reward Hymenoptera W14 S; C 

Spiranthes spiralis 
 

5 September Reward Hymenoptera CG2; CG10 S; C 

Neottia ovata 13 June Reward Generalist MG3; MG5; 
CG6-13 

Widespread 
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3.2.3 Meteorological data 

Mean monthly Central England Temperature (CET) records and mean monthly 

precipitation figures for England and Wales (EWP) for the period 1820-2010 (Parker 

et al. 1992) were obtained from the UK Meteorological Office as described in Chapter 

2, section 2.2.4.  

Three-month mean temperature data was calculated for each year (Winter-December 

(the prior year), January, February; Spring-March, April, May; Summer-June, July, 

August; Autumn of the prior year-September, October, November). 

Mean precipitation figures calculated for each year (Winter-December (the prior year), 

January, February; Spring-March, April, May; Autumn of the prior year-September, 

October, November).  

3.2.4 Geographical effects 

A vice-county is a geographical division of the British Isles used for the purposes of 

biological recording. The vice county of collection is often recorded on a herbarium 

specimen, even when the precise location of collection is not given. For many 

historical specimens accurate details of location beyond vice county are not provided. 

Therefore the effect of latitude and longitude on flowering date was based on 

coordinates of vice county centroids. Decimal latitude and longitude (WSG86 

coordinates) of vice county centroids were calculated from their XY values. The 

collection site of each specimen was geo-referenced with the aid of the Ordnance 

Survey UK Grid Reference Finder http://gridreferencefinder.com/ and assigned to its 

vice county using the Digitised Watsonian Vice County Boundary data accessed via 

Herbaria United and the Botanical Society of the British Isles 

http://herbariaunited.org/gridrefVC/   

3.2.5 Analysis  

The distribution of collection dates in the herbarium datasets for each of the 15 species 

were expressed as number of days after 1st March. Each dataset was checked for 

normality and presence of outliers. Median and range of first and last flowering date 

were calculated for each of the study species. All sets of flowering phenology data 

were examined for correlations (Pearson Correlation Coefficient) with mean CET 

http://gridreferencefinder.com/index.php?lt=51.505505&lg=-0.07533989
http://herbariaunited.org/gridrefVC/


 

 

Chapter 3                                                                                                       

81 
 

temperature data from the months prior to the flowering season. These data included 

mean monthly temperature and its averages over successive 3-month periods 

(September-November, December-February and March-May). All sets of flowering 

phenology data were also examined for correlations with mean EWP precipitation data 

from the months prior to the flowering season. These data included mean monthly 

precipitation and its averages over successive 3-month periods (September-November, 

December-February and March-May). Multiple regression analyses were used to 

investigate models of the dependence of flowering time on mean temperatures, 

precipitation, decimal latitude and decimal longitude, in order to identify sensitivity of 

these models to monthly temperature and precipitation means and varying latitude and 

longitude. 

Stepwise forward multiple regression analyses were carried out using SPSS 18 (IBM 

Corp., 1 New Orchard Road, Armonk, NY, USA). Slopes and intercepts of regressions 

were calculated and compared via analysis of covariance (ANCOVA) using GraphPad 

Prism version 5.00 for Windows, GraphPad Software, San Diego California USA 

(www.graphpad.com). 

 3.3 Results  

3.3.1 Quality of herbarium data 

Of the 4,046 herbarium specimens examined 2,176 (53.8%) provided geo-

referenceable, dated records of plants in peak flower at the time of collection (i.e. more 

than 40% open flower, and neither in seed nor with senescing flowers). Of these 

specimens, 1,803 were collected from English vice counties, and thus within the range 

of the CET records (Table 3-3). Considerable variation between species was evident in 

the proportion of usable records, which was principally due to wastage arising from 

undated specimens.  

3.3.2 Median and range of flowering times 

Of the five species pollinated by Hymenoptera (Table 3-4) two are late season 

(Epipactis purpurata and Spiranthes spiralis) and three are early season (Orchis 

mascula, Anacamptis morio and Cephalanthera longifolia). For O. mascula median 

flowering (days from 1st March) was 74 days and range was 45 to 124 days (Fig. 3-7). 

http://www.graphpad.com/
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For A. morio median flowering (days from 1st March) was 78, whilst flowering range 

extended from 47 to 110 days (Fig. 3-7). C. longifolia is an orchid of early summer, 

median flowering (days from 1st March) was 97 days and flowering range was 

between 67 and 147 days (Fig. 3-7). For E. purpurata median flowering time (days 

from 1 March) was 171 days and flowering range was between 129 and 212 days (Fig. 

3-7). For S. spiralis median flowering (days from 1st March) was 189 days and 

flowering range was 162 to 223 days (Fig. 3-7). 

Ophrys sphegodes and O. insectifera were the only species in this study to rely on 

sexual deceit for pollination success (Table 3-7). O. sphegodes is very early to flower 

with a median flowering date (days from 1st March) of 78 days and a range of 47 to 

112 days (Fig. 3-7). For O. insectifera, flowering in early summer, median flowering 

date (days from 1st March) was 100 days and range was 76 to 132 days (Fig. 3-7). 

Of the four species pollinated by Lepidoptera (Table 3-5) Platanthera bifolia and P. 

chlorantha were the earliest to flower. Median flowering date (days from 1st March) 

for P. bifolia was 109 days and flowering range was 84-139 days (Fig. 3-7). For the 

marginally earlier flowering P. chlorantha median flowering date was 105 days and 

range was 75-139 days (Fig. 3-7). For G. conopsea median flowering (days from 1st 

March) was 116 days. The flowering range, spanning 94 days (range 86-179 days), 

was the most extended of the study species (Fig. 3-7). Anacamptis pyramidalis was the 

last to flower of the Lepidopteran pollinated orchids in this study. Median flowering 

date (days from 1st March) was 128 days and ranged from 98 to 170 days (Fig. 3-7). 

Of the pollinator generalists (Table 3-6) Neottia ovata was the sole rewarding species 

studied. Median flowering date (days from 1st March) was 105 days and range 

extended from 79 to 157 days (Fig. 3-7). Of the three non-rewarding species of 

pollinator generalists in this study Neotinea ustulata was the earliest to flower: median 

flowering date (days from 1st March) was 98 days and ranged from 62 to 124 days 

(Fig. 3-7): presumably all specimens were of the more common early flowering var. 

ustulata. For Dactylorhiza praetermissa flowering was marginally later, with a median 

flowering date (days from 1st March) of 109 days and a range of between 76 and 143 

days (Fig. 3-7). Dactylorhiza fuchsii was the last to flower, median flowering date 

(days from 1st March) was 117 days and flowering range 93 to 157 days (Fig. 3-7). 
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Table 3-3. Summary of records derived from herbarium specimens. 

 Number of herbarium specimens 

Orchid species  Total  Undated  Scotland, 
Wales, 
 Isle of Man 

< 40% 
open 
flower 

Senesced 
flower or 
in seed 

Usable 
records 

Anacamptis  morio 289 147 7 1 8 126 
Anacamptis  pyramidalis 330 159 17 - 3 151 
Cephalanthera  longifolia 160 74 23 6 3 54 
Dactylorhiza fuchsii 315 44 26 47 12 186 
Dactylorhiza praetermissa 387 42 40 20 24 261 
Epipactis purpurata 212 76 - 23 9 104 
Gymnadenia conopsea  192 46 50 7 - 89 
Neotinea ustulata 234 136 - 1 5 92 
Neottia ovata 180 51 28 14 1 86 
Ophrys insectifera 285 155 - 9 7 114 
Ophrys sphegodes 183 102 - 1 3 77 
Orchis mascula 364 170 30 9 11 144 
Platanthera bifolia 363 159 85 5 4 110 
Platanthera chlorantha 286 120 53 2 2 109 
Spiranthes spiralis 266 141 14 6 6 100 

       
Total records 4046 1622 373 151 97 1803 
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Figure 3-7. Median flowering dates (days from 1 March), 25 and 75 percentiles, range 

and outliers for each of the 15 orchid species derived from herbarium records. 
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3.3.3 Correlation analysis 

3.3.3.1 Mean CET 

Species were analyzed according to their mode of pollination and flowering period. All 

three species of Hymenoptera-pollinated early-season orchids demonstrated strong 

correlation with mean spring temperature. Flowering of Orchis mascula was 

significantly correlated with mean monthly temperature for the months January-April. 

Whilst there was significant correlation with mean winter temperature the highest 

correlation was with spring (Table 3-4). Flowering of Anacamptis morio was 

significantly correlated with monthly mean temperatures for the months February-

April. Significant correlation was present with mean winter temperature but strongest 

correlation was with spring (Table 3-4). For Cephalanthera longifolia there were 

significant correlations between flowering date and mean monthly temperature for the 

months February-May, and for July. There was significant correlation with mean 

temperature for winter but the highest correlation was with mean temperature for 

spring (Table 3-4). For the two late-season orchids in this Hymenoptera-pollinated 

group, peak flowering showed significant correlation with monthly temperature 

through the growing season. Time of flowering of Epipactis purpurata was 

significantly correlated with mean monthly temperatures for the 6 months prior to 

flowering (March-August). As expected there was strong correlation with spring but 

the highest correlation was with summer immediately preceding flowering (Table 3-4). 

Flowering of Spiranthes spiralis was significantly correlated with the mean monthly 

temperatures for January, March, May and June. There were significant correlations 

with mean temperatures for winter and summer but the strongest correlation was with 

spring (Table 3-4).  

Turning to the orchids pollinated by Lepidoptera, the Platanthera spp., both of which 

offer nectar reward, were the earliest to flower. For P. chlorantha there were 

significant correlations with mean monthly temperatures for February, March, and 

April. Again the strongest correlation was with mean temperature for spring (Table 3-

5). For P. bifolia there were significant correlations with mean monthly temperatures 

for March, April and June and with mean winter temperature, however the strongest 

correlation was also with mean spring temperature (Table 3-5). The two non-rewarding 
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species in this group commenced flowering later than the Platanthera spp. and 

flowered for longer thorough the summer. The wide range in flowering time of 

Gymnadenia conopsea s.s. made it difficult to apply correlation analysis to flowering 

date and therefore correlation analysis was restricted to the 75 specimens collected 

from the southern/central region of England; 14 specimens originating from northern 

vice counties were excluded in this analysis. Despite this geographic concentration of 

records, correlation analysis yielded weak results. Flowering date was significantly 

correlated with mean monthly temperature for February and May and with mean 

winter temperature (Table 3-5). For Anacamptis pyramidalis there were significant 

correlations with mean monthly temperatures between February and August and with 

mean temperatures for winter and spring, however the strongest correlation was with 

mean summer temperature (Table 3-5).  

Correlation analyses for the rewarding pollinator generalist Neottia ovata produced 

weak correlations: flowering date was significantly correlated only with mean monthly 

temperature for April (Table 3-6). Turning to the 3 species of non-rewarding pollinator 

generalists, there were significant correlations for Neotinea ustulata with mean 

monthly temperatures for February, April and May and with mean spring temperature 

(Table 3-6). For Dactylorhiza praetermissa, flowering marginally later than N. 

ustulata, there were significant correlations with mean monthly temperatures in the 

period February-June and with mean summer temperature. The highest correlation was 

with spring (Table 3-6). For Dactylorhiza fuchsii there were significant correlations 

with mean monthly temperature for February and for the months April – July, and 

significant correlation with mean spring temperature. Highest correlation however, was 

with mean summer temperature (Table 3-6).  

Ophrys sphegodes and O. insectifera were the only species in this study to rely on 

sexual deceit for pollination. Of these, O. sphegodes was the earliest to flower, and 

significant correlations were observed with mean monthly temperature for March and 

May. Whilst there was significant correlation with mean winter temperature, the 

strongest correlation was again with spring (Table 3-7). For O. insectifera there were 

significant correlations with mean monthly temperature for February to April, and also 

June and July. Significant correlations were observed with the mean temperature for 
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autumn of the prior year (September- November), and with mean spring temperature, 

however the highest correlation was with mean winter temperature (Table 3-7).  

 

Table 3-4. Hymenoptera pollinated orchids. Comparison of correlations between 

flowering date, temperature, precipitation latitude and longitude for herbarium records. 

Correlations are shown with mean temperature or precipitation for 3-monthly periods 

and individual months in the same year as flowering (January-August) or in the year 

previous to flowering (September-December). A negative correlation indicates that a 

higher mean temperature or precipitation is associated with an earlier flowering date. 

 Rewarding Non-rewarding 

 Epipactis 
purpurata 
(1844-1977)  

Spiranthes  
spiralis 

(1823-1973) 

Orchis  
mascula 

(1835-1980)  

Anacamptis 
morio 

(1835-1981) 

Cephalanthera 

 longifolia 

(1848-1957) 

 n = 104  n = 100 n = 144 n =126 n = 54 

Period of temperature 
mean: 

     

July (2) -0.451**     -0.119   (3) 0.061     -0.005     -0.300** 
June (1)-0.526** (2) -0.307**     -0.050     -0.137     -0.092 
May     -0.345** (1) -0.329**     -0.103     -0.124 (2) -0.325** 
April (3)-0.246**     -0.153 (1) -0.325** (1) -0.349** (1) -0.403** 
March    - 0.166*     -0.203*     -0.266** (2) -0.305** (3) -0.342** 
February    - 0.059     -0.120 (5) -0.307**     -0.234**     -0.309* 
January       0.041 (3) -0.207* (2) -0.200**     -0.030     -0.168 
      
3 month means:      
June - August     -0.553**    -0.243** - - - 
March - May    -0.398**    -0.353**     -0.364**     -0.406**    -0.548** 
December Y– February    -0.002    -0.323**     -0.262**     -0.173*    -0.351** 
September – Nov. Y     0.064    -0.032      0.118     -0.058    -0.119 
      
Period of precipitation      
3 month means:      
March - May     -0.082   0.086     0.118     0.051   -0.068 
December y  -February      0.108 -0.167*   -0.124     0.047   -0.093 
September  – Nov. y     -0.217*   0.074   -0.007     0.175*    0.243* 
      
Decimal latitude      -0.074 -0.016 (4) 0.189*     0.087    0.093 
Decimal longitude       -0.102   0.004    -0.139*   -0.070    0.007 

Significance: **P <0.01; * P <0.05 (one-tailed)  Symbols: Y = prior year; (1) (2) (3 (4) (5) = order in 

stepwise (forward) regression   
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Table 3-5. Lepidoptera pollinated orchids. Comparison of correlations between 

flowering date, temperature, precipitation, latitude and longitude for herbarium 

records. Correlations are shown with means for 3-monthly periods and individual 

months in the same year as flowering (January-August) or in the year previous to 

flowering (September-December). A negative correlation indicates that a higher mean 

temperature or precipitation is associated with an earlier flowering date. 

 

 Rewarding Non rewarding 

 Platanthera 
chlorantha 

(1835-1962) 

Platanthera 
bifolia 

(1852-1965) 

Gymnadenia 

conopsea 
a,K

 
(1843-1986) 

Anacamptis 
pyramidalis 

 (1830-1980) 

 n = 109 n = 110 n = 75 a n =  151 

Period of temperature 
mean: 

    

July      -0.122      -0.127     0.068     -0.280** 
June      -0.090       0.173*   -0.026 (1) -0.344** 
May  (3) -0.103      -0.134 (3) -0.232*   -0.185* 
April      -0.258**  (4) -0.233**    0.083 (2) -0.343** 
March      -0.203*  (2) -0.384**  -0.001     -0.239** 
February  (4) -0.194*      -0.147  (2) -0.284**    -0.238** 
January       0.049      -0.101 -0.180 -0.104 
     
3 month means:     
June - August - - - -0.414** 
March - May    -0.289** -0.374** -0.070 -0.387** 
December y  -February        -0.132 -0.222**   -0.257* -0.279** 
September – November y         0.110       0.011  0.082       -0.096 
     
Period of precipitation     
3 month means:     
March - May 0.149  0.041   0.182 -0.008 
December y  -February 0.051 -0.090 -0.186      -0.218** 
September – November y         -0.086 -0.155 -0.153 -0.060 
     
Decimal latitude  (1)  0.447** (1)   0.422** (1) 0.431**      0.198** 
Decimal longitude  (2) -0.297** (3) -0.273**   0.194* 0.121 

Significance: **P <0.01; * P <0.05 (one-tailed), Symbols: a = region 1 only; K Kew specimens 

only; Y = prior year; (1) (2) (3 (4) = order in stepwise (forward) regression   
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Table 3-6. Pollinator generalists. Comparison of correlations between flowering date, 

temperature, precipitation, latitude and longitude for herbarium records. Correlations 

are shown with means for 3-monthly periods and individual months in the same year 

as flowering (January-August) or in the year previous to flowering (September-

December). A negative correlation indicates that a higher mean temperature or 

precipitation is associated with an earlier flowering date.   

 Rewarding Non-rewarding 

 Neottia 
 ovata K 

(1829-1979) 

Neotinea 
ustulata 

(1823-1955) 

Dactylorhiza 
praetermissa K 
(1870-1972) 

Dactylorhiza 
fuchsii K 

(1850-1973) 
 n = 86 n = 92 n = 261 n = 186 

Period of temperature 
mean: 

    

July   0.153 -0.063      -0.001       -0.198** 
June -0.062 -0.079 -0.160**       -0.175** 
May -0.072      (2) -0.215*   (1) -0.214** (2) -0.169* 
April       (2) -0.256**    -0.240* -0.144**       -0.175** 
March 0.023 -0.168 -0.155**  -0.030 
February -0.052      -0.253**   (3) -0.119*    -0.128* 
January 0.085  0.156        0.031  -0.041 
     
3 month means:     
June- August   0.062 -0.109 -0.140*     -0.285** 
March - May -0.127      -0.298**    -0.263**           -0.168* 
December y  -February -0.046 -0.104        -0.102           -0.081 
September – November y   0.018   0.041         0.071             0.029 
     
Period of precipitation     
3 month means:     
March - May 0.063 -0.142  0.045 -0.038 
December y  -February 0.120 -0.025  0.069 -0.031 
September – November y 0.038 -0.133 -0.041  0.005 
     
Decimal latitude         (1) 0.504** 0.003 0.095 (1) 0.407** 
Decimal longitude    0.192* (1) -0.285** (2) 0.214**           -0.025 

Significance: **P <0.01; * P <0.05 (one-tailed),  Symbols: K = Kew specimens only, Y = prior 

year; (1) (2) (3  = order in stepwise (forward) regression   
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3.3.3.2 Mean England and Wales Precipitation 

For the majority of species correlations of flowering date with mean monthly 

precipitation were not significant.  

 For Epipactis purpurata there were significant positive correlations with mean 

monthly precipitation for May to July, though none were significant in stepwise 

forward regression, possibly due to co-linearity with monthly temperature variables.  

There were also significant positive correlations with mean monthly precipitation for 

January for Ophrys insectifera and Dactylorhiza praetermissa, with mean monthly 

precipitation for March for Platanthera chlorantha, April for Neottia ovata, May for 

Anacamptis morio, and June for Spiranthes spiralis and D. fuchsii  although none were 

significant variables in multiple stepwise regression analysis.  

There were significant negative correlations with mean monthly precipitation for 

January for P. bifolia, with February for O. insectifera and for Anacamptis 

pyramidalis, with March for E. purpurata, and with April for Cephalanthera 

longifolia, although none were significant in multiple stepwise regression analysis.  
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Table 3-7. Orchids pollinated by sexual deceit: Comparison of correlations between 

flowering date and temperature, precipitation, latitude and longitude for herbarium 

records. Correlations are shown with means for 3-monthly periods and individual 

months in the same year as flowering (January-July) or in the year previous to 

flowering (September-December). A negative correlation indicates that a higher mean 

temperature or precipitation is associated with an earlier flowering date.   

 Sexual Deceit 

  Ophrys sphegodes 
(1848-1958) 

Ophrys  insectifera 
(1835 – 1970) 

 n  = 77  n = 114 

   
Period of temperature mean:   
July - (1) -0.338** 
June -0.091 (3) -0.225** 
May  -0.259* -0.108 
April -0.153 (4) -0.280** 
March (2) -0.396**      -0.255** 
February -0.159 (2) -0.307** 
January -0.003 0.056 
   
3 month means:   
March - May   -0.426** -0.330** 
December Y– February   -0.321** -0.228** 
September – Nov. Y            -0.065                0.084 
   
Period of precipitation    
3 month means:   
March - May 0.158 -0.015 
December y  -February 0.115 -0.024 
September  – Nov. y 0.042 -0.011 
   
Decimal latitude      0.373** -0.120 
Decimal longitude   (1) 0.427** -0.039 

Significance: **P <0.01; * P <0.05 (one-tailed), Symbols: Y = prior year; (1) (2) (3 (4) = order in 

stepwise (forward) regression   

 

3.3.3.3 Geographic variation 

For most species the effect of latitude and longitude was difficult to assess because 

northern sites were generally more westerly due to the geography of the British Isles. 

For rare species the effect of latitude and longitude was confounded by repeated 

collection at a limited number of sites. Several species registered significant 
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correlations with latitude and longitude as well as mean spring, or summer, 

temperature. For these species (A. pyramidalis, D. fuchsii, D. praetermissa, N. 

ustulata, O. mascula, O. sphegodes, P. bifolia and P. chlorantha) partial correlation 

analysis of flowering data and mean spring temperature, after controlling for latitude 

and longitude effects, confirmed the significance of mean spring, or summer, 

temperature for flowering date in each of the orchids.  

Table 3-8. Zero-order correlations of flowering date (days from March) on mean 

spring temperature (MST) and partial correlations controlling for latitude and 

longitude. 

 Zero-order correlation of 

flowering date with Mean 

Spring Temperature 

(MST). 

Partial correlation of 

flowering date with 

MST, controlling for 

latitude and longitude. 

A. pyramidalis (n=151) -0.387** -0.387** 
D. fuchsii  (n=186) -0.168* -0.173** 
D. praetermissa (n=261) -0.263** -0.234** 
N. ustulata (n=92) -0.298** -0.365** 
O. mascula  (n=144) -0.364** -0.345** 
O. sphegodes  (n=77) -0.426** -0.326** 
P. bifolia  (n=110) -0.374** -0.386** 
P. chlorantha (n=109) -0.289** -0.305** 

Significance: ** P < 0.01; *P < 0.05 

 

3.3.4 Multiple regression analysis 

For each orchid species stepwise forward regression analysis was used to identify 

individual months that were of high significance. As expected mean monthly 

temperature in the months immediately prior to flowering were consistently identified 

as key variables. Stepwise forward regression did not produce a common model 

suitable for orchid species grouped either by pollinator type or by flowering period. 

Mean monthly temperature in March, April or May was identified as a key variable for 

every orchid species (Table 3-4, Table 3-5, Table 3-6, Table 3-7).  

For 13 of the 15 orchid species in this study mean spring (March-May) temperature 

was significantly correlated with flowering time indicating the importance of spring 

temperature in relation to flowering phenology. The two exceptions were G. conopsea 

and Neottia ovata. Both species showed generally weak responses in correlation 
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analyses, which was not unexpected due to their long flowering seasons, coupled with 

wide geographic and habitat range.  

For each of the three early flowering Hymenoptera pollinated species mean monthly 

temperature for March (Ophrys sphegodes) (Table 3-7) and April (Orchis mascula and 

Anacamptis morio) (Table 3-4) was a key factor. Cephalanthera longifolia flowering 

marginally later followed a similar pattern; mean monthly temperature for March-May 

were prime factors (Table 3-4).  

For the two late-summer flowering species of Hymenoptera-pollinated orchids, 

summer temperatures as well as those of spring were important in stepwise forward 

regression. For Epipactis purpurata mean monthly temperatures in April, June and 

July were key factors in stepwise forward regression. For Spiranthes spiralis, 

flowering at its peak during September, mean monthly temperature in January, May 

and June were identified in stepwise forward regression (Table 3-4).  

Of the sexually deceptive orchids Ophrys sphegodes flowered earlier, and March 

temperature was flagged as a key factor. For Ophrys insectifera key variables in 

stepwise forward regression were mean temperatures for February, April, June and 

July (Table 3-7). 

Mean temperatures for February and May were both significant in two of the four 

species pollinated by Lepidoptera; Platanthera chlorantha and Gymnadenia conopsea 

(Table 3-5), despite weak overall correlation and regression results for G. conopsea. 

