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Abstract 

 
 

 

Small non-coding RNAs (sRNAs) constitute a significant portion of the 

transcriptome in eukaryotes. Many of these sRNAs regulate gene expression. Next-

generation sequencing (NGS) has revealed a plethora of previously uncharacterised 

sRNAs with potential biological function, a number of which originate from longer 

RNAs. Here, the biogenesis of sRNAs derived from the non-coding Y RNAs 

(YsRNAs) was characterised as a model for understanding this emerging class of 

sRNA fragments. Y RNAs are highly conserved, 100 nt long molecules involved in 

DNA replication which bind to the autoimmune proteins Ro60 and La. 

 

YsRNAs are produced in cells undergoing apoptosis. Here, it was demonstrated 

that YsRNAs are generated from the 5’ and 3’ ends of all four Y RNAs in stressed 

and unstressed cells. Furthermore, production of these fragments was observed in 

both cancerous and non-cancerous cells. Although YsRNAs have been proposed to 

have gene silencing activity, experiments done here found that YsRNAs do not 

enter the microRNA pathway and are not generated by the gene silencing-related 

protein Dicer. Furthermore, experiments established that the enzyme which 

produces fragments from tRNAs, angiogenin, was also not responsible for YsRNA 

generation. 

 

Using mammalian cultured cells along with gene knockout and RNA interference 

(RNAi) technology, it was determined that RNase L contributed to YsRNA 

generation. Furthermore, the Y RNA binding protein Ro60 was shown to be 

essential for YsRNA production through a model of RNase protection. Analysis of 

deep sequencing data in Ro60 knockout cells revealed that many other sRNAs are 

also dependent on Ro60. 

 

Finally, a ‘high definition’ (HD) protocol to improve NGS detection of sRNAs was 

tested. The HD protocol was found to be better at detecting sRNAs than current 

methods. This will facilitate more efficient detection of novel sRNAs in the future. 
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1.1 Overview: A genome governed by RNA 

 

One of the most striking discoveries in recent times was the discovery of 

just how few genes there are in the human genome (Lander & International Human 

Genome Sequencing Consortium, 2001; Collins & International Human Genome 

Sequencing Consortium, 2004). Compared to the predicted 100,000 protein coding 

genes originally estimated, only 20,687 were finally identified recently following 

the completion of the ENCODE (Encyclopaedia of DNA Elements) project 

(Bernstein & ENCODE Project Consortium, 2012). Paradoxically, the human 

proteome is likely to hold an estimated 500,000 unique protein variants based on 

investigations into the yeast and fruit fly genomes (Ghaemmaghami et al., 2003; 

Brunner et al., 2007). The complexity of the proteome relative to the modest 

repertoire of bona fide genes is now becoming clear.  

There is an overlapping arrangement of genetic information which is 

achieved by several mechanisms (Tuck & Tollervey, 2011). Firstly, variable 

transcription start sites for the same locus can give rise to transcripts which share a 

common sequence but are functionally independent. Secondly, genes can be 

differentially ‘spliced’ to give rise to varied isoforms. Thirdly, a single transcript 

can contain several genetic units which are differentially processed, and serve 

separate biological roles, (such as miRtrons - microRNAs which are present within 

the introns of protein-coding genes). And finally, transcripts with one function can 

be cleaved to give rise to smaller transcripts with distinct functions. This is notably 

demonstrated by small RNAs derived from longer RNAs. 
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RNA acts as an intermediary in the 'central dogma' of gene expression (the 

expression of genes from DNA to RNA, then to protein). However, the vast 

majority of cellular RNA is non-coding. Indeed, most of the genome in complex 

organisms is transcribed into non-coding RNA rather than protein coding 

transcripts (Mattick & Makunin, 2006). Only 1.5% of the human genome is protein 

coding yet around 80% is transcribed into RNA (Birney & ENCODE Project 

Consortium, 2007), making non-coding RNA a dominant feature in the cellular 

landscape. It has become increasingly apparent that the role of RNA in cellular 

processes is much more significant than first thought (Sharp, 2009). There are a 

vast number of distinct families which make up the 'RNA world' (Gilbert, 1986), 

having diverse roles such as gene silencing, intermediates during gene expression, 

structure formation, non-protein based enzymes and splicing.  

Two characteristic features of these RNA families are the length and 

secondary structure of the RNA molecules. The structure of an RNA molecule is 

important to its function and depends on intramolecular sequence complementarity 

between nucleotide bases. It is sometimes misleading to think of each RNA family 

as a discrete group of molecules, as there can be significant interchangeability 

between groups. For instance, some transfer RNAs (tRNAs) and small nucleolar 

RNAs (snoRNAs) can enter small interfering RNA (siRNA)-like pathways 

(Pederson, 2010; Brameier et al., 2011).  

Y RNAs are one such family of non-coding RNAs. Y RNAs can be 

considered as a model of firstly, how a non-coding RNA can have a significant 

biological role in cellular biology, and secondly, how RNA fragmentation can 
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significantly increase the spectrum of distinct genetic units within the cell, giving 

rise to an overlapping arrangement of genetic information. 

 

1.2 Evolution, structure and biogenesis of Y RNAs 

 

 Y RNAs were discovered following two investigations into the 

autoimmune disorder Systemic Lupus Erythematosus (SLE) (Lerner & Steitz, 1979; 

Lerner et al., 1981), which is characterised by the inflammation of connective 

tissue. Lerner and colleagues aimed to uncover nuclear and cytoplasmic targets of 

the antibodies involved in this autoimmune response. They achieved this by 

immunoprecipitating cell extracts from mouse derived Ehrlich ascites tumour cells 

using serum from SLE patients containing antibodies to the Ro and La proteins. 