For P. bifolia spring temperature was again important, mean monthly temperatures for 

March and April were key variables. Interestingly, for each of these three species, 

latitude of vice county of collection was identified as a key variable in stepwise 

forward regression (Table 3-5). For A. pyramidalis mean temperature for June was the 

prime temperature variable in stepwise forward regression. Latitude of vice county of 

collection was also significant, reflecting the recognized gradient of later flowering 

with northing. 
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Of the pollinator generalists the non-rewarding species Dactylorhiza praetermissa and, 

Neotinea ustulata, showed similar patterns in stepwise forward regression: May 

temperature was a key factor for both species whilst mean temperature for February 

was also important for D. praetermissa (Table 3-6). For Neotinea ustulata (Table 3-6) 

negative association with longitude was also flagged, suggesting earlier flowering with 

easting. This association may be a result of the co-linearity between latitude and 

longitude (-0.305, p < 0.001) since collection sites in the west tended also to be more 

northerly. Analysis of vice county of collection for N. ustulata revealed a distinct 

binomial distribution: a large set of southern vice counties and a smaller group of 

northern collection sites. 

3.3.5 Linear regression analysis 

For nine of the orchid species mean spring (March-May) temperature produced the 

highest correlation with flowering time, and was identified as the strongest basis for 

comparing flowering response to temperature in linear regression. The relationship 

between flowering and mean spring temperature was established for each of the study 

species (Table 3-9). 

For two non nectar-rewarding orchid species pollinated by Hymenoptera, and earliest 

to flower, regression of flowering date on mean spring temperature yielded markedly 

similar results. For Orchis mascula the regression of flowering date on mean spring 

temperature accounted for 13.2% of the variation in flowering time (Fig. 3-8a). A 1°C 

increase in mean spring temperature was associated with an advance in flowering of 

5.96 days. For A. morio linear regression of flowering date on mean spring temperature 

accounted for 16.5% of the variation in flowering time (Fig. 3-8b) and a 1°C increase 

in mean spring temperature was associated with an advance in flowering of 6.02 days. 

The slopes of the regression models for the two species were statistically 

indistinguishable (F1,266 = 0.0013, P = 0.972) demonstrating a common flowering 

response to temperature. Even so, the intercepts were statistically different (F1,267 = 

5.0061, P = 0.027). 

For the sexually deceptive orchid Ophrys sphegodes linear regression on flowering 

date accounted for 18.2% of the variation in flowering time (Fig. 3-9), and a 1°C 



 

 

Chapter 3                                                                                                       

94 
 

increase in mean spring temperature was associated with an advance in flowering of 

6.5 days. The regression models for O. sphegodes and the non nectar-rewarding Orchis 

mascula were statistically indistinguishable, neither the gradients (F1,217 = 0.0663, P = 

0.797) nor the intercepts (F1,218 = 0.2278, P = 0.634) were significantly different. 

Similarly the regression models for Ophrys sphegodes and the non nectar-rewarding A. 

morio were statistically indistinguishable, again neither the gradients (F1,199 = 0.0576, 

P = 0.811) nor the intercepts (F1,200 = 2.1142, P = 0.148) were significantly different. 

 

Table  3-9. Relationship between flowering date (days after 1 March) and mean spring 

(March-May) temperature for the 15 orchid species in the study.  

 y x   

Species Name constant S.E 

+/- 

slope S.E 

+/- 

r
2
 n 

Hymenoptera pollinated:       

Orchis mascula                
(i)

 125.2 10.91 -5.96** 1.28 0.13 144 

Anacamptis morio            
(i)

 129.0 10.25 -6.03** 1.22 0.16 126 

Cephalanthera longifolia 
(i)

 166.3 14.68 -8.57** 1.81 0.30   54 

Epipactis purpurata        
(ii)

 231.3 14.11 -7.45** 1.70 0.16 104 

Spiranthes spiralis          
(ii)

 233.5 11.86 -5.36** 1.44 0.12 100 

       

Sexually deceptive:       

Ophrys sphegodes            
(i)

 130.5 13.04 -6.51** 1.60 0.18   77 

Ophrys insectifera            
(i)

 136.3 9.87 -4.43** 1.20 0.11 114 

       

Lepidoptera pollinated:       

Platanthera chlorantha    
(ii)

 145.1 12.51 -4.69** 1.50 0.08 109 

Platanthera bifolia           
(ii)

 152.6 10.44 -5.35** 1.28 0.14 110 

Gymnadenia conopsea     
(ii)

 124.8 17.08 -1.23 2.04 0.01   75 

Anacamptis pyramidalis   
(i)

 188.3 11.52 -7.10** 1.39 0.15 151 

       

Pollinator Generalists:       

Neottia ovata                    
(ii)

 131.5 20.15 -2.79 2.38 0.02   86 

Neotinea ustulata              
(i)

 129.4 11.12 -4.05** 1.37 0.09   92 

Dactylorhiza 

praetermissa                     
(i)

 

 

145.0 

 

8.11 

 

-4.21** 

 

0.96 

 

0.07 

 

261 

Dactylorhiza fuchsii         
(i)

 136.4 8.10 -2.21* 0.96 0.03 186 

       

Significance: ** P <0.01; * P <0.05, Symbols: 
(i)

 non-rewarding, 
(ii)

 rewarding 
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Figure 3-8. Relationship between flowering date (days after 1 March) and mean spring 

(March – May) temperature for a) Orchis mascula (y = 125.2 - 5.962x, r
2
 = 0.132, P < 

0.001, n = 144) and b) Anacamptis morio (y = 129.0 - 6.026x, r
2
 = 0.165, P < 0.001, n 

= 126. 

 

For the sexually deceptive O. insectifera linear regression on flowering date accounted 

for 10.9% of the variation in flowering time (Fig. 3-9), and a 1°C increase in mean 

spring temperature was associated with an advance in flowering of 4.4 days. 
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Comparison of the two sexually deceptive orchids, O. sphegodes and O. insectifera, 

gave similar results. The slopes of the regression models for the two species were 

statistically indistinguishable (F1,187 = 1.1211, P = 0.291) (Fig. 3-9). As anticipated, the 

intercepts were dissimilar (F1,188 = 195.876, P< 0.001), reflecting the differentiation in 

time of onset of flowering.  
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Figure 3-9. Relationship between flowering date (days after 1 March) and mean spring 

(March – May) temperature for Ophrys insectifera (y = 136.3 - 4.43x, r
2
 = 0.109, P < 

0.001, n = 114) and O. sphegodes (y = 99.54 - 6.51x, r
2
 = 0.182, P < 0.001, n = 77).  

Symbols: ● = data for O. insectifera; ● = data for O. sphegodes. 

Linear regression of flowering date of the non nectar-rewarding Cephalanthera 

longifolia on mean spring temperature accounted for 30% of the variation in flowering 

time (Fig. 3-11) and a 1°C increase in mean spring temperature was associated with an 

advance in flowering of 8.6 days. Although C. longifolia flowers slightly later than A. 

morio, the slopes of the regression models for the two species were statistically similar 

(F1,176 = 1.3364, P = 0.249). As expected, given the separation in flowering period, the 

elevations were statistically dissimilar (F1,177 = 86.778, P< 0.001). 
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Figure 3-10. Relationship between flowering date (days after 1 March) and mean 

spring (March – May) temperature for Platanthera chlorantha (y = 145.1 - 4.687x, r
2
 = 

0.083, P < 0.001, n = 109) and P. bifolia (y = 152.6 - 5.349x, r
2
 = 0.14, P < 0.001, n = 

110).  Symbols: ● = data for P. bifolia; ● = data for P. chlorantha. 
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Figure 3-11. Relationship between flowering date (days after 1 March) and mean 

spring (March – May) temperature for Cephalanthera longifolia (y = 166.3 - 8.566x, r
2 

= 0.30, P < 0.001, n = 54). 
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For the nectar-rewarding species pollinated by Lepidoptera there was striking 

similarities between the 2 closely related species of the genus Platanthera. For P. 

chlorantha the regression of flowering date on mean spring temperature accounted for 

8.3% of the variation in flowering time (Fig 3-10). A 1°C increase in mean spring 

temperature was associated with an advance in flowering of 4.7 days. For P. bifolia 

linear regression of flowering date on mean spring temperature accounted for 14% of 

the variation in flowering time (Fig. 3-10) and a 1°C increase in mean spring 

temperature was associated with an advance in flowering of 5.3 days. The slopes 

(F1,215 = 0.1132, P = 0.737) and intercepts (F1,216 = 1.526, P = 0.218) of the regression 

models were statistically indistinguishable, demonstrating a common phenological 

response to spring temperature. 

Within the group pollinated by Lepidoptera, the non nectar-rewarding Anacamptis 

pyramidalis flowers later in the season than the rewarding P. chlorantha. For A. 

pyramidalis the regression of flowering date on mean spring temperature (Fig. 3-12) 

accounted for 15% of the variation in flowering time. A 1°C increase in mean spring 

temperature was associated with an advance in flowering of 7.1 days. As expected,  
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Figure 3-12. Relationship between flowering date (days after 1 March) and mean 

spring (March – May) temperature for Anacamptis pyramidalis (y = 188.3 - 7.10x, r
2 

= 

0.15, P < 0.001, n = 151). 
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given the separation in flowering period, the elevations were statistically dissimilar 

(F1,257 = 182.484, P< 0.001). Nonetheless slopes of the regression models for the two 

species were statistically similar (F1,256 = 1.3833, P = 0.241), showing a shared 

flowering response to spring temperature. 

Neotinea ustulata flowers earlier than Dactylorhiza praetermissa and both are non 

nectar-rewarding pollinator generalists. For D. praetermissa the regression of 

flowering date on mean spring temperature (Fig. 3-13a) accounted for 6.9% of the 

variation in flowering time. A 1°C increase in mean spring temperature was associated 

with an advance in flowering of 4.2 days. For the earlier flowering N. ustulata the 

regression of flowering date on mean spring temperature (Fig. 3-13b) accounted for 

9% of the variation in flowering time. A 1°C increase in mean spring temperature was 

associated with an advance in flowering of 4.1 days. The slopes of the regression 

models were statistically similar (F1,349 = 0.0091, P = 0.924), while as predicted the 

elevations were statistically dissimilar (F1,350 = 92.726, P< 0.001). 

Within the group of non nectar-rewarding pollinator generalists, Dactylorhiza fuchsii, 

flowering later than D. praetermissa, demonstrated a significant but relatively weak 

correlation to spring temperature. The regression of flowering date on mean spring 

temperature (Fig. 3-14) accounted for only 3% of the variation in flowering time. A 

1°C increase in mean spring temperature was associated with an advance in flowering 

of 2.2 days. The slopes of the regression models for the two species were not 

statistically different (F1,443 = 2.1207, P = 0.146). As expected, given the separation in 

flowering period, the differences between the intercepts were statistically significant 

(F1,444 = 54.773, P< 0.001). 

The two nectar-rewarding orchids pollinated by Hymenoptera, Epipactis purpurata 

and Spiranthes spiralis are late-season species, flowering into the autumn. Even so 

linear regression models of flowering time on spring temperature gave results 

consistent with earlier flowering orchid species. For E. purpurata linear regression of 

flowering date on mean spring temperature accounted for 15.9% of the variation in 

flowering time (Fig. 3-15), and a 1°C increase in mean spring temperature was 

associated with an advance in flowering of 7.5 days. For S. spiralis linear regression 

on flowering date accounted for 12.5% of the variation in flowering time (Fig. 3-15), 
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and a 1°C increase in mean spring temperature was associated with an advance in 

flowering of 5.4 days. The slopes of the regression models for the two species were 

statistically indistinguishable (F1,200 = 0.8603, P = 0.355) .The intercepts were 

statistically dissimilar (F1,201 = 125.236, P< 0.001) presumably reflecting the 

separation in time of onset of flowering.  
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Figure 3-13. Relationship between flowering date (days after 1 March) and mean 

spring (March – May) temperature for (a) Dactylorhiza praetermissa (y = 145.0 - 

4.207x, r
2
 = 0.07, P < 0.001, n = 261) and (b) Neotinea ustulata (y = 129.4 - 4.045x, r

2
 

= 0.09, P < 0.01, n = 92).  
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Figure 3-14. Relationship between flowering date (days after 1 March) and mean 

spring (March – May) temperature for Dactylorhiza fuchsii (y = 136.4 - 2.206x, r
2 

= 

0.03, P < 0.05, n = 186). 

 

 

 

 

 

 

 

 

 

Figure 3-15. Relationship between flowering date (days after 1 March) and mean 

spring (March – May) temperature for the late-flowering species; Epipactis purpurata 

(y = 231.3 - 7.45x, r
2
 = 0.159, P < 0.001, n = 104) and Spiranthes spiralis (y = 233.5 - 

5.364x, r
2
= 0.125, P < 0.001, n = 100).  Symbols: ● = data for E. purpurata; ● = data 

for S. spiralis. 
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Of the 13 orchid species for which it was possible to test flowering responses to mean 

spring temperature, the responses of the 3 non nectar-rewarding pollinator generalists 

were the most muted: flowering advanced between 2.2-4.2 days per 1°C increase in 

mean spring temperature (Table 3-9). It was not possible to perform this test for the 

sole nectar-rewarding pollinator generalist, Neottia ovata. Even so, the response of D. 

praetermissa, a non-rewarding pollinator generalist, was statistically identical to the 

response demonstrated by the rewarding Lepidoptera pollinated species, P. bifolia. 

These species flower at the same time and tolerate similar habitat. The slopes (F1,367 = 

0.5154, P = 0.4733) and intercepts (F1,368 =1 5195, P= 0.2185) of the regression 

models for the two species were statistically indistinguishable, suggesting a shared 

response to spring temperature.  

For D. fuchsii, mean summer (June-August) temperature was most significant in 

flowering response to temperature (Table 3-6), and two further mid to late-flowering 

species, E. purpurata (Table 3-4), and A. pyramidalis (Table 3-5), demonstrated 

highest correlations of peak flowering time with mean summer (June-August) 

temperature. These species were drawn from each of the 3 designated pollinator 

groups: Hymenoptera, Lepidoptera and pollinator generalist. For the nectar-rewarding 

Hymenoptera pollinated orchid, E. purpurata linear regression on mean June-August 

temperature accounted for 31% of the variation in flowering time, and a 1°C increase 

in mean spring temperature was associated with an advance in flowering of 10 days. 

Similarly for the non nectar-rewarding, Lepidoptera pollinated species, A. pyramidalis, 

linear regression on mean June-August temperature again provided the best fit, 

accounting for 17% of the variation in flowering time, and a 1°C increase in mean 

spring temperature was associated with an advance in flowering of 8.5 days. 

 The slopes (F1,251 = 0.4463, P = 0.505) of the regression models for the two species 

were statistically indistinguishable. The intercepts, however, were statistically 

dissimilar (F1,252 = 570.806, P< 0.001), reflecting the difference in onset of flowering. 

 For D. fuchsii, a non nectar-rewarding pollinator generalist, mean summer 

temperature accounted for 8% of the variation in flowering time, and an increase of 

1°C in mean summer temperature was associated with an advance in peak flowering of 

4.3 days. The flowering response to mean summer temperature of D. fuchsii and the 
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rewarding Hymenoptera pollinated E.purpurata, were dissimilar: the differences 

between the slopes were significant (F1,286 = 9.9580, P = 0.002).  

3.4 Discussion  

The 15 orchid species in this study comprise some of the most well-known species 

native to the UK and represents approximately 30% of the total number of species 

present in the British Isles. They are drawn from three pollination groups and a 

progression of flowering dates. This study, using historical climate records and 

herbarium specimens collected over a period of 164 years between 1823 and 1986 

represents the first study of flowering phenology for a series of British orchid species, 

and establishes the importance of spring temperature in determining flowering time. 

Recently herbarium specimens have been used to investigate flowering phenology for 

a range of species (Primack et al. 2004; Miller-Rushing et al. 2006; Gallagher, Hughes 

& Leishman 2009; Molnár et al. 2012b; Panchen et al. 2012) and, their value as proxy 

for field observation has been validated explicitly using herbarium and field data for 

the orchid Ophrys sphegodes, in the UK (Robbirt et al. 2011). (Full details can be 

found in Chapter 2). 

Whilst collection activity varied between species, two clear periods of intense 

collection were apparent: during the 1860s to 1880s and again during the 1930s to 

1950s. Collection activity declined dramatically after 1960 and, for the species in this 

study, no specimens were collected after 1986. This decline in collection activity 

reflects the rise in awareness of the negative impact for conservation of unrestricted 

collecting, and the protection of rare species through legislation. This pattern of 

collection activity is rather earlier than a comparable analysis of orchid collection in 

Hungary, where peak collection was clearly set in the 1950s (Molnár et al. 2012a). In 

that study close to 90% of the specimens were accurately dated, which is considerably 

more than the 60% of fully dated specimens found in this research. The difference in 

wastage almost certainly reflects the difference in age profiles of the collections. 

Accuracy of dating improved considerably during the 1900s, and the majority of 

incompletely referenced and undated specimens in this study originated in the 1800s.  
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Peak flowering is expected to be a more reliable indicator of flowering phenology than 

first-flowering (Miller-Rushing, Inouye & Primack 2008) given the possibility of 

undue influence of stochastic events in first flowering dates (Sparks & Carey 1995). 

Despite the possibility of bias which could result from variation in collection effort and 

confound the detection of underlying trends (Case et al. 2007), herbarium specimens 

would, on average, be expected to be collected at peak flowering time and this 

expectation has been borne out in this study since just 6% of specimens were discarded 

because flowers were senescing or in seed or less than 40% of flowers were in bloom. 

Further, herbarium specimens in this research show accurate representations of 

accepted flowering periods. 

Thirteen of the 15 orchid species (87%) demonstrated a significant correlation with 

mean spring (March-May) temperature: Gymnadenia conopsea and Neottia ovata were 

the exceptions. A low signal to noise ratio is not unexpected for either of these species 

given the wide variation in flowering range, and for N. ovata any signal is likely to be 

further confounded by its occurrence across a particularly broad habitat range. 

Flowering date of spring and early summer flowering orchid species were most 

strongly correlated with temperatures over the three to four months immediately prior 

to flowering. For those species which flowered later in the season, seasonal 

temperature over spring and summer were both highly correlated with flowering time, 

and for three late-flowering species mean summer temperature was the most 

significant variable.  

These findings are similar to those of Fitter et al. (1995) who, in a long-term field 

study of first flowering date for 243 species located at a single site in Central England 

between 1954 and 1989, found that the majority of species flowering between January 

and April were most significantly associated with mean temperature in the one or two 

months immediately prior to flowering. In the same study a more even response to 

temperature was demonstrated for species flowering during the summer months, when 

temperature over the four months prior to flowering was important. Prior studies 

across diverse taxonomic plant groups have relied on averaged results due to the 

considerable differences between species (Fitter et al. 1995; Sparks, Jeffree & Jeffree 
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2000). This study has demonstrated a coherent phenological response for a group of 

plant species within the same taxonomic family.  

Geographical variation in collection site was significantly correlated with flowering 

date for several orchids in this study. A geographic effect would be expected, 

especially for those species collected over a wider area. In all species, controlling for 

the effects of latitude and longitude had only a marginal effect on absolute correlation 

values between flowering date and mean spring or summer temperatures, and had no 

effect on their significance.  

The effect of latitude and longitude was similar for Platanthera bifolia and 

Platanthera chlorantha - both demonstrated later flowering with northing and with 

westing. During summer months western regions of the British Isles are wetter and 

cooler than eastern regions. Platanthera bifolia and P. chlorantha are summer 

flowering species and would be expected to flower earlier in the east in response to 

higher temperatures. The apparent geographic effect is not straightforward, however, 

and would be influenced by multiple factors including habitat preference, micro-

climate and distribution patterns. Platanthera bifolia has a northerly and westerly 

tendency in its distribution pattern, and favours damp heathland and moorland, bogs, 

woodland and rough pasture. There are purportedly two forms of the species 

distinguished by habitat preference, the commoner damp heathland and moorland form 

and the scarcer woodland form. The heathland form of southern and eastern England 

has suffered severe population decline and has been lost from much of the region since 

the 1970s, chiefly due to habitat loss. The moorland form of the north and west regions 

have suffered a less severe fall in population levels. Change in distribution pattern of 

the heathland form since the 1970’s post-date the period of herbarium specimens in the 

dataset, and thus cannot be an explanatory factor in the observed geographic effect. 

The woodland form is restricted to southern England where it favours open deciduous 

woodland, often beech, over calcareous soils. Since the woodland form flowers 

slightly earlier (May-June) than the heathland form (June-July) this may be a 

contributory factor in the earlier flowering observed toward the east. Platanthera 

chlorantha has a southern bias to its distribution pattern and preferring dappled shade 

it is often found at woodland margins or in clearings. Further north it is most usually 
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found in tall grassland of pastures and meadows and is reported to flower up to 3-4 

weeks later than the south. Flowering would be expected to be earlier in the east in 

response to higher summer temperatures.  

In stepwise forward regression mean monthly temperature in March, April or May was 

flagged as a key variable for every orchid species irrespective of flowering time, 

underlining the impact of spring temperature in relation to flowering phenology.  

In linear regression of flowering response to mean spring temperature there were no 

significant differences in flowering response for twelve (92%) of the thirteen orchid 

species for which linear regression could be applied; flowering response of D. fuchsii 

being the exception. Two species, Gymnadenia conopsea and Neottia ovata, did not 

present a significantly non-zero relationship with mean spring temperature and were 

thus excluded from the analysis.  

For 12 of the 15 orchid species (80%) in this study flowering advanced between 4.2 

and 8.6 days for each 1°C increase in mean spring temperature. These findings are 

strikingly similar to those of British studies of first flowering dates based on 

observational records. Fitter et al. (1995) reported a mean advance of 4.4 days per 1°C 

rise in spring temperature. Sparks et al. (2000) established an advance in mean 

flowering of 24 species averaged across the UK of 2 to 10 days per 1°C rise in 

temperature. Findings from these British studies are also in line with observational 

studies based in Central Europe (Walkovszky 1998; Menzel, Estrella & Fabian 2001) 

and North America (Shetler & Wiser 1987; Bradley et al. 1999).  

Fourteen of the 15 species in this study showed no significant associated with mean 

temperature in the autumn prior to flowering. Ophrys insectifera was the sole 

exception, demonstrating a significant negative correlation with mean autumn 

temperature of the prior year. Similarly 12 of the 15 species in this study did not show 

a significant correlation with mean precipitation of the previous autumn. Anacamptis 

morio and Cephalanthera longifolia both presented significant positive correlations 

with mean precipitation for autumn of the prior year, whilst Epipactis purpurata 

demonstrated a significant negative correlation. These findings are broadly consistent 

with the findings of prior studies of Sparks & Carey (1995) and Sparks, Jeffree & 
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Jeffree (2000) who found that associations with autumn temperature, where present, 

were small and usually positively associated with flowering date. Overall climate of 

the prior year has little influence on flowering phenology (Sparks & Carey 1995). 

Fitter et al. (1995) found that first flowering date of spring flowering plants was 

influenced to some extent by temperature of the prior autumn but did not quantify the 

relationship.  

Fitter (1995) found that insect-pollinated plant species were more responsive to 

warming than wind-pollinated species and Molnar reported that on average, non-

rewarding orchids varied more over time than rewarding (Molnár et al. 2012b). For the 

orchid species in this study, all insect-pollinated, there was no evidence that flowering 

response to spring or summer temperature was influenced by whether or not reward 

was offered, and there were no differences between the responses of food deceptive or 

sexually deceptive orchids. Linear regression of flowering date (days from 1st March) 

on mean spring temperature were statistically alike both in comparison of rewarding 

and non-rewarding species, and in comparison of species from contrasting pollinator 

groups. These results suggest a common phenological response to temperature across 

the orchid species in this study.  

For those species which rely on a specific pollen vector, such as the sexually deceptive 

orchids Ophrys sphegodes and Ophrys insectifera, pollination success is critically 

dependent on synchrony of peak flowering time of the orchid with peak flight time of 

the pollinator. The potential for asynchrony between plant and pollinator under current 

climate warming should be evaluated at the species level, especially for non-rewarding 

species where convergent selection pressure is absent. The potential for asynchrony 

between orchid species and pollen vectors is examined in Chapters 4 and 5. 

The lack of long-term observational data of flowering time has previously hindered 

rigorous phenological study of plant species both in the UK and elsewhere. 