First, they investigated using only nuclear cell extracts from Ehrlich ascites, and 

identified a group of small non-coding nuclear RNA (U RNA) containing 

ribonucleoproteins (RNPs) as auto-antibody targets (Lerner & Steitz, 1979). In a 

later study in 1981, they used total extracts from the Ehrlich ascites along with 

serum containing antibodies to the Ro and La proteins (Lerner et al., 1981). It was 

in this second set of experiments that they identified small cYtoplasmic RNAs 

contained in RNPs to which they designated the prefix Y, to distinguish them from 

their nUclear U RNA counterparts (Lerner et al., 1981). 

 There are four principal Y RNA molecules (Figure 1.1) denoted Y1, Y3, 

Y4 and Y5 (Y2 is now considered to be a truncated form of Y1) (Wolin & Steitz, 

1983). Y RNAs show high evolutionary conservation within the animal kingdom, 

and there is evidence that orthologs also exist in prokaryotes (Chen et al., 2000; 
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Mosig et al., 2007; Perreault et al., 2007), suggesting that these genes may have an 

important function. Y3 shows the highest conservation in vertebrate species (Farris 

et al., 1995). It is thought that the Y RNA family evolved from a common ancestral 

gene, which, through gene duplication, gave rise to Y1/Y3 in one lineage and 

Y4/Y5 in the other (Mosig et al., 2007).  

Many animal species do not contain the full Y RNA complement. For 

example, many rodents only possess Y1 and Y3 (Pruijn et al., 1993), although both 

the mouse and rat genomes have a redundant 'fossil' Y5 RNA gene that is no longer 

expressed (Perreault et al., 2007). In frogs, the Y5 gene has been further duplicated 

to give Yα (Mosig et al., 2007). Interestingly, Y RNA genes have not been 

detected in the genome of the fruit fly Drosophila melanogaster, although putative 

Y RNA genes have been predicted in the mosquito genome (Perreault et al., 2007). 

The first identifiable Y RNA in invertebrates was the single, ceY RNA of 

Caenorhabditis elegans (Vanhorn et al., 1995). Interestingly the human Ro protein 

could bind to ceY RNA, but the equivalent Ro homologue in the nematode could 

not bind the human Y RNAs (Vanhorn et al., 1995). Stem-bulge RNAs (sbRNAs) 

in the Caenorhabditis elegans have also been shown to be highly homologous to 

vertebrate Y RNAs, and contain a protein-binding motif for the Y RNA-associated 

protein Ro60 (Boria et al., 2010). The Ro protein has not been detected in plants or 

fungi, and presumably these organisms also lack Y RNAs (Perreault et al., 2007). 

However, a Ro ortholog (Rsr – Ro sixty related) has been documented in the 

eubacterium Deinococcus radiodurans and has been shown to bind an RNA which 

resembles a Y RNA (Chen et al., 2000). As the Ro ortholog is a rare occurrence in 

prokaryotes it is likely that the gene has been acquired via horizontal gene transfer 
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from a eukaryotic organism (Chen & Wolin, 2004), with the ortholog having the 

ability to bind to an endogenous, Y RNA-like molecule. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Predicted secondary structure of the four human Y RNAs. 

 

All Y RNAs have at least two main stems separated by a large internal pyrimidine-rich 

loop. The most conserved region between the Y RNAs is the stem at the 3'/5' end. This 

is where the Ro60 protein binds, and involves the important Cytosine bulge which is 

crucial for this interaction (Pruijn et al., 1991). Both enzymatic cleavage and chemical 

modification experiments have been used to determine these structures shown (Wolin 

& Steitz, 1984; van Gelder et al., 1994). Figure reproduced from Christov et al., 2006. 
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Y RNAs are controlled by RNA polymerase III promoters (Wolin & Steitz, 

1983) and are transcribed into short, 84-113 nt RNAs which fold back on 

themselves to form distinct hairpin-containing structures (Figure 1.1). These 

structures largely reflect the minimal-free energy calculated predictions, but 

important structural features have also been determined in different studies via 

both enzymatic cleavage and nucleotide chemical modification experiments (Wolin 

& Steitz, 1984; van Gelder et al., 1994). Different RNases were used to 

differentiate between single stranded and double stranded (such as RNase VI) 

regions (van Gelder et al., 1994). Dimethlysulfate, CMCT and kethoxal treatments 

were used to chemically modify nucleotides in order to determine the exact 

positions of the bases, using primer extension assays to detect the modified 

nucleotides (van Gelder et al., 1994). As a general trend, the Y RNA secondary 

structures have a minimum of 2 stems each. Another structural characteristic is a 

large single stranded pyrimidine-rich loop which separates the stems (Wolin & 

Steitz, 1983). This central loop is present in all studied Y RNAs and shows high 

structural stability despite being the region with the least sequence conservation 

(Teunissen et al., 2000). The region with the highest sequence conservation 

between the Y RNAs is the main stem at the 5'/3' end. Y RNAs have a 3' poly (U) 

tail and a 5' triphosphorylated guanine residue (pppG), except for Y5 which has 

pppA (Hendrick et al., 1981).  

 Each of the four Y RNA genes are independently expressed, although, they 

tend to be clustered within the genome. For instance, in humans, the four Y RNA 

genes (hY1, hY3, hY4 and hY5) are all located on chromosome 7 (Maraia et al., 

1994b), with Y1 being expressed from the opposite strand (Mosig et al., 2007). 
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Unusually for pol III transcripts, the Y RNA genes are found as single copies in the 

human genome (Wolin & Steitz, 1983). 

 Although Y RNAs interact with a range of proteins, which will be 

discussed in detail later, a defining trait of Y RNAs is their ability to bind the 60 

kDa protein Ro60 (Hendrick et al., 1981; Lerner et al., 1981; Wolin & Steitz, 1984) 

and the 47 kDa La protein (Hendrick et al., 1981). The typical Y RNA life cycle 

begins with the Y RNA, and two key genes (Ro60 and La) being transcribed in the 

nucleus. The Ro60 and La transcripts are exported to the cytoplasm where they are 

translated into proteins, which are subsequently imported back into the nucleus. As 

Y RNA transcription is terminated, the newly synthesised transcript associates with 

La, followed by Ro60 (Peek et al., 1993). The entire Ro RNP complex is then 

transported to the cytoplasm. It has been shown however, that Ro60 binding is not 

always necessary for Y RNAs to be functionally active in some pathways (Langley 

et al., 2010). 

 Y RNAs are expressed in all human cells (Pruijn et al., 1993), although the 

cellular composition of the different Y RNAs varies between cell types. 

Interestingly, red blood cells only possess hY1 and hY4 and lack hY3 and hY5 

(O'Brien & Harley, 1990). As erythrocytes are anucleated cells, this indicates 

different functions for Y1/Y4 and Y3/Y5. Differential Y RNA expression between 

human tissue types has also been documented. Y RNAs are present in high levels 

in heart and brain tissues, and lower levels in the liver (Wolin & Steitz, 1984).  

It has been calculated via Northern blot that approximately 59% of the Y 

RNA population in HeLa cells (immortalised cervical cancer cells) is made up of 

Y5, 26% of Y4, 12% of Y3, and around 3% is composed of Y1 (Gendron et al., 
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2001). More recent analysis of Y RNA abundance via qPCR in HeLa cell extract 

gave a similar result (Christov et al., 2006), although the relative abundance of Y4 

RNA was estimated to be around 3-4 fold lower than that reported by Gendron et 

al, with Y1 and Y3 showing comparatively higher expression levels than Y4 RNA. 

The strikingly high expression levels of hY5 RNA and the relatively modest levels 

of hY4 RNA reported (Gendron et al., 2001; Christov et al., 2006) is not consistent 

with a report which showed that the hY5 gene promoter is not as efficient as the 

hY4 gene promoter (Maraia et al., 1996).  

As well as having four actively expressed Y RNAs, the human genome also 

has around 1,000 pseudogenes derived from these Y RNAs which are distributed 

over all 23 human chromosomes (Perreault et al., 2005). The number of Y RNA 

pseudogenes in humans and chimpanzees is much greater than that of rodents. 

These pseudogenes are capable of retrotransposition via the L1 (Long interspersed 

nuclear element-1) transposition machinery (Perreault et al., 2005). The biological 

role of these pseudogenes is unknown. 

 

1.3 Y RNA binding proteins 

 

Y RNAs were first discovered owing to their association with proteins 

recognised by autoantibodies from immune sera of patients with systemic lupus 

erythematosus (SLE) (Lerner et al., 1981). Y RNAs form complexes within the 

cell with either single or multiple proteins, forming Y RNA ribonucleoproteins (Y 

RNPs). When Ro60 is bound to Y RNAs this complex may also be referred to as 

the Ro ribonucleoprotein complex (Ro RNP), and the two terms are often 
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interchangeable. The most researched Y RNA binding proteins to date are the 60 

kDa protein Ro60 and the 47 kDa La. 

 

1.3.1 General anatomy of the Y RNA Ribonucleoprotein (Y RNP) 

 

Almost as soon as Y RNAs were discovered, it was demonstrated that two 

key proteins targeted by autoimmune patients, Ro60 and La, both could bind to Y 

RNAs within the cell (Figure 1.2) (Hendrick et al., 1981). Both Ro60 and La have 

an RNA binding motif of around 80 amino acids (Pruijn et al., 1991). 

Reconstitution experiments demonstrated that Ro particles also possessed the La 

determinant and that RNAs which bind Ro60 and La were generated by RNA 

polymerase III (Hendrick et al., 1981). In this study, it was also shown that the La 

protein interacts with all pol III transcripts following transcription. The interaction 

of La with pol III transcripts was later shown to be due to binding to the 3’ 

polyuridylate stretch on these nascent transcripts (Stefano, 1984; Pruijn et al., 1991; 

Slobbe et al., 1992). La also binds to the 3’ polyuridine tail of Y RNAs (Figure 1.2) 

(Pruijn et al., 1991), which unlike most pol III transcripts, is retained following 

maturation. This allows the retention of La by the Y RNA, whereas most pol III 

transcripts lose this tail during maturation (Mamula et al., 1989; Boire & Craft, 

1990). Preliminary studies indicated that La RNPs were primarily localised to the 

nucleus and that Ro particles were mainly cytoplasmic (Hendrick et al., 1981). 

Each mammalian cell was found to have around 10
5
 copies of the Ro RNP, a level 

which equates to approximately to 1% of the number of ribosomes (Hendrick et al., 

1981). 
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Figure 1.2. Molecular depiction of the Y RNP showing typical Y RNA-protein 

interactions.  

 

The Ro60 protein, which binds to the most conserved region (the 3'/5' stem) on the Y 

RNA (Wolin & Steitz, 1984) is a major component of the complex. The bulged 

cytidine residue essential for Ro60 binding is shown as a kink in the lower 5’ stem. 