Nevertheless the associations between climate warming and plant phenologies needs to 

be understood at the species level as a prerequisite to investigation of the potential 

consequences of climate warming on ecological interactions on a wider scale. 

Although prior studies of temperate orchid ecology have established that a complex 

interaction of variables impact flowering performance (Hutchings 2010) and 
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phenology (Molnár et al. 2012b) none has previously quantified the relationship 

between flowering phenology and climatic variables. Using historical climate data and 

herbarium specimens collected through the 19th and 20th centuries his research 

represents a novel investigation into the flowering phenology of a range of temperate 

orchid species native to the British Isles. The results of this research demonstrate a 

broadly consistent flowering response to spring temperature within the wide range of 

orchids in this study. All the species in this study advanced flowering in response to 

higher spring temperature, and for 13 of the 15 species the advance was significant. 

Strong responses to spring temperature were seen in all species within the groups 

pollinated by Hymenoptera, by Lepidoptera and the two sexually deceptive species. 

Generally weaker responses were seen in those species grouped as pollinator 

generalist. Even so, comparing specific species, responses were statistically identical 

across nectar-rewarding, sexually deceptive, and non nectar-rewarding species. 
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Chapter 4 

Phenological responses of sexually deceptive orchids and their 

pollinators to temperature: implications of climate change for the 

maintenance of synchrony  

Summary 

1. Although direct long-term observations for the detection of phenological trends in 

response to climate change are not available for most species, dated plant specimens in 

herbaria have been shown to provide a reliable proxy. This should also be true for 

museum collection of other organisms. Parallel records of phenological responses in 

different species could be used to predict the potential for disruption of relationships 

between species as a result of climate change. Many orchids have highly evolved, 

specific pollination systems that rely on synchrony of flowering with insect activity, 

and therefore may be susceptible to disruption due to climate warming. This research 

investigated records for two orchids that employ sexual deceit to attract male insects to 

attempt copulation with the flower (Ophrys sphegodes and O. insectifera) and their 

respective pollinators (the solitary bee Andrena nigroaenea and solitary digger wasp 

Argogorytes mystaceus). 

2 Relationships between collection date of Andrena nigroaenea and various measures 

of mean spring temperature were examined using 2,980 field observations of flying 

time between 1975 and 2009 and 357 museum specimens collected between 1893 and 

2007. These were compared with the known trend in flowering time of O. sphegodes 

in response to mean spring (March-May) temperature. Similar comparisons were made 

using 657 field records (1891-2010) and 129 museum specimens (1897-2006) of 

Argogorytes mystaceus and collection time of 114 herbarium specimens of O. 

insectifera (1835-1970). 

3. A 1°C rise in mean spring (March-May) temperature was associated with an overall 

advance in flight time of Andrena nigroaenea of 7-11 days, compared with an advance 

in flowering time of 6 days for O. sphegodes. However male bees emerged earlier than 

females on average and responded to temperatures earlier in the spring. In comparison, 

a 1°C rise in mean spring (March-May) temperature was associated with an advance in 
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flowering of c. 4 days in O. insectifera and an advance in flight of c. 6 days in 

Argogorytes mystaceus. Males and females of A. mystaceus were distinguished in the 

museum record but there were no significant difference in response between the sexes.  

 

4. Flight dates of males and females of A. nigroaenea, distinguished in the museum 

record, were compared with predicted flowering dates for O. sphegodes. The 

proportion of years with a mean date of male flight on or before predicted peak 

flowering increased with mean spring temperature over the range 7-10°C.  

In years where both sexes were collected, the proportion of females collected on or 

before predicted flowering time also increased with temperature. In years where one or 

other sex was collected before predicted flowering date, the probability of it being 

female similarly rose with increasing temperature. 

 

5 Whilst there is no evidence of potential asynchrony between flowering and flight of 

O. insectifera and A. mystaceus, for O. sphegodes there is considerable potential for 

phenological divergence between flowering and flight of the male bees of A. 

nigroaenea with increasing temperature, and disruption to pollination may be 

augmented by the earlier emergence of females. 
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4.1 Introduction 

The influence of climate on the timing of seasonal and developmental events has been 

reported across a range of organisms, including birds (Crick et al. 1997), insects 

(Sparks & Yates 1997), amphibians (Beebee 1995), plants (Sparks & Carey 1995; 

Fitter & Fitter 2002) and fungi (Kauserud et al. 2008). Long-term datasets are needed 

to detect phenological trends (Sparks 2007; Magurran et al. 2010; Bolmgren, 

Vanhoenacker & Miller-Rushing 2012), as they may be obscured by inter-annual or 

decadal variation (Badeck et al. 2004; Bolmgren, Vanhoenacker & Miller-Rushing 

2012). Direct long-term observations are rarely available (Sparks & Carey 1995; 

Holopainen et al. 2012) and for most part they are concerned with recording the 

commencement of a seasonal event (Bolmgren, Vanhoenacker & Miller-Rushing 

2012), rather than central (peak) values, which should be more reliable for 

phenological study (Miller-Rushing, Inouye & Primack 2008). Recently, both 

problems have been addressed by the use of specimen-based records as a source of 

phenological data (Primack et al. 2004; Lavoie & Lachance 2006; Gallagher, Hughes 

& Leishman 2009; Panchen et al. 2012). In particular, the collection date for 

herbarium specimens on average represents peak flowering and their use for as proxy 

for field observation of peak flowering date has recently been validated (Robbirt et al. 

2011).  

Asynchrony between phenophases may occur where species respond differentially to 

climate change (McCarty 2001; Stenseth & Mysterud 2002; Stenseth et al. 2002); 

given that species clearly do show unique phenological responses to climate warming 

(Abu-Asab et al. 2001; Fitter & Fitter 2002; Miller-Rushing & Primack 2008) there is 

potential for disruption of ecological interactions (Walther et al. 2002; Parmesan 2006; 

Thackeray et al. 2010).  

Detailed knowledge, however, is needed of phenological relationships at species level 

in order to understand these community consequences of climate-driven phenological 

shifts (Bolmgren, Vanhoenacker & Miller-Rushing 2012; Nakazawa & Doi 2012). To 

date there have been few studies of the potential for temporal disruption in plant-

pollinator relationships, and results have been varied: some report potentially 
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asynchronous outcomes (Doi, Gordo & Katano 2008; Pradal, Olesen & Wiuf 2009), 

whilst others report parallel temporal responses (Bartomeus et al. 2011).  

 Ideal models of plant-pollinator synchronicities are found in highly co-evolved insect 

pollination systems, as exemplified in the Orchidaceae; the largest family of flowering 

plants. Cross-pollination via sexual deceit is highly specific, and frequently reliant on 

one or two closely related pollinator species (Schiestl et al. 2000). In sexual deception 

orchid flowers have evolved visual and olfactory characteristics that attract male 

insects to attempt copulation, thereby achieving pollination. Seed production of 

orchids is generally pollinator-limited (Nilsson 1992; Neiland & Wilcock 1995; 

Tremblay et al. 2005) and divergence between the flying time of the pollinating insects 

that are the subject of sexual deception and the flowering time of the orchids would 

impair pollination success.  

The genus Ophrys is representative of sexually deceptive orchids in Europe. O. 

sphegodes is pollinated almost exclusively by the solitary bee Andrena nigroaenea 

(Ayasse et al. 2000; Schiestl 2005), and O. insectifera by the wasp Argogorytes 

mystaceus (Borg-Karlson 1990; van der Cingel 1995). As is the case for most insects, 

sets of data recording flying time and associated climatic variables have not been 

assembled until recently for either insect, and the specimen-based records that could 

potentially provide a longer perspective on the effects of climate on flying time have 

not yet been used for this purpose. In addition to understanding how climate change 

may affect the synchronicity between insect and orchid, however, it is important to 

know whether there are differences in the phenological responses of male and female 

insects, since females are stronger competitors with the orchid flowers for the 

copulatory attentions of the males (Nilsson 1992). 

The aims of this work were to compare the phenological responses to spring 

temperature of flowering in O. sphegodes and O. insectifera with the equivalent 

changes in flying time of their respective pollinators, males of Andrena nigroaenea 

and Argogorytes mystaceus, and investigate the potential for loss of synchrony 

between them with increasing spring temperature. A fundamental hypothesis was that 

dated museum specimens would represent a verifiable, long-term record of insect 

flying time, much as herbarium specimens can be used to represent peak flowering 
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time in plants (Robbirt et al. 2011). Specifically, this work sought to (i) examine 

museum records for Andrena nigroaenea and Agogorytes mystaceus in order to 

determine flying-time trends in relation to temperature; (ii) compare climate-related 

trends with equivalent ones that could be detected from more recent field-based 

observations of flying time; (iii) investigate whether there are differences in the 

behaviour of male and female insects, using the museum-based collections; (iv) 

examine herbarium records of O insectifera to determine whether there are similar 

phenological trends in flowering time associated with spring temperature to those 

already demonstrated for O. sphegodes (Robbirt et al. 2011); and (v) predict peak 

flowering times for both orchids over a range of spring temperatures and relate these to 

the flying times of male and female insects. 

4.2 Methods 

4.2.1. The study species 

4.2.1.1 The Ophrys sphegodes-Andrena nigroaenea-pollination system 

Chapter 2, Section 2.2.1 provides a full description of Ophrys sphegodes and an 

account of the pollination system. 

The solitary mining bee Andrena nigroaenea, (Apidae, Andreninae), is the primary 

pollinator of Ophrys sphegodes subsp. sphegodes (Ayasse et al. 2000; Paxton & Tengö 

2001; Mant, Peakall & Schiestl 2005). Whilst A. barbilabris, A. thoracica, A. cineraria 

and A. limata have also been suggested as secondary pollinators (Gaskett 2011), their 

effectiveness has not been established.  

The male bees emerge a few days before the female bees; males significantly 

outnumber females and rely on non-territorial ‘scramble competition’ to find mates 

(Paxton 2005). The orchid flower, resembling the female bee, and flowering in 

synchrony with the emergence and flight of the male bee, attracts newly emerged 

males to attempt copulation. Both visual and chemical mimicry are utilised; the flower, 

mimicking the body of a female bee, emits a floral scent almost identical to the sex 

pheromone of the receptive female (Schiestl et al. 2000). Pollinated flowers emit an 

altered floral odour (Schiestl & Ayasse 2001) which deters further copulatory attempts 

by the male bee thereby increasing the probability of male bees attempting 
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pseudocopulation with other flowers. Consequently the phenology of the male bees is 

important both in relation to flowering time and to the phenology of the female bees, 

which represent a rival attraction for the attention of male bees. 

A. nigroaenea is a solitary mining bee (Archer 2004) that is distributed widely across 

Europe but in Britain it is predominantly recorded from central and southern regions 

(Edwards 2011). It is not currently regarded as rare in Britain and is found across a 

range of habitats (Edwards 2011). The female nests singly in short turf or bare ground, 

favouring light, sandy soils (Edwards 2011). Each larva hatches and develops within 

its individual chamber, over-winters as a pupa and is one of the earliest of the bee 

species to emerge in spring. Males are relatively small and outnumber the females, 

which can be distinguished primarily by the distinctive orange pollen hairs of their 

hind legs. The flight period in Britain is essentially from the beginning of April to late 

June, with males habitually reported as patrolling ‘rendez-vous’ sites in search of 

mates. The species is univoltine, although since the 1990s there have been some 

reports in the UK of a putative partial second generation, presumably arising from 

longer warm periods (Edwards 2011).  

4.2.1.2 The Ophrys insectifera-Argogorytes mystaceus pollination system 

Chapter 3, Section 3.2.2.1.2 provides a full description of Ophrys insectifera and an 

account of the pollination system. 

Argogorytes mystaceus (Apoidea, Sphecidae) is a solitary digger wasp (Archer 2004). 

Although it is present throughout the British Isles, favouring woodland edges and 

clearings, it follows a marked southerly distributional cline and is relatively scarce 

across northern England and Scotland (Richards 1980; Allan 2001). The species is 

univoltine, typically flying between April and June, exceptionally to September 

(Richards 1980; Allan 2001). Nests, dug in dry banks, consist of a vertical to a depth 

of approximately 10cm. The burrow then branches along a horizontal plane to form 

several cells. The female lays a single egg in each cell, provisioning each with 

paralysed nymphs of the spittle bug, principally Philaenus spumarius (Allan 2001). 

Males are important pollinators of O. insectifera, and are thought to seek out the 

flowers because of the close resemblance of the flower scent to the sex pheromone of 

the female wasp (Allan 2001). 
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4.2.2 Museum and herbarium data 

4.2.2.1 Ophrys sphegodes 

Robbirt et al. (2011) (Chapter 2) established the relationships between peak flowering 

time in Ophrys sphegodes and mean spring (March-May) temperature for data derived 

from two sources: 77 fully dated herbarium specimens collected between 1848 and 

1958 and stored in the herbaria of the British Museum and the Royal Botanic Gardens, 

Kew and field observations made between 1975 and 2006 of the date of peak 

flowering for a population of O. sphegodes at Castle Hill National Nature Reserve, 

Sussex, UK. The relationships obtained, both for date of peak flowering and the 

relationship between date of peak flowering and mean spring temperature were 

statistically indistinguishable for the two datasets. Therefore, the herbarium and field 

records have been combined into a single dataset containing 102 records of peak 

flowering date, with at least one data point in each of 82 years during a 159-year 

period from 1848 to 2006. The date of peak flowering is expressed here as days after 1 

March in order to facilitate comparison with the data for flying date of the pollinator, 

Andrena nigroaenea. 

4.2.2.2 Ophrys insectifera 

All 285 specimens of Ophrys insectifera held in herbaria at the Natural History 

Museum, London (BM, 210 specimens) and Royal Botanic Gardens, Kew (K, 75 

specimens) were examined. Specimens with incomplete data for time and place of 

collection were discarded. In order to ensure the dataset represented peak flowering as 

far as possible specimens with withered flowers or in fruit, and those with less than 

40% open flowers were rejected. One hundred and fifty five (54%) of the specimen 

were discarded as undated or illegible. Of those remaining 7 were in seed and 9 were 

less than 40% open. The final dataset comprised 114 specimens, providing at least one 

data point for each of 72 years, spanning a 136 year period from 1835 to 1970. Vice 

county centroids of collection ranged from -2.7610 to 0.9119 decimal longitude (range 

3.6729 decimal degrees), and from 50.6758 to 54.3931 decimal latitude (range 3.7173 

decimal degrees). 
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4.2.2.3 Andrena nigroaenea 

Eight hundred and forty eight British specimens of A. nigroaenea held at the Natural 

History Museum, London (BM, 625 specimens) and Oxford University Museum of 

Natural History (OUM, 223 specimens) (Fig.4-1a,b) were examined. Of these 293 

(34.6%) of the specimens were rejected as undated or unable to be read. Of those 

remaining 179 were redundant, multiple collections (clearly collected on the same day 

at the same location), 12 were of unknown location, 3 could not be reliably sexed and 

4 originating from Wales were discarded as geographical outliers. The final dataset 

comprised 357 specimens, providing at least one data point for each of 81 years, 

spanning a 115-year period from 1893 to 2007. Whilst collection activity was greatest 

during the 1920s to 1940s, the overall spread of activity was fairly equitable until the 

1960s, after which collection declined considerably (Fig. 4-3a). Vice county centroids 

of collection ranged from -3.0746 to 1.5279 decimal longitude (range 4.603 decimal 

degrees), and from 51.3658 to 55.2198 decimal latitude (range 3.854 decimal degrees). 

4.2.2.4 Argogorytes mystaceus 

Four hundred and eighteen British specimens of A. mystaceus held at the Natural 

History Museum, London (BM, 333 specimens), Oxford University Museum of 

Natural History (OUM, 41 specimens) (Fig.4-2a, b) and University Museum of 

Zoology Cambridge (UMZC, 44 specimens) were examined. Of these 251 (60%) were 

rejected as undated or illegible, 20 were redundant multiple collections, 10 

representing geographical outliers from Scotland or Wales, 4 of unknown location and 

4 that could not be reliably sexed. The final dataset comprised 129 specimens, 

providing at least one data point for each of 59 years, spanning a 128-year period from 

1879 to 2006. Peak collection activity was during the 1920s to 1950s, with a sharp 

decline after 1960 (Fig. 4-3b). Vice county centroids of collection ranged from -4.6080 

to 1.3418 decimal longitude (range 5.950 decimal degrees), and from 50.5040 to 

54.3931 decimal latitude (range 3.889 decimal degrees). 
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(a) (b) 

  
 © OUMNH © OUMNH 

 

Figure 4-1. Specimens of Andrena nigroaenea held at Oxford University Museum of 

Natural History: (a) male collected by C.Berg at Hitch Copse, Tubney, Berkshire on 12 

April 1971 and (b) female collected by E.G.Philp at Challock, Kent on 24 April 1997. 

 (a) (b) 

  
 © OUMNH © OUMNH  

 

Figure 4-2. Specimens of Argogorytes mystaceus held at Oxford University Museum 

of Natural History: (a) male collected by F. Smith (date and location unknown), and; 

(b) female collected at Bovey Potteries, South Devon on 17 June 1955.   

4.2.3 Field observations of insects  

4.2.3.1 Andrena nigroaenea 

All 3,696 British observation records of A. nigroaenea supplied by the Bees Wasps 

and Ants Recording Society (BWARS) were examined. Of these, 165 records were 

inadequately dated and 192 were from Wales or Scotland and thus outside the 

geographic range of the temperature data: these were discarded. The remainder were 
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heavily skewed towards recent (1975-2009) records (Fig. 4-3a) and so for 

homogeneity only the 2,997 observations (90%) made from 1975 to 2009 were 

selected. 

Redundant multiple observations (17), clearly collected on the same day and from the 

same location were included as a single data point, giving a final dataset of 2980 

observations recorded between 1975 and 2009, and enabling direct comparison with 

contemporary (1975-2006) field records of peak flowering of Ophrys sphegodes 

(Robbirt et al. 2011). Vice county centroids of the BWARS observations ranged from -

5.26012 to 1.34183 decimal longitude (range 6.602 decimal degrees) and 50.21018 to 

55.50709 decimal latitude (range 5.297 decimal degrees). 

4.2.3.2 Argogorytes mystaceus 

All 1,005 British BWARS records of A. mystaceus were examined. Of these, 81 were 

discarded as insufficiently dated, as were a further 112 from Wales and Scotland and 

148 redundant multiple observations. Eight late-season observations were also 

rejected, representing outliers recorded more than 164 days from 1 March: these fell 

well outside of the customary flight period of the species and could not be verified. 

This provided a final dataset of 657 observations recorded between 1891 and 2010 

(Fig. 4-3b). Vice county centroids of the BWARS observations ranged from -5.2601 to 

1.3418 decimal longitude (range 6.602 decimal degrees) and 50.2102 to 54.7254 

decimal latitude (range 4.515 decimal degrees).  

4.2.4 Meteorological data 

Mean monthly Central England Temperature (CET) records for the period 1848-2010 

(Parker et al. 1992) were obtained from the UK Meteorological Office 

http://hadobs.metoffice.com/hadcet/cetml1659on.dat. This is the only complete climate 

record available for the years during which the museum records and NBN field data 

were collected. Data for Central England are drawn from a triangular area bordered by 

Bristol, Preston and London (Parker, Legg & Folland 1992).  

http://hadobs.metoffice.com/hadcet/cetml1659on.dat
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Three-month mean temperature data was calculated for each year over successive 

periods (December (the prior year) -February; February-April; March- May. The 4-

month mean for the period February-May was also calculated for each year. 

Mean monthly England and Wales’s precipitation figures for the period 1820-2010 

were obtained from the Met Office website: 

http://www.metoffice.gov.uk/research/hadleycentre/CR_data/Monthly/HadEWP_act.txt  

Mean seasonal precipitation figures were calculated for spring (March-May) of each 

year. This was the only available historical record of precipitation to cover the whole 

of England and was considered the most appropriate dataset. Limited regional 

precipitation figures were also available but the application of such data would have 

been limited. 

4.2.5 Geographical effects 

Decimal latitude and longitude of vice county centroids were converted from their XY 

values. The collection site of each specimen was geo-referenced with the aid of the 

Ordnance Survey UK Grid Reference Finder http://gridreferencefinder.com/ and 

assigned to its vice county using the Digitised Watsonian Vice County Boundary data 

accessed via Herbaria United and the Botanical Society of the British Isles 

http://herbariaunited.org/gridrefVC/  

4.2.6 Analysis 

Correlation and regression analyses were carried out with SPSS 18 (IBM Corp., 

Armonk, NY, USA). Slopes and intercepts of regressions were compared via analysis 

of covariance (ANCOVA) (Zar 1984) using Graphpad Prism 5 (Graphpad Software 

Inc., La Jolla, CA, USA).  

 

 

 

 

 

http://www.metoffice.gov.uk/research/hadleycentre/CR_data/Monthly/HadEWP_act.txt
http://gridreferencefinder.com/index.php?lt=51.505505&lg=-0.07533989
http://herbariaunited.org/gridrefVC/
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Figure 4-3. Summary of museum collection and BWARS field observation data over 

time for; (a) Andrena nigroaenea [326 (11%) of BWARS data were pre 1975. These 

were not included in the analysis as there was adequate data post 1975], and; (b) 

Argogorytes mystaceus.  
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4.2.6.1 Ophrys sphegodes 

Herbarium and field observation records were expressed as days from 1 March. Both 

data sets had previously been examined for correlations with mean Central England 

temperature (CET) data in the months prior to peak flowering period (Chapter 2, 

sections 2.3.1 and 2.3.2 provide full details). Since linear regressions of flowering time 

on mean March to May temperature were statistically alike for herbarium data (1848-

1958) and more recent field data (1975-2006), (Chapter 2, section 2.3.3 provides full 

analysis), these two sets of data were combined to generate a single dataset spanning 

the 159-year period 1848-2006 (Table 4-1).  

4.2.6.2 Andrena nigroaenea 

Museum records and BWARS observational data (expressed as days from 1 March) 

were both examined for correlations with mean CET data in the months prior to flight 

period, and significant temperature means were used in multiple regression analysis 

(Table 4-2).  

4.2.6.3 Ophrys insectifera 

Herbarium records (expressed as days from 1 March) were examined for correlations 

with mean CET data in the months prior to peak flowering period, and significant 

temperature means were used in multiple regression analysis (Table 4-1).  

4.2.6.4 Argogorytes mystaceus 

Museum records and BWARS observational data (expressed as days from 1 March) 

were both examined for correlations with mean CET data in the months prior to flight 

period, and significant temperature means were used in multiple regression analysis 

(Table 4-3).  
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4.3 Results 

4.2.3 Correlation and multiple regression analysis 

4.3.1.1 Ophrys sphegodes 

Stepwise (forward) multiple regression analysis for individual month’s temperature 

confirmed the importance of mean temperatures of March and May (Table 4-1). 

Mean temperature for the 3 months March-May gave the strongest correlation with 

peak flowering for the combined herbarium and field dataset (Table 4-1), and this was 

selected as the most appropriate predictor variable.  

4.3.1.2. Andrena nigroaenea 

For BWARS data the highest correlation was with average temperature for the 3 

months February-April but improvement over the correlations with mean temperature 

for the 3 months March-May, and the 4 month average for February-May, was 

marginal (Table 4-2). Similarly for museum records, combining male and female data, 

the highest correlation was with average temperature for the 4 months February-May 

but improvement over the correlations with mean temperature for the 3 months 

February-April, and March-May, was minor (Table 4-2). 

Stepwise (forward) multiple regression analysis for individual month’s temperature did 

not provide a common model. The inclusion of mean spring precipitation (March-

May), whilst significantly correlated with flight time, did not significantly improve the 

fit in any of the regression models.  

Mean temperature for the 3 months March-May was adopted as the most appropriate 

predictor variable for comparison of flight phenology of Andrena nigroaenea and 

flowering phenology of Ophrys sphegodes; this predictor generated the most 

significant correlation for combined herbarium and field data for O. sphegodes and, as 

a predictor for A. nigroaenea, was only marginally less favourable than the best fit for 

field observation and for museum data. 

By examining the museum dataset it was possible to differentiate the flight phenology 

of male and female bees. Male flight phenology was most significantly correlated with 



 

 

Chapter 4                                              

128 
 

mean temperature for the 3-month period February to April, whilst female flight 

phenology was most highly correlated with mean temperature over the 3-month period 

March to May (Table 4-2). To investigate the flight phenologies of male and female 

bees in relation to spring temperature cues, mean February-April temperature was 

selected as the predictor for males, and March-May mean temperature for females.  

4.3.1.3 Ophrys insectifera 

The highest correlation was with average temperature for the 4-month period 

February-May but there were also significant correlations with mean temperature over 

the 3-month periods December-February, February-April, and March-May (Table 4-1).  

4.3.1.4 Argogorytes mystaceus 

For field (BWARS) observation data, the average for the 4 months February-May gave 

the highest correlation, but the improvement over the correlation with mean 

temperature for the 3 months March-May was small (Table 4-3). For museum data the 

highest correlation was with mean temperature for the 3-month period March-May, 

although improvement over mean temperature for the 4-month period February-May 

was small (Table 4-3). Mean temperature for the 3 months March-May was adopted as 

the most appropriate predictor variable for comparison of flight phenology of 

Argogorytes mystaceus and flowering phenology of Ophrys insectifera. 

Stepwise (forward) multiple regression analysis for individual month’s temperature did 

not provide a universal model suitable for all datasets. The inclusion of spring 

precipitation (March-May), whilst significantly correlated with flight time for museum 

data, did not significantly improve the fit in regression modelling. 

By examining the museum dataset it was possible to differentiate the flight 

phenologies of male and female wasps. Female flight phenology was most 

significantly correlated with average temperature for the 3 month period March-May 

(Table 4-3), whilst male flight phenology was most highly correlated with mean 

temperature over the 4-month period February to May (Table 4-3). 

 



 

 

Chapter 4                                              

129 
 

Table 4-1. Correlations between flowering date, temperature, precipitation, latitude 

and longitude for; (a) combined herbarium and field records of Ophrys sphegodes and; 

(b) the herbarium records of Ophrys insectifera. A negative correlation indicates that a 

higher mean temperature or precipitation is associated with earlier flowering. 

 Ophrys  sphegodes Ophrys insectifera 
Period of temperature 
mean 

Herbarium  plus field 
data 

(1848-2006) 
n = 102 

Herbarium 
 data 

(1835-1970) 
n = 114 

June  -0.146        -0.225** (2) 
May            -0.308**   (2)            -0.108 
April  -0.197       -0.280** (3) 
March          -0.430** (1)   -0.255** 
February   -0.215*       -0.307** (1) 
January -0.114             0.056 
   
3-month means:   
March-May     -0.477** -0.330** 
February-April     -0.381** -0.385** 
December Y-February              -0.159 -0.228** 
   
4-month mean:   
February - May    -0.430** -0.392** 
   
March-May precipitation 
mean: 

 
              0.158 

 
-0.015 

   
Decimal latitude of vice 
county centroid 

   0.377** -0.120 

Decimal longitude of vice 
county centroid 

  0.400** -0.039 

   
Max. r2 for all 

temperature factors in 

stepwise forward 

multiple regression 

             0.232 0.207 

r2 using chosen 3-month 

mean: (March- May) 

            0.228 0.109 

Significance: ** P < 0.01; *P < 0.05 (one tailed) , Symbols: Y = prior year; (1) (2) (3 = order in 

stepwise (forward) regression   
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Table 4-2. Correlations between flight date, temperature, precipitation, latitude and 

longitude for the BWARS and museum records of Andrena nigroaenea.  

 BWARS data 
(1975-2009) 

Museum data  
(1893 – 2007) 

Period of temperature 
mean 

Combined sex 
n = 2,980   

Combined sex 
n = 357 

Males 
n = 208 

Females 
n = 149 

June      0.030      (4) -0.006  0.145* -0.168*    
May     -0.125** (5)     -0.077      (5)       0.039 -0.204** (3)  
April     -0.147** (2)     -0.185** (3)      -0.135* -0.254** (1)  
March     -0.159** (3)     -0.253** (2)      -0.272**  (2)     -0.245** (2)  
February     -0.186** (1)     -0.266** (1)        -0.354**  (1) -0.171* 
January     -0.097** -0.178** (4)      -0.243**  (3) -0.113 
     
3-month means:  
March- May  -0.210** -0.314** -0.237** -0.408** 
February-April  -0.216** -0.349** -0.396** -0.309** 
DecemberY- February  -0.144** -0.231** -0.306** -0.154* 
  
4-month mean:  
February- May  -0.215** -0.362** -0.371** -0.362** 
     
March-May precipitation 
mean: 

 
  0.103** 

 
 0.158** 

 
 0.196** 

 
 0.105 

     
Decimal latitude of vice 
county centroid 

 -0.045**  0.193**          0.141*  0.249**      

Decimal longitude of vice 
county centroid 

 -0.049**       0.119*  0.127*              0.119 

     

Max. r2 for all 

temperature factors in 

stepwise forward 

multiple regression 

  0.054 0.153 0.169 0.167 

r2 using chosen 3-month 

mean:  

a, b, d (March-May) 

c (February -April) 

  0.044 0.099 0.157 0.167 

Significance: ** P < 0.01; *P < 0.05 (one tailed) , Symbols: Y = prior year; (1) (2) (3 (4) (5) = order in 

stepwise (forward) regression   
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4.3.2 The Ophrys sphegodes-Andrena nigroaenea pollination system 

There was marked similarity between the phenological responses to spring (March-

May) temperature of Ophrys sphegodes and its pollinator, Andrena nigroaenea (Fig. 4-

4). A 1°C rise in mean spring temperature in Central England was associated with an 

advance in flowering of 6.4 days of the orchid, compared with an advance in mean 

flying time of 7.4 days of the bee, according to the BWARS records; the slopes and 

intercepts of the regression models for O. sphegodes and A. nigroaenea were not 

significantly different (slopes, F1,3078  = 0.1075, P = 0.743; intercepts, F1,3079  = 0.7069, 

P = 0.401). The BWARS data were very variable, spring temperature only accounting 

for 4.4 % of the variation in flight date, compared with 23% of the variation in 

flowering date of the orchid.  

The regression of flight date on temperature derived from all museum specimens 

collected between 1893-2007 (y = 165.3 – 11.45x, r
2
 = 0.10, P <0.001, n = 357) was 

also highly significant and yielded similar results to the more recent BWARS field 

records: a 1°C increase in mean temperature between March and May was associated 

with an advance in flight time of 11.5 days and temperature accounted for 10% of the 

variation in flight time. Despite the difference in collection period between herbarium 

specimens, mostly collected during the early 1900s, and the modern field observations, 

the differences between the slopes of the regression models derived from museum 

specimens and the field were not significant (F1,3333  = 3.2671, P = 0.071). The 

intercepts were significantly different (F1,3079  = 33.74, P < 0.0001). As it was possible 

to distinguish the sexes of Andrena in the museum collections, the separate 

phenological response of males and females were examined (Fig. 4-5). Average flight 

date (days from 1 March) of males was 68.8 ± 1.5, whilst average flight date of 

females was 72.8 ± 2.1 (Table 4-4). On average, males, the potential pollinators, flew 

4.05 ± 2.57 days earlier than females, although this difference was not significant. 

Their flying date was also more highly correlated with mean temperature between 

February and April than that between March and May (Table 4-2), unlike females, 

which were more highly correlated with mean temperature in the later period (Table 4-

2). For males a 1°C increase in mean temperature between February-April was 

associated with an advance in flying date of 9.2 days and the regression accounted for 
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15.7% of the variation in flight (Fig. 4-5). For females a 1°C increase in mean 

temperature between March and May was associated with an advance in flying date of 

15.6 days, accounting for 16.7% of the variation in flying date (Fig. 4-5).  

Table 4-3. Correlations between flight date, temperature, precipitation, latitude and 

longitude for the BWARS and museum records of Argogorytes mystaceus.  

 BWARS data 
(1891-2010) 

Museum data  
(1879-2007) 

Period of temperature 
mean 

Combined sex 
N = 657 1 

Combined sex 
N = 129 

Males 
N = 43 

Females 
N = 86 

June    -0.125**  (3)    -0.162* -0.084 -0.234* 
May      -0.175**          -0.139          -0.055      -0.239* (1) 
April      -0.097**         -0.207** (2)       -0.331* (1)      -0.172 
March   -0.238**  (1)         -0.225** (1) -0.155 -0.201* 
February  -0.218**  (2)   -0.170* -0.152    -0.209* (2) 
January      -0.129**  0.015 -0.020      -0.013 
     
3-month means:  
March- May      -0.256**    -0.324** -0.299*  -0.333** 
February- April      -0.250**     -0.272** -0.284*  -0.271** 
DecemberY -February      -0.192** -0.032         -0.076      -0.086 
  
4- month mean:  
February-May      -0.265**    -0.308** -0.301*  -0.327** 
     
March-May 
precipitation mean: 

 
      -0.024 

 
   0.230** 

 
0.150 

 
  0.218* 

     
Decimal latitude of 
vice county centroid 

       0.248**          0.119     0.389**        0.047 

Decimal longitude of 
vice county centroid 

      -0.087*   -0.281**         -0.105      -0.250* 

     

Max. r2 for all 

temperature factors 

in stepwise forward 

multiple regression 

      0.083           0.091          0.109      0.113 

r2 using chosen 3-

month mean: (March- 

May) 

     0.066          0.105          0.09     0.111 

Significance: ** P < 0.01; *P < 0.05 (one tailed); 
1
 excluding 8 outliers ≥ 164 days 

from 1 March, Symbols: 
Y 

= prior year; 
(1) (2)

 
(3 (4) (5)

 = order in stepwise (forward) 

regression   
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Figure 4-4. Relationship between (a) flowering date of Ophrys sphegodes (days after 1 

March) and mean spring (March-May) temperature for combined herbarium and field 

data, 1848-2006 (y =  130.0 – 6.423x, r
2
 = 0.23, P < 0.0001, n = 102). Field records, ○; 

herbarium specimens, ●., and (b) flight date of Andrena nigroaenea (days after 1 

March) and mean spring (March-May) temperature from BWARS data, 1975-2009 (y 

=140.6 – 7.419x, r
2
 = 0.044, P < 0.0001, n = 2,980). 
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Table 4-4. Estimates of mean flight times of Andrena nigroaenea and Argogorytes 

mystaceus and; mean flowering times of Ophrys sphegodes and O.insectifera (days 

from 1 March), derived from field (BWARS) records, museum and herbarium 

specimens. 

 

Data source Days from 1 March 

 Mean S.E ± 

A. nigroaenea field (BWARS; n = 2980) 73.8 0.5 

A. nigroaenea museum-all (n = 357) 70.5 1.3 

A. nigroaenea museum-male (n = 208) 68.8 1.5 

A. nigroaenea museum-female (n = 149)  72.8 2.1 

   

O. sphegodes herbarium plus field (n = 102) 76.8 1.2 

   

A. mystaceus field (BWARS; n = 657) 108.0 0.7 

A. mystaceus museum-all (n = 129) 107.3 1.6 

A. mystaceus museum-male (n = 43) 95.1 2.0 

A. mystaceus museum-female (n = 86) 113.5 1.8 

   

O. insectifera herbarium (n = 114) 99.9 1.0 
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Figure 4-5. Relationship between flight date of Andrena nigroaenea (days after 1 

March) and mean spring temperature from museum specimens. (a) males v. mean 

February-April temperature, 1893-2004 (y = 122.8 – 9.168x, r
2
 = 0.157, P < 0.0001, n 

= 208); (b) females v. mean March-May temperature, 1900-2007 (y = 202.3 – 15.64x, 

r
2
 = 0.167, P < 0.0001, n = 149). 
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4.3.3 The Ophrys insectifera-Argogorytes mystaceus pollination system  

The data for flowering time in Ophrys insectifera derived from the herbarium records 

collected between 1835 and 1970 were highly correlated with mean spring 

temperature. A 1°C increase in mean temperature between March and May was 

associated with an advance in flowering time of 4.4 days (Fig. 4-6a) and the regression 

accounted for 10.9 % of the variation in flowering time.  

There were similar responses in the flying time of Argogorytes mystaceus to spring 

temperature in both the BWARS field data and that from museum specimens, 

notwithstanding the different eras over which these sets of data were collected. For 

field observations, a 1°C increase in mean spring temperature (March-May) was 

associated with an advance in flight date of 5.8 days, with the regression accounting 

for 6.7% of the variation in flight date (Fig. 4-6b), compared with an advance of 7.4 

days and a regression accounting for 10.5% of the variation based on museum records 

(Fig. 4-6c). The regression models derived from field observation and museum 

collections were statistically indistinguishable (slopes, F1,782  = 0.533, P = 0.466; 

intercepts F1,783  = 1.5908, P = 0.208). Furthermore, the slopes of the regressions of 

flowering date for O. insectifera and flight date for A. mystaceus on spring (March-

May) temperature derived from field observations, were not significantly different 

(F1,767  = 0.4389, P = 0.508). However, the difference between the intercepts was 

significant (F1,768  = 41.04, P < 0.001) presumably reflecting the geographical 

variation in collection sites. In this case there was no difference in the phenological 

response of males and females to mean (March-May) temperature (F1,125  = 0.4373, P 

= 0.51) indicating a common phenological response for flying date in both sexes to 

mean spring temperature between males and females. The difference between the 

intercepts was significant (F1,126  = 40.6388, P < 0.001), and was reflected in the 

difference in mean flight date between the sexes of 18.44 ±2.67 days; mean date (days 

from 1 March) of male flight was 95.1 ± 2.0, compared to mean flight of females of 

113.5 ± 1.8 (Table 4-4). 
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Figure 4-6. (a) Relationship between flowering date of O. insectifera (days after 1 

March) and mean spring (March – May) temperature from herbarium data, 1835-1970 

(y = 136.3 – 4.434x, r
2
 = 0.109, P < 0.001, n = 114); (b): Relationship between flight 

date of A. mystaceus and mean spring temperature for BWARS data, 1891-2010 (y 

=159.1 – 5.833x, r
2
 = 0.066, P < 0.0001, n = 657); (c) Relationship between flight date 

of A. mystaceus and mean spring temperature from museum data; female, ○; male, ●; 

1879-2006 (y =170.6 – 7.432x, r
2
 = 0.105, P < 0.001, n = 129). 
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4.3.4 Correspondence between flying date of Andrena nigroaenea and flowering date 

of Ophrys sphegodes. 

As flowering of O. sphegodes and flight activity of males of A. nigroaenea were best 

correlated with mean temperature over different periods of the spring, direct 

comparison of the phenological responses of male and female bees and the orchid was 

difficult. Museum and herbarium records were relatively sparsely distributed over time 

so that there were few years containing data for all three phenological events; orchid 

flowering, and flight of male and female bees. Consequently flowering time was 

predicted for each year using the regression model derived from the combined 

herbarium and field records for O. sphegodes and this was compared, using the 

museum records, with actual flying dates of male and female bees. In the 62 years in 

which males were collected, the proportion of years in which the mean collection date 

of male bees preceded the predicted flowering date increased with increasing mean 

March-May temperature between 7.1-9.9°C (Fig. 4-7a). A single year in which mean 

spring temperature was less than 7°C and two years in which it was greater than 10°C 

have been excluded because of the scarcity of data in these classes.  

In the 43 years in which both males and females were collected, the proportion of 

females in all bees collected on or before predicted flowering date increased with 

increasing mean March-May temperature between 7.4-9.6°C (Fig. 4-7b). A single year 

in which mean spring temperature was less than 6°C and one year in which it was 

greater than 10°C have been excluded because of the scarcity of data  

In the 38 years in which males or females were collected before predicted flowering 

date the fraction of years in which females were collected showed an even more 

striking increase with temperature (Fig. 4-7c). 

Similar comparisons between the phenology of O.insectifera and males and females of 

A. mystaceus were not possible because of the limited number of years in which males 

and females were in flight. 
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Figure 4-7. Effects of mean spring (March-May) temperature on flight date of A. 

nigroeanea relative to predicted flowering of O. sphegodes: (a) proportion of years in 

which the mean collection date of males was on or before predicted flowering date, 

based on 62 years in which males were collected; (b) proportion of females in 

collections on or before predicted flowering date in 43 years in which both males and 

females were collected; (c) proportion of years in which females flew on or before 

predicted flowering date in 38 years in which either males or females were collected 

on or before predicted flowering date. Symbols: (n) = number of years of observation 

(a, c); or number of observations (b). 
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4.4 Discussion 

The phenological response of Ophrys sphegodes to spring temperature detected in 

herbarium specimens collected over a period of 111 years has previously been 

validated by its close agreement with that derived from direct recordings of mean 

flowering date over a period of 32 years (Robbirt et al. 2011) (Chapter 2). Combining 

herbarium and field records into a single dataset spanning a period of 159 years 

provided a robust model for O. sphegodes with an estimated advance in peak flowering 

per 1°C rise in mean spring temperature of 6.4 days. 

It is likely that the similar response of O. insectifera seen in the herbarium material 

over a 136-year period is equally valid: the estimated advance in peak flowering date 

per 1°C rise in mean spring temperature of 4.4 days was identical with the mean 

advance in first flowering date per 1°C rise in mean spring temperature averaged 

across 243 species at a single locality in Oxfordshire, England (Fitter et al. 1995). Both 

orchid species fall within the range of 2 to 10 days advance in mean flowering seen for 

24 species across the UK per 1°C rise in temperature (Sparks, Jeffree & Jeffree 2000).  

The extensive field data provided by members of BWARS, mostly observed between 

1970 and 2010, showed a significant trend toward advancement in flying date in 

relation to mean spring (March-May) temperature: 7.4 days per 1°C for Andrena 

nigroaenea and 5.8 days for Argogorytes mystaceus. Whilst other meteorological 

factors such as sunshine hours and precipitation undoubtedly influence the collection 

and observation of insects, the effect of temperature gave a clearly discernible 

phenological signal for both species in this study. There are few prior studies for 

Hymenoptera, but Bartomeus et al. (2011) recently reported an average advance of 3.6 

days per 1°C rise in April temperature for 10 common bee species in North America. 

For the honey bee Apis mellifera, mean first appearance date in the Iberian Peninsula 

has advanced significantly with rising mean spring February-April temperature, since 

1970 (Gordo & Sanz 2006). Young of most solitary bees, including A. nigroaenea 

overwinter as pupae in underground nests, emerging as young adults in the spring 

(Baldock 2008), and therefore emergence and flight date would be expected to be 

sensitive to temperature.  
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Comparison of these field-based observations with data derived from museum 

specimens over a longer time span provided validation for using museum records: 

neither the estimated advance in flight date derived from museum specimens of 11.5 

days for A. nigroaenea, nor 7.4 days for A. mystaceus, were significantly different to 

the observation data. This was the case despite the two sets of data being dissimilar in 

geographic range, contrasting in length and of separate time periods. 

Museum data for both A. nigroaenea and A. mystaceus was marginally more sensitive 

to spring temperature than BWARS field data, although for neither species were the 

differences significant. The ability to determine the sex of museum specimens was 

important since only the males serve as pollinators, whilst the females are stronger 

competitors than the flowers in attracting the copulatory attentions of the males. In the 

museum records for A. nigroaenea the earlier average flight date of males over females 

of c.4 days was as expected (Eickwort & Ginsberg 1980). Average flight date of males 

was more sensitive to temperature earlier in the year than for females: male flight date 

was significantly associated with temperatures from January whilst females were 

associated with mean monthly temperatures from February onwards. Even so, females 

responded more strongly (15.6 days per 1°C) to mean March-May temperature than 

the males (9.2 days per 1°C) to mean February-April temperatures; the seasonal 

periods of highest significance for females and males respectively.  

The museum data for the wasp A. mystaceus gave an earlier average flight date for 

females over males of c.18 days, which was considerably greater than anticipated. The 

museum data for A. mystaceus was derived from a much smaller set of records than 

that for A. nigroaenea, and given the low signal to noise ratio in both datasets, 

geographical range across which the insects were collected, and relatively long flight 

period of females, the dataset for A. mystaceus may have been too small to generate a 

firm phenological signal for each sex separately. In contrast to the findings for A. 

nigroaenea, there was no significant difference between phenological responses of 

flying time in the males and females of the wasp. 

The pollination systems of O. sphegodes and O. insectifera are highly specific; flowers 

achieve cross pollination by attracting newly emerged males of A. nigroaenea (Ayasse 
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et al. 2000; Schiestl et al. 2000; Paxton & Tengö 2001; Mant, Peakall & Schiestl 

2005) and A. mystaceus (Borg-Karlson 1990; van der Cingel 1995) respectively, using 

chemical and visual cues. The phenology of the male bees is therefore important both 

in relation to flowering time and to the phenology of the female bees, representing a 

rival attraction for the attention of males (Nilsson 1992). The findings of this study 

demonstrate the close proximity understood between flowering and flight activity. 

These results also support the scenario of competition between orchid flowers and 

females; mean date of female flight (73 days from 1 March) and orchid flowering (77 

days from 1 March) are not significantly different, whilst male flight (69 days from 1 

March) is significantly earlier than flowering. 

Potentially disruptive effects on species interactions may occur if there are significant  

differences in responses of individual species to climate warming (Memmot et al. 

2007; Willis et al. 2008; Thackeray et al. 2010; Bartomeus et al. 2011; Rafferty & Ives 

2011) especially for highly specific pollination systems as seen in Ophrys. For the O. 

insectifera - A. mystaceus pollination model there was no indication that asynchrony 

may occur with climate warming. In contrast, comparing the phenological responses of 

A. nigroaenea and O. sphegodes to mean spring temperature suggests that there is 

potential for disruption of synchrony between plant and pollinator with further rises in 

spring temperature. The probability of both males and females flying earlier than 

predicted peak flowering of O. sphegodes rose with increasing mean spring 

temperature, suggesting that flight of males will advance faster than the advance in 

flowering. Therefore the availability of male bees as pollinators, already limited 

(Ayasse et al. 2000), is likely to decline with climate warming.  

Limited knowledge has been accumulated toward understanding how climate warming 

affects plant-pollinator interactions (Hegland et al. 2009) and there are few prior 

studies. Of these, Gordo & Sanz (2005) found advancing spring phenologies of the 

honey bee (Apis mellifera) and the small white butterfly (Pieris rapae) relative to host 

plants, whilst Kudo et al. (2004) found insect phenology to be more muted in response 

to temperature than flowering phenology of the host plant. A recent study suggested 

that on average bee flight phenology is advancing in line with flowering of host plants 

(Bartomeus et al. 2011). It is apparent from the few studies to date that further research 
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of closely associated phenological relationships would be valuable. Even so, 

predictions of future phenologies beyond modest temperature ranges should be 

cautious: linear relationships between flowering and flight phenologies and measures 

of temperature seen in this study and others (Sparks, Jeffree & Jeffree 2000; 

Stefanescu, Penuelas & Filella 2003; Bartomeus et al. 2011) , may be expected to 

deviate eventually due to the influence of other constraining factors (Hegland et al. 

2009), such as photoperiod requirements.  

In conclusion, this research uses long-term empirical data derived from museum and 

herbarium specimens to investigate the relative phenologies of two sexually deceptive 

orchids, Ophrys sphegodes and O. insectifera and their respective pollinators; the 

aculeate Hymenoptera Andrena nigroaenea and Argogorytes mystaceus. The value of 

museum data as proxy for field study is affirmed by evaluation of results derived 

independently from historical museum specimens and from more recent field-based 

observational records, for both pollinator species. Results of this research suggest that, 

whilst the potential for asynchrony in ecological interactions due to climate change are 

complex and difficult to predict, there is evident potential for loss of synchrony in 

tightly co-evolved systems, as described here between the sexually deceptive orchid O. 

sphegodes and its Hymenoptera pollinator A. nigroaenea. 
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Chapter 5 

Orchid-butterfly relationships: an evaluation of the potential for 

plant-pollinator asynchrony under climate warming 

Summary 

1. This study uses long-term data from herbaria and museum collections to examine 

the potential for asynchrony under climate warming, between selected British orchids 

and the univoltine Lepidoptera that pollinate them.  

2. Herbarium data for Anacamptis pyramidalis recorded in the UK between 1830 and 

1980 were compared to museum data of Euclidia glyphica recorded between 1887 and 

1972, and to field data for E. glyphica recorded between 1956 and 2010. Phenological 

responses of flowering and of flight to variation in mean temperatures for the three-

month period March-May were statistically alike. A 1°C rise in mean (March-May) 

temperature was associated with an advance in flowering of c. 7.1 days. Using 

combined museum and field data of E. glyphica, a 1°C rise in mean (March-May) 

temperature was associated with an advance in flight of 5.8 days. Similar results were 

found in responses to mean temperature for the three-month period April to June. A 

1°C rise in mean (April-June) temperature was associated with an advance in 

flowering of c. 11.3 days and an advance in flight of 7.8 days.  