Another key protein of the Y RNP, the 47 kDa La, binds to the 3'-poly(U) tail (Pruijn 

et al., 1991). Other reported binding proteins include Nucleolin, hnRNP I & K and 

L5 protein which primarily bind to the large internal loop of the Y RNA (Fabini et 

al., 2000). 
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The Ro60 binding site on the Y RNAs is the lower double stranded stem 

region where the 3’ and 5’ ends of the RNA meet (Figure 1.2) (Wolin & Steitz, 

1984). This stem is characterised by a bulged cytidine residue which is essential for 

Ro60 binding (Wolin & Steitz, 1984; Pruijn et al., 1991). The binding site was 

determined via RNase protection assays followed by immunoprecipitation of 

digested particles using anti-Ro60 antibodies. However, it was noted that the 

RNase protection experiments would not necessarily reveal other Ro60 binding 

sites which are easily released following RNase treatment, as very high 

concentrations of pancreatic ribonulcease were used (Wolin & Steitz, 1984). 

Deletion mutant experiments later showed the bulged C-residue to be essential for 

Ro60 binding (Pruijn et al., 1991). An intact Ro60 binding site on the Y RNAs is 

required for nuclear export of the Y RNAs (Simons et al., 1996).  

The size of the Ro RNPs was initially estimated to be between 93-150 kDa 

(Wolin & Steitz, 1984) but was later found to be between either 230-350 kDa 

(Boire & Craft, 1990) or 150-550 kDa (Fabini et al., 2000). In all studies, it was 

acknowledged that this size was greater than the sum of the molecular masses of 

Ro60, La and a 33 kDa RNA molecule, hinting that other molecular determinants 

were present in Y RNPs. The affinity of Y RNAs for Ro60 is disrupted at a 

relatively low ionic strength using 500 mM salt, which is similar for most nucleic 

acid binding proteins (Boire & Craft, 1990). La binding is slightly more resilient 

and dissociates after exposure to around 700 mM salt (Boire & Craft, 1990). Y 

RNPs also elute at different salt concentrations during anion exchange experiments, 

with hY5 RNP being eluted at lower salt concentrations of around 200 mM NaCl 
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(Boire et al., 1995) and hY RNPs 1-4 being eluted at higher salt concentrations 

nearer 300 mM (Boire & Craft, 1990; Boire et al., 1995).  

The heterogeneity of Y RNPs is further demonstrated by the presence of 

autoantibodies in sera from lupus patients which specifically recognised hY5 RNPs 

(Boire & Craft, 1989). Indeed, further experimentation identified the presence of 

antibodies in these sera which targeted the RNA component of Y5 RNPs rather 

than the bound proteins (Boulanger et al., 1995). Immunoprecipitation experiments 

of in vitro transcribed hY5 showed that the region next to the Ro60 binding site on 

the 5’/3’ end of the RNA was the region possessing the epitope recognised by IgG 

α-hY5 antibodies. Interestingly, one study has shown that hY5 RNP has been 

found to be primarily nuclear compared with the exclusively cytoplasmic hY 

RNAs 1-4, and that the signal for nuclear retention resides in the Y5 RNA itself 

(Gendron et al., 2001). 

The literature is divided on the percentage of Y RNAs that are complexed 

with the Ro protein. The first demonstration that most Y RNAs are bound by Ro60 

was demonstrated in mouse cells (Wolin & Steitz, 1983). Extracts from mouse 

cells were immunoprecipitated with anti-Ro antibodies and it was found that all of 

the mY RNAs were depleted from the supernatant. Later, this was repeated in 

human cells (Peek et al., 1993), which gave similar results supporting that most Y 

RNAs are stably associated with Ro60. However, recent experiments which used 

qPCR to detect remaining Y RNAs following RoRNP immunoprecipitation have 

argued that 50% of the Y RNAs are not bound by either Ro60 or La (Langley et al., 

2010). This discrepancy might be due to the varying specificity of the antibodies 

used by these groups and the differential sensitivity of the techniques employed 
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(Northern blot versus qPCR) to test the amount of remaining Y RNA following 

immunoprecipitation.  

A different investigation found that all Y RNAs are bound by La in vivo, 

but not necessarily all Y RNAs are bound by Ro60 (Fabini et al., 2000). 

Furthermore, coprecipitation of recent, novel Y RNA binding proteins was more 

efficient with α-La antibodies than with α-Ro60 antibodies (Fabini et al., 2000). 

On the other hand, the level of endogenous Y RNAs is dependent on the presence 

of the Ro60 protein. For example, there is a significant decrease in the level of the 

single Y RNA present in Caenorhabditis elegans (the 105nt long ceY RNA) in 

ROP-1 (the Ro60 homologue) mutants (Labbe et al., 1999). This decrease in ceY 

RNA levels is rescued by transgenic expression of ROP-1. Indeed, the levels of 

mY1 and mY3 are significantly diminished in Ro60
-/-

 mouse embryonic stem cells 

(Chen et al., 2003). 

Although Ro60 may bind a significant proportion of the Y RNAs in the cell, 

the Moloney murine leukemia virus (MLV) has been shown to selectively 

encapsidate host mY1 and mY3 RNAs, even in a Ro60
-/-

 background (Garcia et al., 

2009). The function of this selective uptake of Y RNAs is unknown, but implies 

that Ro60 is not necessarily required for Y RNA function, which was further 

confirmed in chromosomal DNA-replication studies (Langley et al., 2010), 

discussed in detail later. 

Subcellular localization experiments involving both antibody staining and 

enucleation analysis were used to determine Y RNP and Y RNA distribution (Peek 

et al., 1993). Antibody based immunofluorescence gave conflicting results 

depending on the method of fixation used. When either Hep-2 or HeLa cells were 
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fixed using methanol/acetone, it was shown that monoclonal Ro60 and La antibody 

staining was speckled in the nucleus but was stronger in the cytoplasm. Conversely, 

paraformaldehyde fixation gave the opposite result (Peek et al., 1993). However, 

nuclear and cytoplasmic fractioning experiments resolved this issue, and revealed 

that the Y RNAs are specifically localised to the cytoplasm, whereas the La and 

Ro60 proteins are present in both the nucleus and the cytoplasm (Peek et al., 1993). 