3. Museum data of Melanargia galathea collected in the UK between 1890 and 1998 

were compared to herbarium data of Anacamptis pyramidalis recorded between 1830 

and 1980. Phenological responses of flowering and of flight to variation in mean 

temperatures for the 3-month period June to August were statistically different. A 1°C 

rise in mean (June-August) temperature was associated with an advance in flowering 

of c. 8.5 days and an advance in flight of 4.3 days. 

4. Museum data of Deilephila elpenor recorded in the UK between 1893 and 1992 

were compared to field data recorded at Wicken Fen, Cambridgeshire between 1899 

and 2009, and to herbarium data of Platanthera bifolia recorded between 1852 and 

1965 and to Platanthera chlorantha recorded in the UK between 1835 and 1962. 

Phenological responses of flowering of P. bifolia and of flight of D. elpenor to 

variation in mean temperatures for the 3-month period March to May were statistically 
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indistinguishable. A 1°C rise in mean (March-May) temperature was associated with 

an advance in flowering of 5.8 days and an advance in flight of c. 5.3 days. Similarly 

phenological response for flowering of Platanthera chlorantha and flight of D. elpenor 

were analogous. For P. chlorantha a 1°C rise in mean (March-May) temperature was 

associated with an advance in flowering of c. 4.7 days.  

5. These results suggest that under current rates of climate warming in the UK, flight 

phenologies of Lepidopteran pollinators may remain in synchrony with flowering 

phenologies of their associated early summer-flowering orchids. Even so, earlier 

flowering of the mid-summer-flowering orchid Anacamptis pyramidalis suggest that 

there is the potential for asynchrony between its flowering phenology and the flight 

phenology of what is a proxy for mid-summer pollinators (Melanargia galathea).  
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5.1 Introduction 

Timing of seasonal events is closely linked to temperature. Sensitivity to climate may 

not only differ between trophic levels (Voigt et al. 2003), but species may respond to 

different climatic cues (Doi, Gordo & Katano 2008) leading to a breakdown in 

synchronicity (McCarty 2001; Stenseth & Mysterud 2002; Stenseth et al. 2002; Dixon 

2003). Insects often exhibit complex life histories, evolved to stay in synchrony with 

key seasonal events (Hodgson et al. 2011), and their phenologies respond to specific 

cues, such as temperature and day-length (Bale et al. 2002). It is recognised that a 

detailed knowledge of phenological relationships at species level are needed toward an 

understanding of the community consequences of climate-driven phenological shifts 

(Nakazawa & Doi 2012).  

Insects are poikilothermic and temperature is the dominant abiotic factor in insect 

development and activity (Bale et al. 2002; O'Neill et al. 2012). Photoperiod is also a 

significant factor and its interaction with temperature is not well understood (Bale et 

al. 2002). Forecasts of insect phenology are sometimes based on preceding 

temperatures, such as accumulated temperature and achievement of accumulated 

threshold values of ‘day-degrees’(Dewar & Watt 1992; Watt & McFarlane 2002) and 

similarly, growing degree days above a threshold temperature (Hodgson et al. 2011). It 

is interesting that some studies have shown differences between insect development 

rates in the field and in the laboratory (Fielding et al. 1999; Bale et al. 2002) and 

Lepidoptera larvae are reported to be able to adapt their behaviour in order to influence 

their thermal environment (Bryant, Thomas & Bale 2000; Bale et al. 2002). 

Breakdown in synchronicities between plants and insects may be expected where there 

are differences in sensitivities to temperature change above thermal development 

thresholds, or chilling requirements, or where photoperiod requirements exist (Watt & 

McFarlane 2002). Mismatch of phenophases associated with climate warming have 

been reported for primary producers and associated herbivores with negative impact on 

population abundance (Watt & McFarlane 1991; Watt & Woiwod 1999; Visser & 

Holleman 2001; Winder & Schindler 2004). Phenological changes have been shown to 

affect synchrony of larvae and host plant (Watt & McFarlane 1991; Watt & Woiwod 

1999) with negative consequences for insect abundance. Conversely climate warming 
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may positively influence abundance if additional broods are achieved in warm years 

(Woiwod 1997) or when distribution range is shifted or expanded (Pollard, Moss & 

Yates 1995; Parmesan 1996).  

Changes in phenology associated with climate warming have been demonstrated for 

plant species (Fitter et al. 1995; Menzel et al. 2006) including temperate orchids 

(Robbirt et al. 2011; Molnár et al. 2012), and for Lepidoptera (Brakefield 1987; Sparks 

& Yates 1997; Stefanescu, Penuelas & Filella 2003; Dingemanse & Kalkman 2008; 

Hodgson et al. 2011; O'Neill et al. 2012). For Lepidoptera earlier first flight dates and 

longer flight periods are both associated with increased temperatures (Roy & Sparks 

2000; Forister & Shapiro 2003; Westwood & Blair 2010). 

Due to the small number of empirical studies, limited knowledge has been 

accumulated toward understanding how climate warming affects plant-pollinator 

mutualisms (Hegland et al. 2009) or their demographic consequences. Given the 

variation in species response, some studies have reported mismatch in phenophases 

(Kudo et al. 2004) whilst others report parallel temporal responses (Bartomeus et al. 

2011). Simulations have demonstrated the vulnerability of plant-pollinator networks to 

climate warming (Memmot et al. 2007) particularly for specialised pollinators, 

although there is suggestion that multi-species plant-pollinator networks may be 

sufficiently robust to withstand phenological adjustment arising from climate change 

(Hegland et al. 2009). As illustration of this, Petanidou et al. (2008) found that where 

fidelity is low, phenological asynchrony may provide the opportunity for fresh plant-

pollinator relationships. Depending on the current level of synchrony, climate change 

may provide convergent forces for some species (Parmesan 2007). Nevertheless, the 

vulnerability of plant-pollinator relationships to phenological mismatch depends on the 

starting point, and species that are not currently well adapted to their habitat may be 

vulnerable to small changes in synchrony (Parmesan 2007). In a recent meta-analysis, 

however, the advancement in first flight of butterflies was 3-fold greater than first 

flowering of plants (Parmesan 2007). 

A number of British orchid species rely on Lepidoptera for pollination. These include 

rewarding (Platanthera bifolia, P. chlorantha, Gymnadenia conopsea, G. densiflora 

and G. borealis,) and non-rewarding (Anacamptis pyramidalis) species. Pollinators 
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comprise day flying butterflies as well as day and dusk or night flying moths. Spur 

length or fragrance may determine the suite of pollinators for each species.  

Few published data currently exists of the relative phenologies of plants and 

pollinators, and none is available for temperate orchid species. Long-term datasets on 

the phenology of invertebrates are scarce (Roy & Sparks 2000) due in part to the 

extensive resources required to collect such records (Woiwod 1997) and the general 

preference for short-term experimental data (Woiwod 1991).In the UK much of the 

monitoring effort has been focused on agricultural pests (Fleming & Tatchell 1995; 

Zhou et al. 1995), and whilst citizen-science databases are valuable there can be 

drawbacks, such as inconsistencies in observer knowledge (O'Neill et al. 2012).  

Even the high profile and relatively well studied Lepidoptera lack extensive data to 

enable phenological effects to be routinely assessed (Woiwod 1997). Since 1976, 

however, the Butterfly Monitoring Scheme (BMS) has accumulated a substantial 

amount of observational data on butterflies in the UK, most of which is collated from 

amateur observation. Yet long-term collections held in museums such as the Natural 

History Museum (BM), London, represent a valuable, largely unrecognised, resource 

for phenological studies. The aim of this research was to utilise museum collections of 

Lepidoptera to evaluate the potential for asynchrony between selected orchids and their 

pollinators. Specific relationships examined were between Anacamptis pyramidalis 

and two of its potential pollinators Euclidia glyphica and Melanargia galathea.  The 

relationships between Platanthera bifolia and P. chlorantha and an important 

pollinator of both orchid species Deilephilor elpenor were also examined. The specific 

hypotheses were that i) peak flight would be advanced by warmer spring and summer 

temperatures ii) the relationship between peak flight and temperature would be the 

same in data derived from museum collections and field based records iii) using 

museum collections flight phenology of pollinating butterfly and moth species could 

be critically compared to flowering phenology of associated orchids. 

 

5.2. Methods 

5.2.1 The study species 

5.2.1.1 Euclidia glyphica (L.) Burnet Companion 
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A member of the family Noctuidae, sub-family Catocalinae, Euclidia glyphica is one 

of the few diurnal moths species native to Britain (Fig. 5-1d), and is often seen in the 

company of Zygaena spp. (Burnet moth) and Callistege mi (Mother Shipton), both of 

which are also diurnal. The wingspan of E. glyphica is typically 25 to 30mm (Novák 

1980), and the distinct appearance of the species is marked by the orange-yellow hind-

wings combined with the warm brown forewings Whilst it is common in central and 

southern England sightings become much more restricted in Wales, northern England, 

southern Scotland and Ireland, and it is scarce on the Channel Islands (Waring & 

Townsend 2009). Favoured habitats are open wood, meadows, pasture downland, and 

sometimes along roadside verges and embankments. The larvae feed during late June 

to August, and overwinter as pupae. Favoured larval foodplants include Trifolium 

pratense (L.) (Red Clover), Trifolium repens (L.) (White Clover), Lotus corniculatus 

(L.) (Common Birds-foot-trefoil), Medicago lupulina (L.) (Black Medick), M. s. ssp. 

sativa (Lucerne) and Vicia cracca (L.) (Tufted Vetch) (Waring & Townsend 2009). In 

Central Europe there are sometimes two broods flying between April and August 

(Novák 1980), but in Britain there is a single generation emerging between May and 

June, flying between May and July (Waring & Townsend 2009). Reported flight 

activity for this species is most frequent in sunshine and warm overcast weather 

(Waring & Townsend 2009). In Britain E. glyphica is a known pollinator of 

Anacamptis pyramidalis (Darwin 1877; van der Pijl & Dodson 1966). 

5.2.1.2 Deilephila elpenor (L.) Elephant Hawkmoth 

A member of the Sphingidae family, Deilephila elpenor is one of the more common 

European hawkmoth species (Fig. 5-1c). Although widespread in Europe it is largely 

absent from northernmost regions but extends eastward into Asia and Japan, and has 

been recorded in mountain regions at elevations up to 1500m (Novák 1980). Wingspan 

is typically 45 to 60 mm. Sexes have similar markings: the olive green forewing and 

thorax have distinct pink patterning. Associated habitats include rough grassland, 

hedgerows, woodland clearings, heathland and sand dunes. Larvae overwinter as 

pupae, usually hidden amongst floor litter. The willowherbs, Epilobium hirsutum L. 

(Great Willowherb) and Chamerion angustifolium L. (Rosebay Willowherb), are 

primary sources of food for the larvae during late summer (Novák 1980) as well as  
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(a) (b) 

  

  

(c) (d) 

  

 © Ian Kimber 
 

© Edwin Barber 
 

Figure 5-1.Wicken Fen (a,b) National Nature Reserve, Cambridgeshire (TL 562705) 

11 July 2012, a protected fenland habitat and source of field-based observation data 

between 1970 and 2009 for (c) Deilephila elpenor (Elephant Hawkmoth); image of (d) 

Euclidia glyphica (Burnet Companion) 

 

species of Galium, and other plants (Waring & Townsend 2009). It is widespread and 

relatively common across England, Wales and Ireland. Whilst less frequent in 

Scotland, it has increased its range northward in recent years (Waring & Townsend 

2009). The species is single brooded in Britain with a flight period between May and 

early August (Waring & Townsend 2009). In Europe a second brood is sometimes 

seen in August and September (Novák 1980), and in recent years a small number of 

fresh adults have also been recorded during the late summer in southern and central 

England (Waring & Townsend 2009).  
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5.2.1.3 Melanargia galathea (L.) Marbled White 

Melanargia galathea is a member of the butterfly family Satyrinea. This species is 

distributed across areas of central Europe, but is absent from Portugal, most of Spain, 

the Mediterranean islands, and Scandinavia. It is also present in northern Africa. In 

Britain this species is primarily confined to southern and south-western counties of 

England. Here it can be locally common with extensive colonies sometime comprising 

several hundred individuals. Scattered colonies exist in Yorkshire, south Wales and 

central England. However the butterfly's range has contracted greatly, thought to be 

due chiefly to loss of habitat. It is entirely absent from Scotland, Ireland, Isle of Man 

and the Channel Islands (Asher et al. 2001). 

The species favours areas of unimproved species-rich chalk grassland which may form 

a relatively tall pasture, depending on grazing or cutting regimes. There is a single 

generation each year across its range. Adults emerge in mid June, reaching a peak in 

mid-July, and staying on the wing into August (Asher et al. 2001). Males and females 

can be easily distinguishes by the colour of the underside of the wing: males have dark, 

almost black, veining whilst females have veining of a light brown colour. The female 

releases her eggs in August and the emergent larvae almost immediately enter 

hibernation typically amongst Festuca rubra, a favoured food source of the larvae 

(Asher et al. 2001). Emerging in spring the instars feed at night prior to pupation, 

which lasts around three weeks. Adults demonstrate a marked preference for purple 

flowers, including Thistles (Cirsium spp. and Carduus spp.), Wild Marjoram 

(Origanum vulgare), Field Scabious (Knautia arvensis) and Knapweeds (Centaurea 

spp.) (Asher et al. 2001). Their preferred habitat of well-drained species-rich 

calcareous grassland is also associated with many British orchids. Sightings of 

Melanargia galathea visiting Anacamptis pyramidalis (Fig. 5 -2a) and Gymnadenia 

conopsea (Fig. 5-2b) indicate that this butterfly may be a pollinator species for these 

summer-flowering orchid species. 
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 © Derek Harper 
 

 

 

Figure 5-2. Images of (a) Melanargia galathea on Anacamptis pyramidalis on 6 July 

2008, at Barton, Torbay, UK (decimal latitude 50.48925, decimal longitude -3.54877), 

and (b) Melanargia galathea on Gymnadenia conopsea 7 July 2009, Rosière, France. 

5.2.1.4 Anacamptis pyramidalis (L.) Rich. Pyramidal orchid 

Chapter 3, section 3.2.2.2.2 provides a full description of Anacamptis pyramidalis and 

an account of the pollination system. 

5.2.1.5 Platanthera chlorantha (Custer) Rchb. (syn. Gymnadenia chlorantha (Custer) 

Ambrosi, Habenaria chlorantha (Custer) Bab., Orchis chlorantha Custer) Greater 

Butterfly Orchid 

Chapter 3, section 3.2.2.3.2 provides a full description of Platanthera chlorantha and 

an account of the pollination system. 

5.2.1.6 Platanthera bifolia (L.).Rich. (syn. Gymnadenia bifolia (L.) G Mey, Habenaria 

bifolia (L.) R. Br., Orchis bifolia L.) Lesser Butterfly Orchid 

Chapter 3, section 3.2.2.3.3 provides a full description of Platanthera bifolia and an 

account of the pollination system. 
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5.2.2 Herbarium data 

Herbarium specimens held at the Royal Botanic Gardens, Kew (K) and at the Natural 

History Museum (BM) were examined for the three orchid species in this study. 

Specimens spanned a collection period of 151 years between 1830 and 1980. 

A general description of the treatment of the herbarium specimens can be found in 

Chapter 3, Section 3.2.1.  

5.2.2.1 Anacamptis pyramidalis 

Chapter 3, Section 3.2.1 and Table 3-3 provides a summary of the records derived 

from herbarium specimens at Kew and the Natural History Museum, London. The 

final data set comprised 151 specimens (BM, 84 specimens) and Royal Botanic 

Gardens, Kew (K, 67 specimens),  providing at least one data point for each of 75 

years, spanning a 151-year period from 1830 to 1980 (Table 3-5).  

5.2.2.2 Platanthera bifolia 

Chapter 3, Section 3.2.1 and Table 3-3 provides a summary of the records derived 

from herbarium specimens at Kew and the Natural History Museum, London. The 

final data set comprised 110 specimens (BM, 69 specimens) and Royal Botanic 

Gardens, Kew (K, 41 specimens) providing at least one data point for each of 61 years, 

spanning a 114-year period from 1852 to 1965 (Table 3-5).  

5.2.2.3 Platanthera chlorantha 

Chapter 3, Section 3.2.1 and Table 3-3 provides a summary of the records derived 

from herbarium specimens at Kew and the Natural History Museum, London. The 

final data set comprised 109 specimens (BM, 54 specimens) and Royal Botanic 

Gardens, Kew (K, 55 specimens) providing at least one data point for each of 65 years, 

spanning a 128-year period from 1835 to 1962 (Table 3-5).  
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Table 5-1. Correlations between temperature, precipitation, latitude, longitude and 

flight date for the museum and observation data of Euclidia glyphica. Correlations are 

shown with mean temperatures for 3-monthly periods and individual months in the 

same year as flight (January- August).  

 Euclidia glyphica 
 Museum 

(1887-1972)  
NBN 

(1956 -2010) 
Combined 

(1887-2010) 
 n = 83 n = 141 n = 224  

Period of temperature mean:    
August - - - 
July     -0.158      -0.040      -0.067 
June     -0.262**      -0.117  -0.169** 
May    -0.422**(2)     -0.260**(1)      -0.303**(1) 
April -0.232*(3)     -0.138  -0.167** 
March      0.081     -0.228**      -0.097 
February      0.035     -0.206**      -0.080 
January      0.167     -0.155*      -0.008 
    
3 month means:    
 April - June  -0.443** -0.269** -0.310** 
March - May     -0.245* -0.311** -0.261** 
December y  -February      0.122 -0.248**     -0.068 
    
Period of precipitation 
mean 

   

May      0.022     -0.092      -0.047 
April      0.248*      0.103(2)     0.140*(2) 
March    -0.038      0.063(3)  0.018(3) 
February      0.063      0.030       0.045 
January    -0.123    -0.062      -0.085 
    
3 month means:    
March - May     0.116      0.058       0.080 
    
decimal latitude    -0.058    -0.126     -0.091 
decimal longitude     0.456**(1)    -0.045      0.084 

Significance: **P <0.01; * P <0.05 (one-tailed), Symbols: Y = prior year; 
 (1) (2) (3)  = order in stepwise (forward) regression   
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Table 5-2. Correlations between temperature, precipitation, latitude, longitude and 

flight date for the museum data for Melanargia galathea. Correlations are shown with 

mean temperatures for 3-monthly periods and individual months in the same year as 

flight (January- August).  

 Melanargia galathea 
 Combined  

 (1890-1998) 
Male 

(1890 -1998) 
Female 

(1892-1979) 
 n = 161 n = 94 n = 67  

Period of temperature mean:    
August -0.173* -0.146 -0.170 
July (1) -0.232** (2) -0.257** -0.154 
June -0.140* -0.139 -0.134 
May (3) -0.086 -0.033 -0.197 
April -0.097 -0.163 0.059 
March -0.056 -0.142 0.086 
February -0.031 -0.028 -0.033 
January -0.029 0.028 -0.096 
    
3 month means:    
 June - August -0.248** -0.247** -0.207* 
March - May -0.129 -0.183* -0.016 
December y  -February -0.006 0.020 0.001 
    
Period of precipitation 
mean 

   

May 0.101 0.095 0.118 
April 0.041 -0.025 0.166 
March (2) 0.162* 0.201* 0.059 
February 0.011 -0.063 0.138 
January -0.073 0.009 -0.199 
    
3 month means:    
March - May 0.191** 0.181* 0.175 
December y  -February -0.045 -0.019 -0.064 
    
decimal latitude  0.196** (1) 0.262** 0.108 
decimal longitude  -0.007 -0.006 0.112 

 
Significance: **P <0.01; * P <0.05 (one-tailed), Symbols: Y = prior year;  
(1) (2) (3)  = order in stepwise (forward) regression   
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Table 5-3. Correlations between temperature, precipitation, latitude, longitude and 

flight date for the museum and observation data for Deilephila elpenor. Correlations 

are shown with mean temperatures for 3-monthly periods and individual months in the 

same year as flight (January- August).  

 

 D.elpenor 
  Museum 

 (BM)  
(1893-1992) 

Observation 
(Wicken Fen) 
(1899-2009) 

 n = 45  n =102 

Period of temperature 
mean: 

  

July  0.079  0.117 
June -0.137 -0.153 
May       -0.300*(1) -0.041 
April -0.088 -0.012 
March -0.139        -0.209* (1) 
February  0.119 -0.081 
January -0.079  0.022 
   
3 month means:   
March - May  -0.287* -0.149 
December Y– February 0.078 -0.049 
   
Period of precipitation 
mean: 

  

May  0.103   0.093 
April  0.085 -0.134 
March -0.202 -0.004 
February -0.035   0.017 
January -0.197     0.179* 
   
3 month means:   
March - May -0.070 -0.044 
   
decimal latitude  -0.013 - 
decimal longitude     -0.290* - 

Significance: **P<0.01; *P<0.05 (one-tailed);  

Symbols: 
Y
 = prior year: 

(1) 
= order in stepwise forward regression 
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5.2.3 Museum data 

5.2.3.1 Euclidia glyphica 

All 442 specimens of Euclidia glyphica collected in Britain and held at the Natural 

History Museum, London were examined. One hundred and sixty specimens had tags 

which were accessible and legible. Four specimens were collected in Ireland, and 5 

originated in Wales: these were discarded. The remaining 151 were collected in 

England and for these specimens location, vice county, and collectors were recorded. 

Specimens with incomplete collection date were discarded. Forty five percent of the 

151 tagged specimens were rejected; 30 were imprecisely dated (only the month or 

year), 3 specimens did not have a clear location, 34 specimens were duplicates 

collected on the same and at the same location by a single collector and one specimen 

was marked as bred. The final data set comprised 83 specimens providing at least one 

data point for each of 45 years, spanning an 86-year period from 1887 to 1972 (Table 

5-1). Peaks of collection activity were evident during the 1890s and again during the 

1940s (Fig. 5-3a). 

5.2.3.2 Melanargia galathea 

All 676 specimens of Melanargia galathea collected in Britain and held at the Natural 

History Museum, London were examined. Two hundred and seventy nine specimens 

had tags which were accessible and legible. All of these specimens were collected in 

England, mainly from southern and central vice counties. For these specimens 

location, vice county, and collectors were recorded. Specimens with incomplete 

collection date were discarded. Forty one percent of the 279 tagged specimens were 

rejected; 27 were imprecisely dated (only the month or year), 11 specimens did not 

have a clear location, and 80 specimens were duplicates collected on the same and at 

the same location by a single collector. The final data set comprised 161 specimens (94 

male, 67 female) providing at least one data point for each of 61years, spanning a 109-

year period from 1890 to 1998 (Table 5-2). 

5.2.3.3 Deilephila elpenor 

All specimens of Deilephila elpenor collected in England and held at the Natural 

History Museum, London were examined. 80 specimens had tags which were 
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accessible and legible. Location, vice county, and collector were recorded. Specimens 

with incomplete collection date were discarded. Forty four percent of the 80 tagged 

specimens were rejected: 20 were imprecisely dated (only the month or year), one 

specimen, though dated, did not have a clear location, 8 specimens were duplicates 

collected on the same and at the same location by a single collector and 6 specimens 

were marked as bred and were not used. The final data set comprised 45 specimens 

providing at least one data point for each of 30 years, spanning a 100-year period from 

1893 to 1992 (Table 5-3),(Fig. 5-3b). 

5.2.4 National Biodiversity Network (NBN) data for Euclidia glyphica. 

Field observation data for Euclidia glyphica was accessed via the NBN website 

http://data.nbn.org.uk/interactive/map.jsp?srchSp=MM0001Z100DH5JN1 

Six hundred and forty nine observation records were examined. Seventy eight percent 

of the records were discarded; 442 were not adequately dated, giving only the month, 

year or year range; 65 records were duplicates collected on the same date and at the 

same location by a single collector, and one record was dated in November, well 

beyond the accepted period of flight activity and almost certainly an error. The final 

data set comprised 141 specimens providing at least one data point for each of 35 

years, spanning a 55 year period from 1956 to 2010 (Table 5-1), (Figure 5-3a). 

5.2.5 Wicken Fen, National Nature Reserve Cambridgeshire  

(Grid reference TL 562 705; Latitude 52.310818; Longitude 0.29132301) 

A remaining area of the once extensive Cambridgeshire Fens, the site has been owned 

by the National Trust since 1899 (Fig. 5-1a,b). More than 7800 species have been 

recorded at the reserve, making it one of the most species-rich reserves in the UK. It 

has Site of Special Scientific Interest (SSSI) recognition under the Wildlife and 

Countryside Act 1981, has been accorded Wetland protected under the international 

Ramsar Convention and designated a Special Area of Conservation under the EU 

Habitats Directive http://www.wicken.org.uk/index.html. 

Observation data for Deilephila elpenor recorded at Wicken Fen was accessed via the 

National Biodiversity Network (NBN) website 

http://data.nbn.org.uk/interactive/info.jsp?srchSp=24848. 

http://data.nbn.org.uk/interactive/map.jsp?srchSp=MM0001Z100DH5JN1
http://www.wicken.org.uk/index.html
http://data.nbn.org.uk/interactive/info.jsp?srchSp=24848
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Figure 5-3. Collection over time of museum specimens and observation data since 

1880 for (a) Euclidia glyphica and (b) Deilephila elpenor.  

Symbols: o = museum data held at the Natural History Museum, London (BM), ▲ 

= observation from the National Biodiversity Network, ● = observation data from 

Wicken Fen, Cambridgeshire (National Trust) 
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All 118 observation records at the site were examined. Fourteen percent of the records 

were discarded; 9 were not adequately dated and a further 7 specimens were duplicates 

collected on the same date and at the same location by a single collector. From the 

collectors’ notes most of the specimens appear to have been collected via overnight 

light trap. The final data set comprised 102 specimens providing at least one data point 

for each of 33 years, spanning a 111-year period from 1899 to 2009. The vast majority 

(97%) of the observations at Wicken Fen, Cambridgeshire were gathered between 

1970 and 2009 (Fig. 5-3b). 

5.2.6 Meteorological data 

5.2.6.1 Central England Temperature  

 Mean monthly Central England Temperature (CET) records for the period 1820-2010 

(Parker et al. 1992) were obtained from the UK Meteorological Office: 

http://www.metoffice.gov.uk/hadobs/hadcet/cetml1659on.dat. Three-month mean 

temperature data was calculated for each year (Winter-December (the prior year), 

January, February; Spring -March, April, May; Early-Summer -April, May, June; Mid-

Summer -June, July, August). 

5.2.6.2 England and Wales Precipitation 

Mean monthly England and Wales’s precipitation figures for the period 1820- 2010 

were obtained from the Met Office website: 

http://www.metoffice.gov.uk/research/hadleycentre/CR_data/Monthly/HadEWP_act.tx

t.  

Mean seasonal precipitation figures were calculated for each year (Winter-December 

(the prior year), January, February; Spring-March, April, May; Mid-Summer-June, 

July, August).  

5.2.6.3 Wicken Fen, Ely, Cambridgeshire - Local Climate Data 

Local temperature and precipitation data, recorded at the National Institute of 

Agricultural Botany (NIAB), Huntington, Cambridgeshire (Latitude 52.221909, 

Longitude 0.096291222) between 1959 and 2011 was available from the Met Office 

website http://www.metoffice.gov.uk/climate/uk/stationdata/cambridgedata.txt. This 

http://www.metoffice.gov.uk/hadobs/hadcet/cetml1659on.dat
http://www.metoffice.gov.uk/research/hadleycentre/CR_data/Monthly/HadEWP_act.txt
http://www.metoffice.gov.uk/research/hadleycentre/CR_data/Monthly/HadEWP_act.txt
http://www.metoffice.gov.uk/climate/uk/stationdata/cambridgedata.txt
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was the closest weather station to Wicken Fen at a distance of c.10 miles. Records 

from this weather station were used to investigate correlations of sighting data of 

Deilephila elpenor (Elephant Hawkmoth) at Wicken Fen between 1970 and 2009 with 

temperature and precipitation variables. Temperature records comprised monthly 

minimum and maximum temperatures. These were used to calculate mean monthly 

temperature. 

5.2.7 Geographical effects 

Chapter 3, Section 3.2.4 provides a description of the method of geo-referencing 

specimens. 

5.2.8 Analysis of museum, herbarium and field data 

The distribution of collection dates in the museum and herbarium datasets (Euclidia 

glyphica, Deilephila elpenor, Anacamptis pyramidalis, Platanthera bifolia and P. 

chlorantha) and the field observation datasets (E. glyphica and D. elpenor) were 

expressed as number of days after 1 March. Datasets were checked for normality and 

presence of outliers. All sets of phenology data were examined for correlations with 

mean CET temperature data from January to July or August in the flowering or flight 

season. Where appropriate these data included mean monthly temperature and its 

averages over successive 3-month periods (Winter-December–February; Spring-, 

March–May; Early-Summer-April-June; Mid-Summer-June-August). 

All sets of phenology data were also examined for correlations with mean precipitation 

data from January to July in the flowering or flight season. These data included mean 

monthly precipitation and its averages over successive 3-month periods (Winter-

December–February; Spring-, March–May). 

Correlations and regression analyses were carried out with SPSS 18 (IBM Corp., 1 

New Orchard Road, Armonk, NY, USA). Median, quartiles and range were calculated 

as described by Sokal & Rohlf (1969) ; slopes and intercepts of regressions were 

compared via analysis of covariance (ANCOVA) (Zar 1984) using GraphPad Prism 

version 5.00 for Windows, GraphPad Software, San Diego California USA, 

www.graphpad.com.  
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5.3 Results  

5.3.1 The Anacamptis pyramidalis-Euclidia glyphica pollination mode 

Data derived from museum specimens over the period from 1887 until 1972, and 

recorded in the field between 1956 and 2010, both confirmed the importance of spring 

temperature in determining flight time of Euclidia glyphica. Significant correlations 

were found between flight date and several measures of mean temperature in the CET 

records in the preceding months (Table 5-1). 

 For museum material, there were significant negative correlations with mean 

temperature in April, May and June of the year of flight and with mean temperature 

over the 3-month periods March to May, and April to June (Table 5-1). The strongest 

correlation was with mean temperature for May. There were also significant positive 

correlation between mean precipitation for April and flight time (Table 5-1). 

Results for the field data were similar; the strongest correlation with a single month 

was with mean temperature for May. Whilst there were significant negative 

correlations between flight date and mean temperature for January, February and 

March (Table 5-1), the highest correlation was with the mean for the 3-month period 

March-May. There was also a significant negative correlation with mean winter 

temperature (December-February) and a significant negative correlation with mean 

EWP for June. The geographic range of collection activity for museum records and for 

field observation was comparable (Table 5-4). Combining the museum and field data 

flagged significant correlations with mean monthly temperatures for April, May and 

June, whilst the strongest correlation was with the mean for the 3-month period April-

June (early summer) (Table 5-1). 

As expected, warmer springs were associated with earlier flight of E. glyphica. The 

regression of flight date obtained from the museum specimens on mean March-May 

(spring) temperature (Fig. 5-5a) accounted for 6% of the variation in flight time. A 1 

°C increase in mean spring temperature was associated with an advance in flight of 5.7 

days. Analysis of the field data yielded comparable results. Linear regression of flight 

date on mean spring temperature accounted for 10% of the variation in flight time (Fig. 

5-5b) and a 1 °C increase in mean spring temperature was associated with an advance 
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in flight of 7.6 days. The regression models derived from the museum data and field 

data were statistically indistinguishable: neither the gradients (F1,220 = 0.3483, P = 

0.556) nor the intercepts (F1,221 = 3.2377, P = 0.073) were significantly different, 

demonstrating that the phenological response to temperature was the same during the 

different periods over which the two sets of data were collected. Combining the 

museum and field datasets the regression of flight date on mean spring temperature 

accounted for 7% of the variation in flight time (Fig. 5-5c) and a 1 °C increase in mean 

spring temperature was associated with an advance in flight of 5.8 days. 

 

Table 5-4. Range of geographic coordinates (latitude and longitude) of museum 

collections and field observation of Euclidia glyphica, Melanargia galathea and 

Deilephila elpenor. BM and NBN records are given as vice county centroids; Wicken 

Fen, Cambridgeshire is given as an exact location. 

 Euclidia  
glyphica 

Melanargia 
galathea 

Deilephila 
 elpenor 

 Museum Observation Museum Museum Observation 

 BM NBN BM BM Wicken Fen 

Decimal latitude:      
Maximum 53.3609 54.7254 54.0322 54.0322 52.3182 
Minimum 50.6039 50.8044 51.0241 50.8522 52.3182 

Range (decimal °) 2.7570 3.9210 3.0081 3.1800 - 

      
Decimal longitude:      
Maximum 1.2979 1.3418 1.5279 1.5777 0.2923 
Minimum -3.6512 -3.0399 -4.0976 -5.0279 0.2923 

Range (decimal °) 4.9491 4.3817 5.6255 6.6056 - 

      

 

Analysis of the herbarium data for Anacamptis pyramidalis yielded similar results. 

Linear regression of flowering date on mean spring temperature accounted for 15% of 

the variation in flowering time (Fig. 5-5d) and a 1 °C increase in mean spring 

temperature was associated with an advance in flowering of 7.1 days. The slopes of the 

regression models derived from the combined museum and field data for E. glyphica 

and the herbarium data for A. pyramidalis were statistically indistinguishable (F1,371 = 

0.3655, P = 0.546), although the differences between the intercepts were significant 

(F1,372 = 301.062, P < 0.001).  
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Figure 5-4. Median, 25 and 75 percentiles and range of; flight date for museum 

records of D.elpenor, M. galathea and E.glyphica and; flowering date for herbarium 

specimens of A.pyramidalis, P.bifolia and P.chlorantha. 

 

Warm temperatures in early summer were also associated with earlier flight. The 

regression of flight date obtained from the museum specimens on mean April-June 

(early summer) temperature (Fig. 5-6a) accounted for 20% of the variation in flight 

time. A 1 °C increase in mean temperature in early summer was associated with an 

advance in flight of 11 days. For the field data linear regression of flight date on 

temperature for early summer accounted for 7.3% of the variation in flight time (Fig. 

5-6b) and a 1 °C increase in mean temperature was associated with an advance in 

flight of 7.6 days. The slopes of the regression models derived from the museum data 

and field data were statistically alike (F1,220 = 0.9955, P = 0.3195), however the 

difference between the intercepts was significant (F1,221 = 5.0214, P = 0.026).  
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Figure 5-5. Relationship between flight date (days after 1 March) and mean (March-

May) temperature for (a) museum specimens of E. glyphica (y = 143.6 [± 21.33] – 5.7x 

[± 2.51], r
2
 = 0.06, P = 0.026, n = 83) ; (b) field data for E. glyphica (y = 164.2 [± 

17.74] – 7.56 [± 1.96], r
2
 = 0.097, P < 0.001, n = 141); (c) combined museum and field 

data for E. glyphica (y = 147.3 [± 12.85] – 5.84x [± 1.45], r
2
 = 0.07, P < 0.001, n = 

224); and (d) flowering date and mean (March-May) temperature for  herbarium 

specimens of A. pyramidalis (y = 188.3 [± 11.52] – 7.1x [± 1.39], r
2
 = 0.15, P < 0.001, 

n = 151).  

 

The regression of flight date obtained from the combined museum and field data for E. 

glyphica on early summer temperature (Fig. 5-6c) accounted for 10% of the variation 

in flight time. A 1 °C increase in mean temperature for early summer was associated 

with an advance in flight of 7.8 days. For herbarium data of A. pyramidalis the 

regression of flowering date on mean temperature for early summer accounted for 22% 
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of the variation in flowering time (Fig. 5-6d) and a 1 °C increase in mean early 

summer temperature was associated with an advance in flowering of 11.3 days. The 

slopes of the regression models derived from the combined museum and field data for 

E. glyphica and the herbarium data for A. pyramidalis were statistically alike: (F1, 371 = 

1.9747, P = 0.161), however the intercepts (F1, 372 = 297.402, P < 0.001) were 

significantly different. Similarly the slopes of the regression models derived from the 

museum data for E. glyphica and herbarium data for A. pyramidalis were statistically 

identical (F1,230 = 0.0068, P = 0.9342), however the differences between the intercepts 

were significant (F1,231 = 277.55, P < 0.001). 

5.3.2 The Anacamptis pyramidalis-Melanargia galathea pollination mode 

Data derived from museum specimens over the period from 1890 until 1998 confirmed 

the importance of mid-summer (June-August) temperature in relation to flight time for 

Melanargia galathea. Warm temperatures during summer months June to August were 

associated with earlier flight. Data for males and females combined showed significant 

negative correlations between flight date and mean temperature for June, July and 

August in the CET records and with mean temperature over this 3-month period (Table 

5-2) which reflects the flight period of M. galathea in the UK (Fig. 5-4) There was also 

a significant positive correlation between flight time and mean precipitation for March 

(Table 5-2). 

The regression of flight date obtained from the museum specimens on mean June - 

August (mid-summer) temperature (Fig. 5-7a) accounted for 6% of the variation in 

flight time. A 1 °C increase in mean temperature for mid-summer was associated with 

an advance in flight of 4.3 days. 

For herbarium data of Anacamptis pyramidalis the regression of flowering date on 

mean June- August temperature accounted for 17% of the variation in flowering time 

(Fig. 5 -7b) and a 1 °C increase in mean mid-summer temperature was associated with 

an advance in flowering of 8.5 days. The slopes of the regression models derived from 

the museum data for M. galathea and the herbarium data for A. pyramidalis were 

significantly different: (F1, 308 = 4.3962, P = 0.0368). 
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Figure 5-6. Relationship between flight date (days after 1 March) and mean (April-

June) temperature for (a) museum specimens of E. glyphica (y = 220.2 [± 28.1] – 

11.03x [± 2.48], r
2
 = 0.20, P < 0.001, n = 83) ; (b) field data for E. glyphica (y = 186.3 

[± 27.41] – 7.62 [± 2.31], r
2
 = 0.073, P < 0.01, n = 141); (c) combined museum and 

field data for E.glyphica (y = 186.0 [± 18.58] – 7.75x [± 1.59], r
2
 = 0.10, P < 0.001, n = 

224); and (d) flowering date and mean (April - June)  temperature for  herbarium 

specimens of A. pyramidalis (y = 255.5 [± 19.6] – 11.27x [± 1.75], r
2
 = 0.22, P < 

0.001, n = 151).  

 

 

 

 



 

 

Chapter 5                                             

172 
 

 

(a) (b)

T
im

e
 t
o

 f
lig

h
t/
 f

lo
w

e
ri
n
g
 f

ro
m

 1
 M

a
rc

h
 (

d
a
y
s
)

Mean (June to August) temperature °C

13 14 15 16 17 18
80

120

160

200

13 14 15 16 17 18
80

120

160

200

 

Figure 5-7. Relationship between (a) flight date (days after 1 March) and mean (June -

August) temperature for museum specimens of M. galathea (y = 205.0 [± 20.21] – 

4.25x [± 1.32], r
2
 = 0.06, P < 0.01, n = 161) and (b) flowering date and mean (June –

August) temperature for  herbarium specimens of A. pyramidalis (y = 257.9 [± 23.14] 

– 8.46x [± 1.52], r
2
 = 0.17, P < 0.001, n = 151).  

 

5.3.3 The Platanthera spp.-Deilephila elpenor pollination mode 

For museum material of Deilephila elpenor, there were significant negative 

correlations between flight date and mean CET for May, mean CET over the 3-month 

period March-May, and decimal longitude of collection site. No significant correlation 

was found between any measure of precipitation and flight time (Table 5-3). For field 

data gathered at Wicken Fen, Cambridgeshire there was a significant negative 

correlation with mean CET in March and a significant positive correlation with mean 

precipitation for January (Table 5-3). No significant correlations were found between 

flight time and any temperature or precipitation variable derived from the weather 

station at NIAB, Cambridgeshire. The field and museum datasets for D. elpenor were 

dissimilar in both geography and time. Whilst 97% of the data at Wicken Fen, 

Cambridgeshire, was gathered between 1970 and 2009, more than 91% of the museum 

data was collected prior to 1970 (Fig. 5-3b). Museum data was collected over a range 

of 3.18 decimal latitude and 6.61 decimal longitude (Table 5-4), compared to the 

single site data of Wicken Fen. 
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Figure 5-8. Relationship between flight date (days after 1 March) and mean spring 

(March – May) temperature for (a) museum specimens of Deilephila elpenor (y = 

149.3 [± 23.03] - 5.29x [± 2.69], r
2
 = 0.083, P = 0.055, n = 45); (b) flowering date and 

mean spring temperature for Platanthera bifolia (y = 152.6 [± 10.44] - 5.349x [± 1.28], 

r
2
 = 0.14, P < 0.001, n = 110) and (c) flowering date and mean spring temperature for 

Platanthera chlorantha (y = 145.1 [± 12.51] - 4.687x [± 1.5], r
2
 = 0.083, P < 0.001, n 

= 109). 
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Correlation between flight date and CET was earlier in the season (March) at the 

Wicken Fen site, than for the museum data (May) (Table 5-3). Wicken Fen is toward 

the east of the species’ range and, given the significant negative correlation with 

easting, this would be expected.  

Warmer springs were associated with earlier flight of D. elpenor. Using museum data, 

the regression of flight date on mean spring (March-May) temperature (Fig. 5-8a) 

accounted for 8.3% of the variation in flight time, and a 1 °C increase in the 

temperature mean was associated with an advance in flight of 5.3 days. These results, 

based on a small set of 45 specimens, bordered significant (P = 0.0555). Analysis of 

the herbarium data for Platanthera bifolia yielded comparable results. Linear 

regression of flowering date on mean spring temperature accounted for 14% of the 

variation in flowering time (Fig. 5-8b) and a 1 °C increase in the temperature mean 

was associated with an advance in flowering of 5.3 days. The regression models 

derived from the museum data for D. elpenor and the herbarium data for P. bifolia 

were statistically indistinguishable, neither the gradients (F1,151 = 0.0004, P = 0.984) 

nor the intercepts (F1,152 = 1.578, P = 0.211) were significantly different. As expected, 

analysis of the herbarium data for P. chorantha data yielded very similar results. 

Linear regression of flowering date on mean spring temperature accounted for 8.3% of 

the variation in flowering time (Fig. 5-8c) and a 1 °C increase in the temperature mean 

was associated with an advance in flowering of 4.7 days. The regression models 

derived from the museum data for D. elpenor and the herbarium data for P. chlorantha 

were statistically identical, neither the gradients (F1,150 = 0.0403, P = 0.841) nor the 

intercepts (F1,151 = 0.1409, P = 0.708) were significantly different.  

 

5.4 Discussion  

Few prior studies have examined the phenological relationship between plants and 

their pollinators (Doi, Gordo & Katano 2008) and this is the first study to quantify and 

compare temporal variation in the flowering date of orchid species and flight date of 

some of their Lepidopteran pollinators. To date studies of Lepidoptera phenology have 

been limited, by lack of long-term data (Woiwod 1997; Roy & Sparks 2000). Museum 

collections provide a valuable additional source of such data and this research is the 
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first study to provide a validation that justifies the use of these extensive historical 

collections. 

As anticipated there was substantial wastage in the museum data due to duplication of 

collection, the incidence of incomplete data recording and an unwillingness to allow 

specimens to be moved when labels were obscured. The loss of data did not detract 

from their overall value; sufficient records were available to produce normally 

distributed data and to flag significant correlations with various measures of mean 

temperature. In the main, mean monthly precipitation generated small positive 

correlations with flight date, concurring with prior findings (Stefanescu, Penuelas & 

Filella 2003). 

Using museum and field data this study quantified the flight phenologies of three 

native, univoltine Lepidoptera in relation to monthly CET temperature records, and 

compared results to the flowering phenologies of three orchid species, each of which 

relies on Lepidopteran pollinators. The species selected were either known pollinator 

species or a suitable proxy for potential pollinators. 

The robustness of the museum record for phenological research as a measure of flight 

time was demonstrated using the species, Euclidia glyphica, as relationships derived 

from museum and field data were statistically identical. Comparison of museum and 

observation data for E. glyphica gave strikingly similar results notwithstanding that the 

datasets differed in length and were separated in time. E. glyphica is largely confined 

to southern England and the geographic ranges of the museum and field datasets were 

analogous. The slopes of the regression models on mean spring (March-May) and 

mean early summer (April-June) temperature were both statistically indistinguishable 

between museum and field data. This enabled the two sets of data to be justifiably 

combined into a single dataset. The value of herbarium specimens to examine 

flowering phenology had been previously validated, using the orchid Ophrys 

sphegodes (Robbirt et al. 2011). 

Darwin (1877) named E. glyphica as a pollinator of Anacamptis pyramidalis, and the 

species is often seen in association with the Burnet moths, which are also known 

pollinators of A. pyramidalis. E. glyphica flies only during the earlier period of 

flowering of A. pyramidalis but response to variation in temperature of spring and 
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early summer was statistically indistinguishable for plant and pollinator. A 1 °C rise in 

mean temperature during early summer was associated with an advance in flight of 7.8 

days and an advance in flowering of 11.3 days. 

These results demonstrate that averaged three-monthly temperature means can provide 

an apt temperature variable for phenological study, echoing prior studies (Pollard 

1988; Roy & Sparks 2000; Gordo & Sanz 2006) Whilst much of the variance in flight 

phenologies could not be explained, the regressions of flight data on mean spring 

temperature produced results consistent with prior studies. Gordo & Sanz (2006) found 

that mean temperature between February and April was a significant predictor of 

appearance and that higher spring temperatures were significantly associated with 

earlier flight. Data gathered over a 23 year period (1976-1998), based on BMS field 

observation of 35 butterfly species demonstrated advances in first and peak flight dates 

associated with spring and summer temperatures, and an advance of 2-10 days per 1°C 

rise in temperature (Roy & Sparks 2000). Similarly Sparks & Yates (1997) 

demonstrated a significant relationship between spring temperature and first 

appearance dates in 12 common British butterflies, and estimated an advance in first 

flight of 3 to 10 days per 1°C rise in temperature.  

In a study of two resident British butterfly species, Maniola jurtina and Pyronia 

tithonus, Brakefield (1987) found that higher temperatures during June to August were 

associated with earlier flight dates. Both species, members of the family Satyridae, are 

single generational in the UK (Asher et al. 2001), and flight periods are similar to 

Melanargia galathea, being June-September for M. jurtina (Novák 1980) and July-

August for P. tithonus (Asher et al. 2001). 

M. galathea and A. pyramidalis share a common geographic range and habitat 

preference in the UK. Whilst M. galathea is not named in the literature as a pollinator 

of A. pyramidalis it has been recorded visiting the orchid (Fig. 5-2a).It is probable that 

M. galathea is one of a suite of pollinators of A.pyramidalis in the UK, and it 

represents a suitable proxy for potential pollinators. Mean date of flight of M. galathea 

is marginally earlier than mean date of flowering of A.pyramidalis but flowering range 

falls wholly within the butterflies’ flight range. 
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Using data from the Rothamsted Insect Survey (1976-1995) for 18 univoltine moth 

species across 6 sites in the UK, Woiwod (1997) demonstrated a significant tendency 

for negative regressions in flight phenology with time over the twenty year period. A 

significant positive regression was evident for a later emerging species, Xestia 

xanthographa, suggesting that late season species might be expected to emerge later 

with higher temperatures (Woiwod 1997).  

The potential for asynchrony between plant and pollinator was apparent between A. 

pyramidalis and the mid-season butterfly M. galathea. For M. galathea flight advanced 

with increases in mean temperature for the 3-month period June to August (summer), 

but this advance was significantly less than the advance in flowering of A. pyramidalis. 

Based on these regressions the phenologies of plant and pollinator would be expected 

to become increasing asynchronous at elevated temperatures. A. pyramidalis is a non-

rewarding pollinator generalist and asynchrony between flowering and flight 

phenologies of potential pollinators might be expected with climate warming because 

species respond differentially to climate cues and in a non-rewarding pollination 

system convergent selective forces are absent. Conversely, there was no statistical 

evidence of asynchrony between the phenologies of A. pyramidalis and E. glyphica, 

which flies during the earlier period of its flowering.  

Surprisingly local temperature data for Wicken Fen, Cambridgeshire did not generate 

any significant correlations with local observation data of Deilophila elpenor. This 

unexpected result is probably explained by the lack of resolution founded in the use of 

minimum and maximum temperatures averaged on a monthly rather than daily basis 

and which may have been too imprecise to pick up any phenological signal.  