In the nucleus, neither Ro60 or La was found coupled to Y RNAs, whereas most Y 

RNAs were found protein bound in the cytoplasm. Approximately 30-50 % of free, 

non-RNA bound Ro60 and La was found to be in the nucleus depending on the cell 

line analysed (Peek et al., 1993).  

Microinjection experiments in Xenopus laevis using either in vitro 

transcribed Y RNAs (denoted xY3, xY4, xY5 and xYα) or in vitro translated Ro60 

and La showed that Y RNAs accumulate in the cytoplasm (Simons et al., 1994). 

Most of the microinjected La went to the nucleus and a substantial amount of Ro60 

was also imported to the nucleus, where both proteins were shown to associate 

with the Y RNAs (Simons et al., 1994).  

 

1.3.2 Ro60 

 

Ro60 is an important autoantigen in SLE and SS (Sjögren's Syndrome) 

patients (Ohlsson et al., 2002) and is evolutionarily conserved (Deutscher et al., 

1988; Slobbe et al., 1991). Mice lacking Ro60 develop symptoms characteristic of 

autoimmune disorders, including photosensitivity and skin lesions (Xue et al., 
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2003). Ro60 is essential for the stability of Y RNAs, as there is a thirty-fold 

reduction in mY1 and mY3 in Ro60 knockout cells (Xue et al., 2003). 

The first identifiable function of Ro60 was its involvement in non-coding 

RNA quality control (O'Brien & Wolin, 1994; Shi et al., 1996). It was shown that 

in Xenopus laevis, 5S rRNA variants which had 8-10 nt additions at their 3’ ends 

were bound by Ro60. These extensions are a result of RNA polymerase III failing 

to recognise the first of three transcription termination signals. Variant 5S rRNAs 

fold differently compared to their wild-type counterparts, forming an alternative 

helix. It is this specific, altered helix which allows Ro60 to recognise and bind to 

variant 5S rRNA (Shi et al., 1996). As well as having extensions, variant 5S 

rRNAs have internal mutations (Shi et al., 1996).  These isoforms are inefficiently 

processed and are eventually degraded. When mutant and wild-type 5S rRNAs are 

injected into Xenopus oocytes, Ro60 specifically associates with the mutant variety 

(O'Brien & Wolin, 1994). It was later shown that Ro60 binds several RNAs with 

single stranded 3’ tails (which are normally removed during maturation) which 

include pre-tRNAs and U6 snRNA (Fuchs et al., 2006) as well as misfolded U2 

snRNAs (Chen et al., 2003). Although the process of how mutant 5S rRNA 

associated with Ro60 are eventually degraded is not clear, it appears to be an 

important quality control pathway. ROP-1 (the Ro60 homologue) mutants in 

Caenorhabditis elegans display a five-fold increase in the level of variant 5S rRNA 

compared to wild-type strains (Labbe et al., 1999). 

Ro60 also plays a role in cell survival following high ultraviolet light (UV) 

exposure. Solar ultraviolet radiation overexposure can be extremely damaging to 

cells, and has severe health effects on target organs including the eyes, skin and 
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immune system (Lucas et al., 2006). In some cases UV damage results in the 

development of terminal melanoma (Narayanan et al., 2010). 

It has been demonstrated that the prokaryote Deinococcus radiodurans, 

which shows high resilience during contact with DNA mutagens, has an ortholog 

of Ro60 called Rsr (Ro sixty-related) (White et al., 1999). Furthermore, it has been 

shown that when this bacterium is exposed to damaging UV irradiation, Rsr is 

upregulated in the cell, and binds to a Y RNA-like molecule which also shows a 

corresponding increase in expression (Chen et al., 2000). Bacterial strains lacking 

the Rsr gene show decreased survival rates following UV irradiation than their 

wild-type counterparts. Another study demonstrated that mouse embryonic stem 

(ES) cells with a Ro60
-/-

 genotype also show higher mortality rates following UV 

exposure compared to wild-type ES cells (Chen et al., 2003). It was found that 

mouse Ro60 and Y RNAs accumulate in the nucleus following UV treatment. 

Taken together, these findings imply an important role for Y RNAs and the 

associated Ro60 in survival following UV damage. This role might involve entry 

into a DNA damage response pathway, or preventing newly transcribed RNAs 

from misfolding or crosslinking with nuclear proteins during UV exposure (Chen 

et al., 2003). Indeed, the dynamic subcellular distribution of Ro60 during cellular 

stress (for example oxidative stress or UV irradiation) is thought to be modulated 

by Y RNA binding (Sim et al., 2009), which in turn makes Y RNAs key molecules 

in the first line of response to damaging stress stimuli. 

X-ray crystallography studies revealed the structure of Ro60 (Stein et al., 

2005). Ro60 is a toroid shaped protein with two domains; a Willebrand factor A 

domain and an RNA binding α-helical HEAT-repeat ring domain. The inner ring of 
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the HEAT-repeat domain is positively charged and is 10-15 Å across, and binds to 

the single stranded 3’ ends of misfolded RNAs. The outer ring binds the double 

stranded RNA portion of the misfolded RNA, but also binds Y RNAs (Stein et al., 

2005). The outer binding site for Y RNAs and the duplex portion of misfolded 

RNAs overlap meaning that there is a competition for the same binding site. This 

suggests that Y RNAs regulate access of misfolded RNAs to Ro60. The RNA 

binding surface is extensive and Ro60 was shown to scavenge for not only 

misfolded, but also correctly folded non-coding RNAs which failed to complex 

with appropriate binding proteins (Fuchs et al., 2006). 