Using CET meteorological data for analysis, this research found that the phenology of 

flowering of the rewarding orchids Platanthera bifolia and P. chlorantha were closely 

synchronised with the flight phenology of the key pollinator D. elpenor, suggesting 

that these species are likely to maintain phenological synchrony with further modest 

rises in mean spring temperature. Since P. bifolia and P. chlorantha are rewarding 

orchids and pollinator specialists, convergent selective pressures would be expected to 

support phenological synchrony. Further work is necessary to establish whether 
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rewarding or non-rewarding pollination systems orchids are differentially susceptible 

to potential plant-pollinator asynchrony. 

For pollinator generalists such as A. pyramidalis, the impact of disruption to current 

phenological patterns may be mitigated by the potential for new pollinator 

relationships to emerge due to demographic shifts. Sparks, Roy & Dennis (2005) found 

that elevated temperatures in Europe substantially increased migration of Lepidoptera 

to Britain. Pollard (1991) found that range expansion was associated with advance in 

mean flight date and extension of the flight period for Pyronia tithonus in the UK but 

did not investigate causal factors. Habitat fragmentation may however constrain  range 

expansion for some species (Hill, Thomas & Huntley 1999) and may lead to a decline 

in abundance of habitat specialists (Warren et al. 2001) relative to habitat generalists.  

Given that phenological and demographic changes of Lepidoptera in response to 

climate warming are complex and difficult to predict any evaluation of the impact of 

climate warming on plant-pollinator relationships needs to be species-specific and 

mindful of confounding factors. In this research the study species are all univoltine, 

facilitating identification of phenological trends. For multi-brooded species the wider 

range in flight period dampens the signal to noise ratio, making trends more difficult to 

identify and may further be confounded by an extension of flight period into the 

autumn. Consideration should also be made of the uncertainty in the degree of fidelity 

in many orchid-Lepidoptera pollinator associations. For some orchid species the suite 

of available pollinators is likely to be influenced by changes in range limits, habitat, 

and population abundance as well as phenology. 

In conclusion, data derived from herbarium, museum specimens and field observation 

validates museum specimens as a source of phenological data for Lepidoptera, 

establishes phenological responses to temperature for Lepidoptera, and allows 

comparison with that of orchids. Warmer spring and summer temperatures were 

associated with advances in mean flowering and in mean flight activity. These results 

suggest that under current rates of climate warming in the UK flowering phenologies 

of the early-summer flowering orchids in this study and flight phenologies of the 

associated Lepidoptera pollinators studied should remain generally in synchrony. In 

contrast, for the mid-summer flowering orchid Anacamptis pyramidalis asynchrony 
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between flowering and flight activity of a potential pollinator Melanargia galathea is 

probable with further climate warming.  

These results reaffirm the need for detailed knowledge at species level, toward 

understanding the consequences of climate-driven phenological shifts for plants and 

their pollinators. 
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Chapter 6 

Concluding remarks 

6.1 The role of herbarium and museum collections in phenological study 

A central aim of this thesis was the evaluation of historical herbarium and museum 

collections as a source of long-term phenological data for climate change research. 

Phenological studies, often with low signal-to-noise ratios, require sufficiently long-

term data to elucidate any underlying trend. The choice of species for long-term study 

of phenology has, however, been dictated by the availability of suitable records. These 

are often scarce due to the overall shortage of long-term monitoring schemes (Sparks 

& Carey 1995). Often field monitoring is based on observation of first flowering dates, 

but these may not be optimum measures of plant responses to climate change as the 

data represent an extreme of the flowering distribution and are more susceptible to 

confounding effects than peak flowering (Miller-Rushing, Inouye & Primack 2008). 

Prior studies have suggested that herbarium data may provide a suitable proxy for field 

observation of flowering (Primack et al. 2004; Lavoie & Lachance 2006; Miller-

Rushing et al. 2006) but this had not previously been validated. Field monitoring of 

peak flowering of the rare terrestrial orchid Ophrys sphegodes at a site in the UK 

provided an opportunity to corroborate the use of herbarium specimens as a proxy for 

field-based observational data of peak flowering time. The two datasets, showing 

statistically identical phenological responses to spring temperature, give credence to 

the use of herbarium data for phenological research.  

For Lepidoptera, the Butterfly Monitoring Scheme has been generating valuable field-

based phenological data of first, peak and last flight dates in the UK since the mid 

1970s, although this is still a relatively short period with which to detect change (Roy 

& Sparks 2000). Museum specimens may represent valuable long-term records of 

insect flight phenology, especially where few field-based data exist, yet no prior 

studies have used museum data for this purpose. Extensive entomological collections 

held in museums in the UK, together with the more recent observational data gathered 

by members of the Bees Wasps and Ant Recording Society (BWARS), afforded the 

opportunity to verify museum records as a suitable proxy for long-term field data.  
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In validating the museum data, this research has established that the relationships 

between flight phenology and spring temperature for the Hymenoptera solitary bee 

Andrena nigroaenea were statistically identical when comparing museum records and 

field observations. This was also the case for the digger wasp Argogorytes mystaceus. 

There is little phenological data available with which to compare flight phenologies of 

Hymenoptera, although published data of temporal trends for the honey bee (Gordo & 

Sanz 2006) and wild bees (Bartomeus et al. 2011) suggest advanced flight with 

increased spring temperatures. 

Similarly, for the moth Euclidia glyphica there was a statistically indistinguishable 

phenological response of peak flight date to mean spring temperature when comparing 

the museum records to the field-based records. For two further species of Lepidoptera, 

Melanargia galathea and Deilephila elpenor, the museum record showed that 

responses of peak flight time to spring temperature were within the ranges suggested 

by UK field-based studies (Sparks & Yates 1997; Roy & Sparks 2000). 

For many species of plants and animals, biological collections are the only source of 

long-term phenological data. Two and a half billion specimens of flora and fauna are 

estimated to be held in these collections worldwide (Graham et al. 2004), representing 

an invaluable resource (Prather et al. 2004) for phenological studies which seek to 

understand and predict the consequences of continuing climate change.  

6.2 Assessing flowering phenologies of British orchids  

Using field observation, results of prior UK studies demonstrate that for many 

temperate plants, flowering advances with temperature (Fitter et al. 1995; Sparks, 

Jeffree & Jeffree 2000). Using data derived from herbarium specimens this thesis has 

clearly established the relationships between mean spring and summer temperatures 

and flowering time for the 15 orchid species in this study, representing more than a 

quarter of British species.  

Flowering dates in spring and early-summer flowering orchid species were most 

strongly correlated with temperatures over the three to four months immediately prior 

to flowering. For each species, with the exception of Gymnadenia conopsea for which 

the data showed poor correlations, there were significant correlations between 
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flowering date and mean spring (March-May) temperature. For those species which 

flowered later in the season, seasonal temperature over spring and summer were 

equally important. 

A recent study using 5,424 herbarium specimens for 41 orchid taxa collected in 

herbaria across Hungary between 1837 and 2009, found that, on average, flowering 

advanced over time, although advancement was significant for only nine species. 

Responses varied considerably between species, but trends were associated with 

pollination mode, life span, mean flowering time and geographical distribution.  In 

general the strongest phenological responses of flowering over time were seen in the 

autogamous or deceptive orchids, and those flowering earliest in the season. Weakest 

responses were associated with nectar-rewarding and later flowering taxa (Molnár et 

al. 2012b).  

In contrast to Molnár et al., the aim of the research presented here was to explore the 

relationships between flowering time and various measure of temperature over the 

period of collection. Whilst this research was based on a smaller number of species 

there was no evidence that flowering response to temperature was influenced by 

reward or deceit as mode of pollination. In multiple regression analysis mean monthly 

temperature in March, April or May was flagged as a key variable for each orchid 

species irrespective of flowering time or pollination method. In linear regression of 

flowering response to mean spring temperature there were no significant differences in 

flowering phenology for 12 (92%) of the 13 orchid species for which this test was 

possible. For these 12 orchid species flowering advanced between 4.2 and 8.6 days for 

each 1°C increase in mean spring temperature.  

The results presented in this thesis have established phenological signals of flowering 

response to temperature for nearly one third of orchid species in Britain, confirming a 

central hypothesis of this thesis that phenological responses of flowering time could be 

identified. 

6.3 Assessing flight phenologies of pollinator species 

Since insects are poikilothermic, development and flight activity are expected to be 

highly sensitive to temperature (Woiwod 1997; Gordo & Sanz 2006). Prior studies, 
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have established the importance of preceding temperature in the timing of insect flight 

activity, (Sparks & Yates 1997; Roy & Sparks 2000; Forister & Shapiro 2003; 

Stefanescu, Penuelas & Filella 2003; Dingemanse & Kalkman 2008; O'Neill et al. 

2012).  

The results presented in this thesis affirm the hypothesis that phenological signals of 

flight time could be identified from the museum record and concur with prior field 

studies: warmer spring and summer temperatures were associated with advances in 

peak flight activity. Peak flight of Euclidia glyphica advanced by c. 6 days, and 

Deilephila elpenor advanced by c. 5 days per 1°C rise in mean spring (March-May) 

temperature. Melanargia galathea advanced by c. 9 days per 1°C rise in mean summer 

(June-August) temperature. These findings fall within the range of results derived from 

the Butterfly Monitoring Scheme which suggest that flight phenologies would be 

expected to advance by between 2 and 10 days per 1°C rise in mean Central England 

Temperature (Roy & Sparks 2000). 

For the two Hymenoptera species, Andrena nigroaenea and Argogorytes mystaceus, 

there are few phenological data available with which to compare flight phenologies, 

although published data of temporal trends for the honey bee (Gordo & Sanz 2006) 

and wild bees (Bartomeus et al. 2011) suggest advanced flight with increased spring 

temperatures. 

6.4 Temporal plant-pollinator relationships: the potential for phenological 

asynchrony  

The ultimate question of this thesis was whether there is evidence of potential 

asynchrony between the flowering phenologies of orchids in Britain and the flight 

phenologies of their pollinators. Phenological mismatch between species may occur if 

species respond differentially to climate change (Walther et al. 2002; Parmesan 2007). 

Relationships between species at different trophic levels are most vulnerable 

(Harrington, Woiwod & Sparks 1999; Thackeray et al. 2010) and in the UK there is 

evidence of systematic trophic-level asynchrony (Thackeray et al. 2010). There are, 

however, few prior phenological studies of plant-pollinator interactions (Hegland et al. 

2009) and results are variable (Kudo et al. 2004; Gordo & Sanz 2005; Bartomeus et al. 

2011).  
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Results presented in this thesis have demonstrated that in the highly specialised 

pollination system of the sexually deceptive orchid Ophrys sphegodes, the rate of 

advancement of peak flowering date and of overall peak flight activity of the 

pollinating bee Andrena nigroaenea, to mean spring temperature were statistically 

indistinguishable. However it is only the male bees that pollinate the orchid, whilst the 

females represent stronger competition than the flower for the copulatory attentions of 

the males. There are few data for this bee species but it is thought that the females 

mate only once and that male bees, emerging earlier than the females, have a lifespan 

of approximately 10 days, during which time they seek to maximize their mating 

opportunities (R. Paxton, pers. comm.). The results presented here show that males 

indeed emerge earlier than females and respond to temperatures earlier in the spring. 

Results also demonstrate an advance in peak flight of both males and females relative 

to peak flowering of O. sphegodes, with females also advancing relative to males. The 

earlier flight of the females suggests that peak flowering of the orchid may not only 

become increasingly out of synchrony with peak flight of the pollinating male, but may 

also become increasingly in competition with the female bee.  

For the two closely related early summer-flowering rewarding orchids (Platanthera 

bifolia and P. chlorantha) peak flowering dates are likely to remain in synchrony with 

peak flight of a primary pollinator, the hawkmoth Deilephila elpenor. For the 

generalist, non nectar-rewarding orchid Anacamptis pyramidalis, synchrony with an 

early summer pollinator, Euclidia glyphica, is likely to be maintained with current 

rates of temperature rise. In contrast, synchrony with Melanargia galathea, a proxy for 

later flying pollinators, may become disrupted at elevated summer temperatures, 

should flowering continue to advance relative to peak flight.  

Attempting to unravel the potential effects of climate change for plant-pollinator 

relationships is not easy and there is a myriad of confounding factors to consider. 

Climate change may also cause habitat fragmentation, create shifts in geographic range 

and altitudinal limits (Hill, Thomas & Huntley 1999): these will also influence 

outcomes for plants and pollinators. The vulnerability of plant-pollinator relationships 

to potential asynchrony also depends on the historical starting position. It may be 

erroneous to assume that species are presently in optimum synchrony, and hence 
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species that are not currently well adapted to their habitat may be vulnerable to small 

changes in synchrony (Parmesan 2007).  

6.5 Suggestions for future work  

Understanding the effects of climate change requires the accumulation of much 

detailed analysis of specific species and their ecological relationships (Stenseth & 

Mysterud 2002), and there is scope for further research amongst British orchids. It 

would be edifying to include additional species that rely on specific pollinators or 

pollinator groups. Epipactis helleborine is nectar-rewarding and is pollinated by wasps 

of the genus Dolichovespula: self pollination is rare in the absence of pollinators 

(Foley & Clarke 2005). The extremely rare orchid Ophrys fuciflora, restricted in the 

UK to a few downland sites in south-east Kent, is thought to be pollinated by bees of 

the genus Eucera. Self pollination is rare whilst vegetative reproduction is not reported 

for this vulnerable species (Foley & Clarke 2005). Amongst the non nectar-rewarding 

orchids included in this thesis but not yet examined in relation to pollinators, Orchis 

mascula is pollinated primarily by naive newly emerged bumble-bee queens and hence 

timing of peak flowering of this very early flowering orchid may be an important 

factor for pollination success. For the nectar-rewarding, late-season flowering species 

Spiranthes spiralis and Epipactis purpurata, important pollinators are respectively 

bumblebees and vespid wasps; Bombus pascuorum and B. lapidarius (Willems & 

Lahtinen 1997); Vespula austriaca and V. vulgaris respectively (Jakubska-Busse & 

Kadej 2011) are named species. For these orchids synchrony of flowering and flight 

phenologies at the end of summer and in early autumn may be essential for pollination.  

Results could be verified in terms of fruit set in the field. A strong phenological 

overlap between plant and pollinator would be expected to give higher fruit set relative 

to relationships showing a weak phenological overlap, and this could be investigated 

across multiple years. In turn, variation in fruit set patterns could be incorporated in 

population dynamics modelling. 

An estimated 60 million records are already available for a wide range of taxa via 

internet information networks such as the Global Biodiversity Information Facility and 

HerpNET (Graham et al. 2004). On-line herbarium resources, such as the UK initiative 
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Herbaria United http://herbariaunited.org/ are becoming more widely offered. For all 

on-line resources it is important that images are also available so that users are able to 

verify taxonomy and assess flowering state. 

One of the most extensive orchid collections to be available on-line is that of the 

herbarium of the University of Basel, Switzerland. Over 25,000 orchid specimens have 

been digitised from collections of Dr Jany Renz, and the Institute of Botany 

(University of Basel). This on-line herbarium is ideally placed to facilitate research 

into the relationships between flowering phenology, climate and altitude for European 

orchids. Historical temperature and precipitation data from meteorological stations 

across Switzerland, and at altitude, are also accessible from Meteo Schweiz 

http://www.meteoschweiz.admin.ch/web/en/services/data_portal.html. 

It would be valuable to extend the study to orchid taxa of geographic regions beyond 

Europe. Little prior research has been undertaken in the Southern Hemisphere, 

although accessible long-term herbarium records and corresponding meteorological 

data exist. Using herbarium data previously received from the Herbarium of Western 

Australia, Perth, it would be instructive to assemble phenological datasets for selected 

orchids of the genus Caladenia. This genus is endemic to Western Australia, and 

typified by high pollinator specificity. Species within the genus are well researched: 

non-rewarding (sexual deception and non nectar-reward) are usual pollination modes.  

It is probable that many plants change their pollinators over a sufficiently wide 

geographic area, and the interaction of plants and pollinators is therefore likely to alter 

across the landscape. Lepidopera are responding to climate change, and degraded 

habitat,  not only in terms of phenological shifts but also in altered range limits 

(latitude and elevation) and population densities (Hill, Thomas & Huntley 1999; 

Parmesan et al. 1999; Warren et al. 2001; Franco et al. 2006; Thomas, Franco & Hill 

2006). With sufficient data the aim of further research could include coupling 

phenological data with that of spatial shifts in order to develop a multi-dimensional 

model of asynchrony, identify potentially vulnerable plant-pollinator relationships 

across the landscape. Whilst pollination is of enormous ecological and economic 

significance and a responsive, and important phenological indicator of climate change 

http://herbariaunited.org/
http://www.meteoschweiz.admin.ch/web/en/services/data_portal.html
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(Miller-Rushing, Inouye & Primack 2008), other species interactions could also be 

examined using natural history data, such as those of insect and food plant.  

6.6 Conclusions 

The results of this thesis represent the first validations of herbarium and museum data 

against field observation and affirm the value of the huge resources held in natural 

history collections for phenological research. The conclusions drawn enable the 

flowering phenologies of selected British orchid species to be placed in the context of 

peak flight activity of important pollinators. Prior studies suggest that plant-pollinator 

relationships might potentially become asynchronous if species respond differentially 

to climate warming. Species which are likely to be most vulnerable to the effect of 

asynchrony are those which are dependent on a single, or few, primary pollinators, and 

non-rewarding species whose pollinators are not subject to convergent selective 

pressure. Pollination of the sexually deceptive orchid Ophrys sphegodes, reliant on a 

single pollinator species, is a highly specialised model and findings of this thesis 

suggest a vulnerability to pollination disruption with further climate warming.  

Additional research is needed to identify further specific plant-pollinator relationships 

that may be under threat, and there is scope to use the vast, presently under-utilised 

resources of natural history collections. Access to this data is improving at a pace with 

on-going digitisation of herbarium specimens and the expansion of on-line resources. 

These and similar databases are increasingly available worldwide and represent freely 

available, high quality data sources for phenological research. The validation presented 

in this thesis should help to unlock the vast resources of natural history collections, 

facilitating ecologists and climatologist toward greater knowledge of the ecological 

consequences of climate change.  
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Appendix 1 

Vice County Centroids for England and Wales: X,Y Values of Origin; Decimal 

Latitude and Decimal Longitude. 

V.C. 

No. 

V.C. Name X Y Decimal 

Latitude 

Decimal 

Longitude 

1 West Cornwall 167489.6605 39551.0045 50.2102 -5.2601 

2 East Cornwall 215160.0587 70388.1332 50.5040 -4.6080 

3 South Devon 283245.6551 79540.8969 50.6039 -3.6512 

4 North Devon 258684.7564 115785.1530 50.9242 -4.0120 

5 South Somerset 320430.0604 128336.8400 51.0488 -3.1365 

6 North Somerset 354692.0849 149761.9029 51.2452 -2.6505 

7 North Wiltshire 404478.4444 177672.9772 51.4980 -1.9369 

8 South Wiltshire 405494.6235 141195.7923 51.1700 -1.9228 

9 Dorset 376339.7402 100596.4461 50.8044 -2.3371 

10 Isle of Wight 449818.7995 86470.7002 50.6758 -1.2963 

11 South Hampshire 441379.0892 111950.2204 50.9055 -1.4129 

12 North Hampshire 457910.1367 145435.8379 51.2052 -1.1725 

13 West Sussex 502400.9381 116523.9945 50.9391 -0.5440 

14 East Sussex 556037.2189 119409.0073 50.9530 0.2201 

15 East Kent 603493.7662 149569.5229 51.2091 0.9119 

16 West Kent 559449.4016 159041.0888 51.3082 0.2862 

17 Surrey 513559.5111 153516.8462 51.2695 -0.3736 

18 South Essex 572025.7862 193240.6075 51.6117 0.4831 

19 North Essex 577567.6099 223911.1108 51.8855 0.5787 

20 Hertfordshire 522849.1051 216030.5458 51.8294 -0.2187 

21 Middlesex 519841.0816 184735.7954 51.5488 -0.2730 

22 Berkshire 455170.9420 179746.9272 51.5140 -1.2064 

23 Oxfordshire 449253.0766 212408.8179 51.8081 -1.2870 

24 Buckinghamshire 483474.5594 214986.3287 51.8273 -0.7901 

25 East Suffolk 628328.1478 264008.2390 52.2269 1.3418 

26 West Suffolk 585841.9357 261697.2336 52.2221 0.7193 

27 East Norfolk 623138.0145 311869.2226 52.6586 1.2979 

28 West Norfolk 578813.9202 313700.9092 52.6915 0.6444 

29 Cambridgeshire 545373.8553 273318.1743 52.3387 0.1324 

30 Bedfordshire 506434.6992 243467.8557 52.0793 -0.4483 

31 Huntingdonshire 521109.2251 277428.8164 52.3815 -0.2221 

32 Northamptonshire 480243.0913 271128.7898 52.3324 -0.8238 

33 East Gloucestershire 403812.7118 220183.8163 51.8802 -1.9460 

34 West Gloucestershire 370372.1577 198179.2554 51.6816 -2.4299 

35 Monmouthshire 334728.3821 201898.3149 51.7120 -2.9461 

36 Herefordshire 348916.6855 245356.7796 52.1042 -2.7472 

37 Worcestershire 388928.0174 260107.1054 52.2390 -2.1636 

38 Warwickshire 428308.3668 270627.2601 52.3330 -1.5860 

39 Staffordshire 397156.9996 325103.5680 52.8235 -2.0436 

40 Shropshire 351729.0771 305145.7466 52.6419 -2.7148 

41 Glamorganshire 289038.3275 190567.6652 51.6030 -3.6036 
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42 Breconshire 300222.6627 231942.1155 51.9770 -3.4541 

43 Radnorshire 310673.9774 264438.2607 52.2708 -3.3105 

44 Carmarthenshire 250916.8054 224617.5287 51.9001 -4.1683 

45 Pembrokeshire 201091.5282 221153.1974 51.8534 -4.8896 

46 Cardiganshire 258517.9060 263912.5585 52.2551 -4.0742 

47 Montgomeryshire 303004.5795 302562.9454 52.6121 -3.4339 

48 Merionethshire 278561.2881 327272.6737 52.8292 -3.8039 

49 Caernarvonshire 255533.1773 353047.4757 53.0551 -4.1570 

50 Denbighshire 309254.3430 353290.1383 53.0691 -3.3558 

51 Flintshire 319181.4298 370393.2222 53.2244 -3.2120 

52 Anglesey 241857.9332 379161.2517 53.2858 -4.3737 

53 South Lincolnshire 512501.1099 337177.6993 52.9202 -0.3282 

54 North Lincolnshire 517464.7911 386346.6489 53.3609 -0.2364 

55 Leicestershire 464516.1949 308055.9699 52.6664 -1.0474 

56 Nottinghamshire 466217.9433 359631.3445 53.1297 -1.0118 

57 Derbyshire 426710.7915 359698.2888 53.1338 -1.6022 

58 Cheshire 365211.0409 371128.8090 53.2360 -2.5227 

59 South Lancashire 364026.2758 411756.4408 53.6011 -2.5451 

60 West Lancashire 349899.3699 450582.9496 53.9489 -2.7649 

61 South-east Yorkshire 497775.5351 447408.7594 53.9136 -0.5129 

62 North-east Yorkshire 465976.2723 491112.9891 54.3114 -0.9874 

63 South-west Yorkshire 432299.0538 413053.0639 53.6130 -1.5133 

64 Mid-west Yorkshire 413295.4665 455532.2418 53.9957 -1.7987 

65 North-west Yorkshire 404873.2946 496806.8933 54.3667 -1.9265 

66 County Durham 419869.7416 536985.5684 54.7275 -1.6930 

67 South Northumberland 393900.4599 577801.6620 55.0946 -2.0971 

68 North Northumberland 403150.4835 623703.5561 55.5071 -1.9517 

69 Westmorland 350685.3000 500008.2746 54.3931 -2.7610 

70 Cumberland 333121.2858 537213.5092 54.7254 -3.0399 
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Summary

1. The scarcity of reliable long-term phenological data has severely hindered the study of the

responses of species to climate change. Biological collections in herbaria and museums are potential

sources of long-term data for such study, but their use for this purpose needs independent valida-

tion. Here we report a rigorous test of the validity of using herbarium specimens for phenological

studies, by comparing relationships between climate and time of peak flowering derived from her-

barium records and fromdirect field-based observations, for the terrestrial orchidOphrys sphegodes.

2. We examined herbarium specimens of O. sphegodes collected between 1848 and 1958, and

recorded peak flowering time directly in one population of O. sphegodes between 1975 and 2006.

The response of flowering time to variation inmean spring temperature (March–May) was virtually

identical in both sets of data, even though they covered different periods of time which differ in

extent of anthropogenic temperature change. In both cases flowering was advanced by c. 6 days per

�C rise in average spring temperature.

3. The proportion of variation in flowering time explained by spring temperature was lower in the

herbarium record than in direct field observations. It is likely that some of the additional variation

was due to geographical variation in collection site, as flowering was significantly earlier at more

westerly sites, which have had warmer springs, over their range of 3.44� of longitude.
4. Predictions of peak flowering time based on the herbarium data corresponded closely with

observed peak flowering times in the field, indicating that flowering response to temperature

had not altered between the two separate periods over which the herbarium and field data were

collected.

5. Synthesis. These results provide the first direct validation of the use of herbarium collections to

examine the relationships between phenology and climate when field-based observational data are

not available.

Key-words: biological collections, climate change, flowering time, herbarium specimens,

natural history collections, Ophrys sphegodes, Orchidaceae, phenology, spring, temperature

Introduction

Phenological events respond directly to climate. Recent

climate change has undoubtedly affected the timing of devel-

opment and seasonal events in many groups of organisms,

including amphibians (Beebee 1995), birds (Crick et al. 1997),

fungi (Kauserud et al. 2008) and plants (Sparks & Carey

1995; Fitter & Fitter 2002). Understanding the effects of

recent climate change is a vital step towards predicting the

consequences of future change. Moreover, only by elucidating

the responses of individual species will we be able to predict

the potentially disruptive effects of accelerating climate

change on species interactions.

Detecting phenological trends in relation to long-term

climate change is not straightforward. Because trends can be

concealed by short-term inter-annual climate variation*Correspondence author. E-mail: a.davy@uea.ac.uk
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(Badeck et al. 2004), long datasets are needed. For most

species, data collected specifically for the study of climate-

induced phenological change are not available, or are difficult

to find, reflecting the scarcity of long-termmonitoring schemes

(Sparks & Carey 1995). The choice of species for long-term

studies of phenology has thus been dictated up to now by the

availability of suitable field records. A furthermajor obstacle is

that most long-term data only record the beginning of pheno-

logical events in populations, such as dates of first flowering.

Miller-Rushing, Inouye & Primack (2008) have shown that the

use of such data to infer changes in phenology can be unreli-

able, and they advise that dates on which phenological stages

reach their peak are preferable. However, long-term field-

based records of the dates on which phenological events are

at their peak are extremely rare.

Specimen-based records in biological collections are another

potential source of data, verifiable in both space and time, for

the study of climate-induced phenological change. Until

recently, the potential of such records has been largely over-

looked (Suarez & Tsutsui 2004), even though the only data

available for studying phenological trends in many species

are those held in natural history collections in museums or

herbaria. Recent phenological studies have utilised less ortho-

dox data sources, including historical archives (Aono & Kazui

2008), photographs (Miller-Rushing et al. 2006; Sparks,

Huber & Croxton 2006; Crimmins & Crimmins 2008) and

herbarium specimens (Primack et al. 2004; Bolmgren &

Lönnberg 2005; Lavoie & Lachance 2006; Miller-Rushing

et al. 2006; Bowers 2007; Kauserud et al. 2008; Gallagher,

Hughes & Leishman 2009). Herbarium records are unique

amongst these sources of information in that they capture an

individual plant’s phenological state at the time and location

of collection, and therefore may represent a substitute for field

observation. Herbarium specimens are also likely to have been

collected when phenological stages such as flowering are near

their peak, rather than at an early or late stage in such seasonal

events. Recent studies suggest that herbarium collections may

provide data that can be exploited in climate change studies,

because findings have been broadly in line with trends reported

in the phenological literature (Sparks 2007) and have sup-

ported the predictions of physiological models of phenological

events such as flowering (Bowers 2007). Nevertheless, they

depend on averaging-out the numerous possible influences and

biases involved in a collection process that was not designed

with the study of phenology in mind, within which the climatic

signal-to-noise ratio might be low. Given the absence of long-

term monitoring for most species, there is little direct evidence

from which to evaluate the potential of averaged trends in

events such as flowering time, derived from herbarium

collections, as proxies for field data.

We report a critical comparison of independent field- and

herbarium-derived data as predictors of flowering time in a

species (the terrestrial orchid Ophrys sphegodes) for which a

unique long-term phenological record of peak flowering time

was available (Hutchings 2010). As the flowering time of plants

that flower in early summer is generally advanced after warmer

springs, we examined relationships between the flowering date

ofO. sphegodes and climate in the 9 months prior to flowering.

This corresponds with the period from the end of tuber dor-

mancy to flowering in this species. Specific hypotheses were (i)

that flowering date would be advanced by warmer springs, (ii)

that the relationship between flowering date and mean spring

temperature would be the same in data derived from herbar-

ium records and annual field observations, and therefore (iii)

that in a particular species for which this test is possible, her-

barium records would be validated both as an effective proxy

for long-term monitoring in climate change research and as a

predictor of phenological responses to future climate change.

Materials and methods

STUDY SPECIES

Ophrys sphegodes (the early spider orchid) is a species of southern and

central Europe, with a northern range limit that includes southern

England. It is associated with ancient, species-rich grassland over

calcareous soils. At present the species is rare in the UK, where it is

largely confined to Dorset, West and East Sussex and Kent (Lang

1989; Harrap&Harrap 2005).

Although the length of the mycotrophic, subterranean phase of the

life cycle of O. sphegodes is unclear, it is a short-lived species after its

first appearance above ground, rarely flowering for more than three

consecutive years. Few plants survive for more than 10 years after

initial emergence (Hutchings 1987, 2010) and most survive for less

than 3 years. In the UK, the leaves of O. sphegodes emerge above

ground in September or October (Hutchings 1989). The flowering

period is relatively short, commencing during late April or earlyMay,

and usually ending by late May (Lang 1989). In most populations in

the UK inflorescences bear from one to six flowers (usually two or

three), which open in succession from the bottom of the inflorescence.

Pollination is followed by rapid withering of the flower. Sanger &

Waite (1998) found that the number of inflorescences bearing ripen-

ing seed peaked at the end of June and that rapid dieback of the plant

ensued; few plants remain above ground at the end of July. This rela-

tively short reproductive period would be expected to conserve any

climatically-induced phenological signal.

HERBARIUM DATA

We examined all 192 specimens of O. sphegodes held in herbaria at

the Natural History Museum, London (BM, 133 specimens) and

Royal Botanic Gardens, Kew (K, 59 specimens) to verify identifica-

tion. All of the specimens originated from southern coastal counties

of England (Dorset, Isle ofWight, Hampshire, East andWest Sussex,

and Kent), reflecting the limited historical distribution of O. spheg-

odes (Carey & Dines 2002). The geographical range of the sites from

which specimens were collected was 3.44� (decimal) longitude and

0.76� (decimal) latitude. Specimens with incomplete data for site of

collection and collection date were discarded. Because of the rarity of

O. sphegodes in the UK, the dataset was comparatively small and

therefore it was important to ensure that the records represented the

peak flowering stage as closely as possible. For this reason only speci-

mens with at least 60% of their flowers open were included in the

study; normally most of the flowers are open at the same time in

O. sphegodes. Some of the herbarium sheets consisted of multiple

specimensmounted together. As the specimens in such cases had been

collected by a single collector, on the same day and at the same loca-

tion, they were treated as non-independent and the mean percentage
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of open flowers was derived. Individuals in fruit or with senescent

flowers were excluded.

We rejected 53% of the 192 specimens: 2 were damaged, 9 had

unclear or illegible records of collection date, 31 were not dated, 60

were imprecisely dated (only the month or year), 3 were in seed, and 1

presented fewer than 60% of flowers open. Nine specimens were

duplicates (multiple specimens) and therefore mean results were used.

The final data set comprised 77 specimens providing at least one data

point for each of 57 years, spanning a 111-year period from 1848 to

1958.

FIELD DATA

Records of the peak flowering time of O. sphegodes were made in 25

of the 32 years between 1975 and 2006 in a demographic study of a

population consisting of many thousands of plants at Castle Hill

National Nature Reserve, East Sussex, UK (Hutchings 2010). Peak

flowering was based on assessment of the entire population to give a

central tendency that would fit the flowering phenology of as many

individual plants as closely as possible.

METEOROLOGICAL DATA

Mean monthly Central England Temperature (CET) records for the

period 1848–2006 (Parker, Legg & Folland 1992) were obtained from

the UK Meteorological Office (http://hadobs.metoffice.com/hadcet/

cetml1659on.dat). This is the only complete climate record available

for the years during which the herbarium records and field data were

collected. However, data for Central England are strictly representa-

tive only for a roughly triangular area enclosed by Bristol, Preston

and London (Parker, Legg & Folland 1992). This is to the north of

the distribution range of O. sphegodes. Monthly mean temperatures

were available from two Meteorological Office weather stations on

the south coast, in locations corresponding with eastern and western

centres of the distribution of O. sphegodes. Eastbourne, East Sussex

UK, 21 km east of the Castle Hill field site, operated for the period

during which the field records were collected. Monthly minimum and

maximum temperature data were available for Southampton, to the

west, for all but 5 of the 111 years of the collection period covered by

the herbarium specimens. Data from both of these collection sites

would be expected to represent the climate within the distribution

range of O. sphegodes better than the climate records available from

CET. The means of monthly minimum and maximum temperature

were used for both stations. Historical temperature data were not

available closer to any of the sites of collection of the individual speci-

mens in the herbarium records.

ANALYSIS

The distribution of collection dates in the herbarium dataset for

1848–1958, expressed as number of days after 1 April, was checked

for normality and presence of outliers. The peak flowering date for

the Castle Hill population in the years 1975–2006 was similarly

expressed as days after 1 April.

Both sets of flowering phenology data were examined for relation-

ships with mean CET temperature data from the 9 months prior to

the flowering season (i.e. the period of growth following breaking of

tuber dormancy the previous summer). These data included mean

monthly temperature and its averages over successive 3-month

periods (September–November, December–February, and March–

May). This was carried out to establish which temperature variables

had the highest predictive power for flowering time in both sets of

phenological data. Multiple regressions using mean temperatures for

the individual months failed to produce a single model that could be

applied to both of the datasets, because of collinearity between the

variables, and the fact that the models included different individual

months for the two data sets. However, the mean temperature for the

3 months fromMarch to May had the highest individual correlation

with peak flowering date in both sets of data in an analysis of single

variables (Table 1). This was designated ‘mean spring temperature’

and was adopted as the single predictor variable in comparisons of

the phenological responses in herbarium and field data. Models using

mean spring temperature accounted for onlymarginally less variation

than the best combinations of months in separate stepwise (forward)

multiple regressions. In order to investigate whether distance from

the weather station influenced the relationship, the phenological anal-

ysis was repeated using Eastbourne mean spring temperature data for

the field phenological regressions and equivalent Southampton data

for the herbarium phenological regressions.

Variation in flowering time among the herbarium specimens was

further investigated using a regression on (decimalised) longitude of

origin. This sought to identify geographical sources of variation.

The linear regression model derived from the herbarium data and

CET was used to predict peak flowering dates frommean spring tem-

perature for the years between 1975 and 2006 for which field observa-

tions were available. Regression analyses were carried out with spss 16

(SPSS Inc., Chicago, IL, USA). Slopes and intercepts of regressions

were compared using Graphpad Prism 5 (Graphpad software Inc.,

La Jolla, CA, USA). Predicted flowering dates were compared with

observed flowering dates using principal axis regression (Sokal &

Rohlf 1969).

Results

Data derived from herbarium specimens over the 111-year per-

iod from 1848 until 1958, and recorded in the field between

Table 1. Comparison of correlations between flowering date and

temperature for the herbarium records and the field data.

Correlations are shown with mean temperatures for 3-monthly

periods and individual months in the same year as flowering

(January–May) or in the year previous to flowering (September–

December). A negative correlation indicates that a higher mean

temperature is associatedwith an earlier flowering date

Period of mean

temperature

Herbarium data

(1848–1958)

n = 77

Field data

(1975–2006)

n = 25

Seasons:

September–November )0.004 )0.072
December–February )0.065 )0.610**
March–May )0.426** )0.801**

Months:

September 0.008 )0.273
October 0.108 0.226

November )0.106 )0.171
December 0.047 )0.085
January )0.003 )0.579**
February )0.159 )0.549**
March )0.396** )0.609**
April )0.153 )0.405*
May )0.259* )0.592**

**P < 0.01; *P < 0.05.
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1975 and 2006, both confirmed the importance of spring tem-

perature in determining flowering time. We found significant

individual correlations between peak flowering date and sev-

eral measures of mean temperature in the CET records in the

preceding months (Table 1). For herbarium material, there

were significant correlations with mean temperature in March

and May of the year of flowering but the highest correlation

was with mean temperature over the 3 month period from

March–May. Results for the field data were similar, but with

significant correlations for January, February, March, April

and May. The strongest correlation was again with the mean

for the periodMarch–May.

As predicted, warmer years were associated with earlier

flowering. The regression of flowering date obtained from the

herbarium specimens on mean March–May (spring) tempera-

ture (Fig. 1a) accounted for 18% of the variation in flowering

time. A 1 �C increase in mean temperature between March

and May was associated with an advance in flowering of

6.5 days. Analysis of the field data yielded strikingly similar

results. Linear regression of flowering date on mean spring

temperature accounted for 64% of the variation in date of

flowering (Fig. 1b) and a 1 �C increase in mean spring temper-

ature was associated with an advance in flowering of 6.7 days.

The regression models derived from the herbarium data and

field data were statistically indistinguishable: neither the gradi-

ents (F1,98 = 0.0035, P = 0.952) nor the intercepts

(F1,99 = 0.0908, P = 0.764) were significantly different, indi-

cating that the phenological response to temperature was the

same during the different periods over which the two sets of

data were collected.

Applying the same analysis with less geographically distant

temperature data for the field and herbarium records gave sig-

nificant and strikingly similar results. Spring temperature at

Southampton accounted for 13% of the phenological varia-

tion in herbarium data (Fig. 2a) and Eastbourne temperature

accounted for 59% of that in the field data. In both cases

flowering advanced by 5.7 days per 1 �C increase in spring

temperature. The two regressions were again statistically indis-

tinguishable (gradients, F1,93 = 0.00007, P = 0.993; inter-

cepts, F1,94 = 0.854, P = 0.358). Furthermore, the gradients

of the two regressions of field data on temperature recorded at

Eastbourne and CET were not significantly different

(F1,46 = 0.481, P = 0.491), and neither were the gradients of

the two regressions with herbarium data using Southampton

and CET temperature records (F1,145 = 0.130, P = 0.719);

this indicates that the predicted flowering responses of

the plants to temperature were consistent irrespective of the

temperature records used. In both of these comparisons the

intercepts were significantly different (field data, F1,47 = 14.6,

P = 0.004; herbarium data, F1,146 = 10.3, P = 0.002),
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Fig. 1. Relationships between flowering date (expressed as days after

1 April) and mean spring temperature (March–May) in Central

England derived from (a) herbarium records from 1848 to 1958

(y = 99.54)6.51x, r2 = 0.182, P < 0.001, n = 77) and (b) field

data between 1975 and 2006 (y = 101.88)6.69x, r2 = 0.642,

P < 0.0001, n = 25).
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Fig. 2. Relationships between flowering date (expressed as days after

1 April) and mean spring temperature (March–May): (a) between

herbarium records from 1855 to 1958 and temperature at Southamp-

ton (y = 99.8 –5.66x, r2 = 0.134,P = 0.0016, n = 72); (b) between

field data from 1975 to 2006 and temperature at Eastbourne

(y = 97.7)5.68x, r2 = 0.586,P < 0.0001, n = 25).
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reflecting the differences between the temperature records

used.

The effect of longitude of origin on the flowering time of

herbarium specimens was significant (Fig. 3). Flowering was

earlier at more westerly collection sites by an average of

4.86 days per degree longitude.

The regression model derived from herbarium specimens

(1848–1958) and CET was used to predict flowering dates for

each of the 25 years between 1975 and 2006 for which there

were field records of time of flowering. These predictions were

highly correlated with the observed peak flowering dates

(P < 0.01); the principal axis regression between observed

and predicted dates had a coefficient close to unity (1.021) and

accounted for 63%of the variation (Fig. 4).

Discussion

Although biological collections can potentially provide valu-

able evidence of the impacts of climate change on the phenol-

ogy of plant and animal species (Sparks 2007), their value as a

proxy for field data has not previously been tested indepen-

dently for any species. Miller-Rushing et al. (2006) compared

flowering dates in recent benchmark years with those derived

from historical photographs and herbarium specimens (1900–

1921) for a range of species and found that not only were the

deviations highly correlated with the corresponding differences

in spring temperature but they yielded a trend that was very

similar to that observed in independent field data of first flow-

ering dates for the years 1887–1903. Bolmgren & Lönnberg

(2005) established correspondence between flowering times

derived from herbarium records and phenological observa-

tions, but did not investigate the underlying climatic drivers.

The power of historical collection data to predict the conse-

quences of future climate change needs to be tested directly.

The availability of field data for the rare terrestrial orchid

Ophrys sphegodes, recorded at a single site in the UK over a

32-year period, provided a unique opportunity to seek valida-

tion of the relationship between flowering date and mean

spring temperature that was apparent from analysis of data

from herbarium specimens collected over a much longer, and

different, period of years. The comparison is greatly strength-

ened by the fact that peak flowering time was recorded in the

field, rather than date of first flowering, which ismore common

in long-term phenological records. It is now clear that first

flowering dates may not be ideal measures of plant responses

to climate change, because the extremes of flowering distribu-

tions are more susceptible to confounding effects than central

values (Miller-Rushing, Inouye & Primack 2008). Herbarium

collections also tend to reflect peak flowering, as collectors gen-

erally aim to obtain prime specimens in full flower, as testified

by the fact that we had to discard only one specimen in which

too few flowerswere open to satisfy our sampling criterion.

Both historical and contemporary data showed that the

peak flowering date of O. sphegodes was earlier in years with

warmer springs, as expected (see also Hutchings 2010). This

was the case both when the two phenological records were

related to a common temperature record (CET) andwhen field

and herbarium records were related to different but more geo-

graphically proximate temperature records (Eastbourne and

Southampton respectively). The close correspondence between

field and herbarium regressions, irrespective of the geographi-

cal locations of the temperature records tested, argues for the

robustness of the relationships. Furthermore, using geographi-

cally different temperature records did not significantly alter

the results for either contemporary or historical sources of

data. Previous phenological studies have found similar correla-

tions between flowering date and measures of spring tempera-

ture in spring- and summer-flowering species. The estimated

advance in peak flowering date of 5.7–6.7 days per 1 �C rise

in temperature in O. sphegodes is within the range reported

for advance in first flowering date in other species in the UK.

Fitter et al. (1995) reported a mean advance of first flowering
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Fig. 3. Relationship between flowering date (expressed as days after

1 April) and longitude of collection site for the herbarium records.

Negative values of decimalised longitude are westerly (y =

45.74)4.86x, r2 = 0.219,P = <0.001, n = 69).
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Fig. 4. Relationship between observed flowering date in the field (y1)

in 25 years between 1975 and 2006, and flowering date predicted from

herbarium data for the same years (y2). The principal axis regression

(solid line) is y1 = )0.173 + 1.021y2, r
2 = 0.63, P < 0.001, n =

25. The dashed line would apply if there were exact correspondence

between the observed flowering date and the predicted flowering

date.
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date of 4.4 days per 1 �C for 243 species at a single locality but

with considerable differences between species; similarly, first

flowering dates of 24 species, averaged across the UK,

advanced between 2 and 10 days per 1 �C increase in tempera-

ture (Sparks, Jeffree & Jeffree 2000).

The relationships between peak flowering date and spring

temperature derived from contemporary and historical data

for O. sphegodes were nearly identical, indicating a common

response to spring temperature, notwithstanding that the his-

torical collection and field observation periods were dissimilar

in length, separated in time and different in geographical

extent. This consistent response is important, as the pace of cli-

mate change has accelerated since 1975 when the field studies

were initiated (IPCC 2007). None of the herbarium specimens

was collected after 1958 and they therefore largely pre-date the

period of fastest anthropogenic climate change. Because the

field and herbariumdatawere independent, it was possible also

to test the power of the earlier herbarium records to predict the

effects of subsequent climatic warming. Importantly, although

there was some variation between years in the accuracy of pre-

dictions, the overall predictive power was extremely good, with

the principal axis regression line for predicted and observed

values lying close to the ideal 1 : 1 relationship.

Rigorous validation of the type presented here, although

only based on data for a single species to date, serves to

increase confidence in the use of biological collections for pre-

dicting future phenological responses to climate change.

Despite the strong underlying mean temperature signal, varia-

tion in flowering time may be influenced by a myriad of fac-

tors, and there are likely to be more confounding factors in

the herbarium record than in the field data, because it

includes specimens taken from a wider range of geographical

locations and microhabitats. Predictions based solely on

mean spring temperature in Central England accounted for

18% of the variation in flowering date seen in herbarium

specimens, but 64% of variation in flowering date in the field

records from a single site. Use of more local temperature

records in fact accounted for slightly (but not significantly)

less variation in both cases, possibly because of the use of

minimum and maximum temperatures averaged on a

monthly rather than daily basis. Another important explain-

able source of variation in flowering time in the herbarium

record was the geographical range of collection sites, as seen

in the significant regression on longitude. This was the major

gradient in distribution, and earlier flowering at westerly sites

is consistent with a climatic trend to warmer springs in the

west. This suggests that, had local temperature records been

available for each collection site, even more of the variation

in flowering time would have been accounted for by spring

temperature. Despite the lower signal-to-noise ratio in the

herbarium record, the signal was the same as in the field data

and it was applicable over a much longer period. Bowers

(2007) used physiological models based on previously deter-

mined flowering requirements (trigger dates and heat sums

above a 10 �C threshold) to predict, retrospectively, advanc-

ing flowering dates of shrubs in the Sonoran desert through

the 20th century. A correlated tendency towards earlier collec-

tion dates in herbarium material over the same period sup-

ported the hypothesis that there had been a genuine response

to changing climate, especially as there was no evidence that

collector behaviour had changed over the period of study.

However, the use of herbarium specimens assumes that they

are representative samples of the population from which they

are drawn. The potential for bias resulting from variation in

collection effort has been voiced as a concern by previous

authors (Case et al. 2007). Our study demonstrates both that

collector bias is not a problem when the herbarium data

accepted for use in scientific studies are subjected to carefully

controlled selection criteria, and that it is not necessary to

have hundreds of specimens in order to extract useful infor-

mation about the relationships between climate and time of

flowering. Although further validation using additional

species with different phenologies is desirable, the extreme

scarcity of suitable field observations limits opportunities for

this to be achieved at the present time. As a spring-flowering

plant, O. sphegodes falls into a group identified as having

flowering phenologies that are likely to be particularly sensi-

tive to temperatures early in the year (Fitter et al. 1995),

although both the scale and direction of changes in phenology

can be idiosyncratic and potentially influenced by additional

climatic drivers (Crimmins, Crimmins & Bertelsen 2010).

Species that flower later in the summer may be less sensitive

to warmer temperatures, and species that reproduce in the

autumn may be sensitive in the opposite direction; analysis of

34 500 dated herbarium records of autumn-fruiting of mush-

rooms in Scandinavia has revealed an average delay of

12.9 days since 1980, as the growing season has been extended

by warming (Kauserud et al. 2008).

For most species of plants and animals, biological collec-

tions are the only source of long-term phenological data. It is

estimated that some 2.5 billion specimens of flora and fauna

are held in biological collections worldwide (Graham et al.

2004). The current drive toward digitisation of collections is

facilitating the dissemination of the information they contain.

An estimated 60 million records are already available for a

wide range of taxa via internet information networks such as

the Global Biodiversity Information Facility and HerpNET

(Graham et al. 2004). With appropriate validation, the exploi-

tation of this resource will have increasing relevance and value

(Prather et al. 2004) as we seek to understand and predict the

consequences of continuing climate change.
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