 As well as regulating Ro60’s interaction with other small cytoplasmic 

RNAs, Y RNAs also control the subcellular localisation of Ro60 by governing its 

access to the nucleus (Sim et al., 2009). Ro60 mutants which are unable to bind to 

Y RNAs are shuttled to the nucleus, as disassociation with Y RNAs reveals a 

nuclear localisation signal on the surface of the protein (Sim et al., 2009). In the 

nuclei, Ro60 can then access misfolded RNAs (O'Brien & Wolin, 1994; Chen et al., 

2003). Interestingly, it was also found that cellular stresses such as UV light 

exposure or oxidative stress (such as hydrogen peroxide exposure) result in nuclear 

accumulation of Ro60 in mouse cells (Sim et al., 2009). Therefore, a key function 

of the Y RNAs is making Ro60 available for RNA quality control following events 

which induce cellular damage.  

 In the eubacterium Deinococcus radiodurans, the Ro60 ortholog Rsr shows 

increased expression following nutrient starvation (Wurtmann & Wolin, 2010). 

Furthermore, the exoribonuclease polynucleotide phosphorylase (PNP) associates 

with Rsr during cellular stress in order to mediate rRNA decay (Wurtmann & 
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Wolin, 2010). However neither an increase in Ro60 levels during cellular stress, 

nor an association with exoribonucleases have been reported in eukaryotes. Indeed, 

the most recent tandem affinity purifications of Ro60 failed to identify any 

ribonuclease association (Sim et al., 2012). 

 

1.3.3 The La protein 

 

The La autoantigen is a very abundant, primarily nuclear, protein which is 

highly evolutionarily conserved, and is composed of 408 amino acids (Hendrick et 

al., 1981; Chambers et al., 1988; Scherly et al., 1993; Topfer et al., 1993; Bai et al., 

1994). The La protein is around 50-fold more abundant then Ro60 (Peek et al., 

1993), and binds RNAs using its N-terminal domain (Pruijn et al., 1991). This 

binding is regulated through phosphorylation of the carboxy-terminal domain 

which decreases the affinity of La for the 3’ polyuridine tail (Francoeur et al., 1985; 

Pfeifle et al., 1987). La binds to all RNA polymerase III transcripts, including pre-

tRNAs, pre-5S RNA (Rinke & Steitz, 1982) and also some viral encoded RNAs 

such as the Epstein-Barr virus-encoded ribonucleic acids EBER 1 and EBER 2 and 

the adenovirus-associated ribonucleic acids VAI and VAII (Rosa et al., 1981). La 

is thought to function by releasing nascent pol III RNAs from the DNA template 

allowing multiple rounds of transcription to take place (Gottlieb & Steitz, 1989; 

Maraia et al., 1994a) . 

The La binding site favours the nuclear retention of Y RNAs, as 

demonstrated by the creation of hY1 deletion mutants, and their injection into 

Xenopus oocytes (Simons et al., 1996). Here, La binding to hY1 was shown to 
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slow down export of the Y RNA to the cytoplasm by approximately six hours. 

Human Y RNAs remain bound to La once in the cytoplasm (Boire & Craft, 1990; 

Peek et al., 1993), however in Xenopus association of La is lost following nuclear 

export, perhaps due to 3’ end shortening which is known to occur in pre-5S rRNA 

(Simons et al., 1994; Simons et al., 1996). Y RNA binding to La also appears to be 

important for Y RNA stabilisation. Experiments in C. elegans have shown that 

RNAi depletion of La results in a gradual decrease in Y RNA levels over a 72 hour 

period (Aftab et al., 2012). As mentioned, Ro60 binding has also been shown to be 

important for Y RNA stability (Chen et al., 2000; Xue et al., 2003). This makes Y 

RNA retention by these two proteins in the cytoplasm highly likely. 

La has had many implicated biological functions, many of which are 

controversial or lack significant functional evidence. For example, it was proposed 

that La acts as a transcription termination factor and facilitates the re-initiation of 

pol III transcription (Gottlieb & Steitz, 1989; Maraia et al., 1994a). However, in 

yeast and vertebrate systems where La was depleted, pol III function was 

unaffected (Yoo & Wolin, 1994; Lin-Marq & Clarkson, 1998). A more established 

role for La is in protection of pol III transcripts from exonuclease digestion prior to 

maturation, after which La is displaced (Kufel et al., 2000; Xue et al., 2000). La 

appears to act as a molecular chaperone for nascent RNAs as it only binds targets 

temporarily and assists correct assembly and fate of these immature transcripts 

(Xue et al., 2000).  

The La protein also has a role in pre-tRNA maturation, specifically in 

processing the 5’ end of pre-tRNAs (Fan et al., 1998). Indeed, this is a further 

example of the protein’s RNA chaperone activity. La stabilises pre-tRNAs and 



40 
 

arranges the RNA in a specific structure which allows endonucleolytic cleavage 

and ultimately, 3’ end maturation (Yoo & Wolin, 1997). During tRNA maturation, 

5’ end processing precedes 3’ end processing. The N-terminal region of La binds to 

the 3’ poly(U) of the pre-tRNA whilst the C-terminal end of the protein interacts 

with the 5’ tail. When La is phosphorylated at the C-terminus, binding to the 5’ end 

of the pre-tRNA is inhibited, allowing processing by the ribonuclease RNase P, 

whilst the 3’ end remains protected (Fan et al., 1998). Indeed, La has been shown 

to have a phosphorylation-dephosphorylation cycle. During apoptosis, the La 

protein is completely dephosphorylated and around 25% of La proteins are cleaved 

(Rutjes et al., 1999b). The proposed transcriptional activity of La is inhibited by 

phosphorylation (Maraia et al., 1994a). Dephosphorylated La (which is active in 

pol III transcription) inhibits 5’-end processing of pre-tRNAs (Fan et al., 1998). 

This phosphorylation cycle is disrupted during apoptosis (Rutjes et al., 1999b), and 

therefore deactivation of La may serve as a key step facilitating cell death. 

 La has controversially been implicated in regulating translation of both 

viral and cellular mRNAs. Various studies have used crosslinking analysis and 

found that La binds to the 5’ untranslated region of the poliovirus RNA 

(Meerovitch et al., 1993) and also to mRNA encoding the endogenous X-linked 

inhibitor of apoptosis protein (XIAP) (Holcik & Korneluk, 2000). In the latter 

study, La was shown to bind to the internal ribosome entry site (IRES) and 

facilitate translation, which was inhibited when the availability of functional La 

was reduced. However the role of La in translation has been disputed, owing to the 

extremely high concentrations of La required to re-initiate translation in several La 
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immunodepletion experiments, and the lack of functional evidence of its 

involvement in this process (Wolin & Cedervall, 2002). 

 Finally, the La protein appears to play a role in the gene silencing pathway 

of animal cells. The RNA interference (RNAi) pathway is governed by the RNA-

induced silencing complex (RISC). RISC is composed of a small RNA 

complementary to an mRNA target, as well as an effector protein called Argonaute 

which causes target cleavage or translational silencing (Bartel, 2004). RISC 

turnover, or the rate at which mRNA targets are cleaved and released, has been 

shown to be dependent on the La protein (Liu et al., 2011). Specifically, La 

promoted the multiple turnover of RISC via association with the Argonaute protein, 

AGO2, and by facilitating the release of cleaved mRNA targets. La associates with 

AGO2 in an RNA-dependant manner (Liu et al., 2011). 

 

1.3.4 Ro52 

 

As well as Ro60 and La, another protein which showed reactivity with 

autoimmune sera is Ro52. Early investigations claimed that Ro52 was part of the Y 

RNP complex, binding to the Y RNA via Ro60 (Ben-Chetrit et al., 1988; Slobbe et 

al., 1991; Slobbe et al., 1992). However, additional fractionation and co-

immunoprecipitation experiments demonstrated that Ro52 does not bind to any of 

the Y RNAs, Ro60 or La (Kelekar et al., 1994; Boire et al., 1995). Ro60 and Ro52 

also show differential patterns of cellular localisation; Ro60 was shown to be 

predominantly cytoplasmic whereas Ro52 showed mainly nuclear staining 

(Kelekar et al., 1994). Unlike Ro60 and La, Ro52 does not have an RNA 
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recognition motif (RRM) (Kelekar et al., 1994). Furthermore, it has been 

demonstrated that owing to the zinc finger and leucine zipper motifs of Ro52, this 

protein binds DNA rather than RNA targets (Frank et al., 1995). 

 

1.3.5 hnRNP I & K 

 

Most of the additional Y RNA binding proteins discovered since Ro60 and 

La have been shown to interact via the pyrimidine-rich central loops of these 

molecules (Figure 1.2). Using in vitro transcribed biotinylated Y RNAs in 

reconstitution experiments with various HeLa cell S100 extracts, several novel Y 

RNA binding proteins between 53 kDa and 80 kDa were identified which bound 

preferentially to Y1 and Y3 (Fabini et al., 2000). The identity of two of these 

proteins was later identified via mass spectrometry to be the heterogeneous nuclear 

ribonucleoproteins, hnRNP I & K, which bind to a subset of the human Y RNAs 

via the large central loop, as demonstrated by deletion mutant experiments (Fabini 

et al., 2001). The hnRNP I protein was shown to be a stable component of Y RNPs 

1 and 3. However, hnRNP K appeared to bind only transiently to hY1 and hY3 

which were devoid of Ro60 and La (Fabini et al., 2001). The hnRNP I protein was 

shown to bind a minor fraction of the hY1 and hY3 population (10-20%), and 

required the presence of La, which presumably acts as a molecular chaperone to 

assist RNA folding and subsequent recognition. It was noted that both hnRNP I 

and La have been implicated in similar mRNA processing events, such as 

translation, and suggested that the Y RNAs may serve as carriers for these 

molecules (Fabini et al., 2001). 
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1.3.6 RoBPI 

 

The Ro RNP binding protein (RoBPI) was discovered as a Y RNP 

component via a ribonucleoprotein interaction assay based on the yeast-three 

hybrid system (Bouffard et al., 2000). Using recombinant Ro60 and Y RNAs, it 

was shown that RoBPI only interacted with Ro60 and hY5 together, and not with 

any one of these components alone. The 559 amino acid RoBPI is approximately 

65 kDa, has three RNA recognition motifs (RRM) and displays nuclear 

colocalisation with Ro60, La and hY5 (Bouffard et al., 2000). The RoBPI protein 

is structurally similar to mRNA splicing factors, and therefore like La and hnRNP I 

& K, appears to be involved in controlling expression of coding and non-coding 

genes. As the hY5 RNP has been shown to be predominantly nuclear in humans 

and mouse compared with the cytoplasmic hY RNPs 1-4 (Gendron et al., 2001), is 

targeted by distinct autoantibodies in autoimmune patients (Boulanger et al., 1995), 

as well as eluting in a separate fraction to hY RNPs 1-4 during anion exchange 

chromatography (Boire et al., 1995), RoBPI may contribute to this molecular 

uniqueness of hY5 which separates it from the other Y RNPs.  

  

1.3.7 Nucleolin 

 

Nucleolin is a protein which is localised to the nucleolus and has been 

shown to be involved in multiple steps of the ribosome biogenesis pathway 

(Ginisty et al., 1999). Immunopreciptiation of Ro60 and La autoantigens followed 

by mass spectrometry of associated proteins revealed that nucleolin also appears to 
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be complexed to hY1 and hY3 RNPs (Fouraux et al., 2002). Both matrix-assisted 

laser desorption/ionization time-of-flight (MALDI-TOF) and quadruple time-of-

flight (Q-TOF) mass spectrometry were used to confirm that the novel binding 

protein was indeed nucleolin. Again, like several other novel Y RNA related 

proteins, nucleolin was shown to bind the pyrimidine-rich internal loop of these Y 

RNAs, and it can do so in concert with hnRNP I. The structure, and not the 

sequence of the central loop on the Y RNAs, was shown to be the key determinant 

of nucleolin binding (Fouraux et al., 2002). As nucleolin has been shown to shuttle 

between the nucleus and cytoplasm of cells (Borer et al., 1989), it was proposed 

that nucleolin acts as a carrier molecule of hY RNA1 & 3 (Fouraux et al., 2002).  

 

1.3.8 L5 

 

In depth analysis about Ro60’s involvement in RNA quality control 

revealed an RNP-RNP interaction between Y5 RNA-Ro60 and 5S rRNA bound to 

the ribosomal protein L5 (Hogg & Collins, 2007). Using a novel RNP purification 

method it was shown that Y5 RNA specifically targets Ro60 to misfolded 5S 

rRNAs by interacting with the L5 protein via its internal pyrimidine rich loop, 

which in turn is bound to ribosomal RNA. Y5 RNA then acts as a ‘gatekeeper’ for 

the surface of Ro60, helping to discriminate between correctly and incorrectly 

folded substrates (Hogg & Collins, 2007). 
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1.3.9 ZBP1 

 

The most recently identified,  novel Y RNA binding protein is the zipcode-

binding protein ZBP1 (Sim et al., 2012). The 68 kDa ZBP1 protein has been 

shown to be involved in mRNA localisation and translation regulation (Ross et al., 

1997; Huttelmaier et al., 2005). ZBP1 was shown to copurify with Ro60 and Y3 

RNA in mouse cells, and this association is increased in cells exposed to UV light. 

Nuclear accumulation of the mY3/Ro60/ZBP1 complex was also more pronounced 

following UV light exposure (Sim et al., 2012). Under non-stressed conditions, 

Ro60 and mY3 were shown to be localised to the cytoplasm by ZBP1, and the Y3 

RNP complex accumulated in the nucleus when ZBP1 was depleted (Sim et al., 

2012). 

 

1.4 The role of Y RNAs in chromosomal DNA replication 

 

 The propagation of life relies on the efficient and timely replication of the 

cell’s genetic material. During cell division in all organisms, parental DNA gives 

rise to two identical daughter strands, each inheriting one original strand from the 

parent in a semi-conservative fashion. In eukaryotes, chromosomal DNA 

replication is tightly regulated and is closely linked to the cell cycle, occurring in S 

phase. 

 The current model of DNA replication is already well reviewed in the 

literature (Takeda & Dutta, 2005; Pospiech et al., 2010), but I will briefly 

summarise key molecular events here in order to facilitate the understanding of the 
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role of Y RNAs in this process. Eukaryotic cells start DNA replication via the 

assembly of the multiprotein pre-replicative complex (pre-RC) in G1 phase of the 

cell cycle. This is initiated with the assembly of the six subunit origin recognition 

complex (ORC), which in turn recognises specific sites where DNA replication 

initiation occurs - called autonomously replicating sequences (ARS). The Cdc6 and 

Cdt1 proteins then interact with the ORC and facilitate the recruitment of the 

minichromosome maintenance proteins Mcm2-7. Together these proteins form the 

pre-RC in G1 phase nuclei. Activation of the pre-RC and the formation of DNA 

replication forks occurs during the transition to S phase and involves a second 

group of factors. These proteins include the two kinases Cdk2 and Cdc7. Other 

initiation factors are then recruited, including Cdc45, Mcm10, the GINS complex 

and replication protein A (RPA). Origin DNA is then unwound and the three DNA 

polymerases (DNA pol α, DNA pol δ and DNA pol ε) are recruited and eventually 

commence replication. 

 Early studies which investigated the biochemistry of DNA replication 

employed cell fusion experiments, such as those famously conducted by Rao and 

Johnson in 1970 (Rao & Johnson, 1970). Using this technique, it was shown that S 

phase cells contain factors which could induce G1, but not G2 phase nuclei, to 

prematurely trigger DNA replication. More recently, the development and 

optimisation of a human cell-free system to study DNA replication was established 

which has resulted in further replication factors being uncovered (Krude et al., 

1997; Krude, 2006). In this cell-free system, isolated cell cycle-arrested template 

nuclei synchronised in late G1 phase are prepared which are licensed to replicate, 

but lack active DNA replication forks. Then, by adding cytosolic extracts from 
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proliferating cells containing initiation factors or combinations of specific cellular 

fractions, novel DNA replication factors can be identified by seeing if arrested 

nuclei can then initiate DNA replication (Krude, 2006). 

 Using this cell-free system Krude and colleagues identified the noncoding 

Y RNAs as essential factors for chromosomal DNA replication (Christov et al., 

2006). When the cytosolic extract from actively proliferating cells was fractionated 

by anion exchange chromatography, this gave rise to two essential fractions called 

QA and QB. QB was further separated into fractions ArFT and ArE. Fractions QA, 

ArFT and ArE together were sufficient to initiate DNA replication when added to 

template nuclei. Surprisingly, fraction ArE was found to be composed mainly of 

nucleic acids rather than proteins, and it was from this fraction that Y RNAs were 

purified. The QA and ArFT fractions alone were not sufficient to significantly 

drive DNA replication in isolated nuclei from human somatic cells, with only 15 % 

of nuclei replicating in the presence of these two factors (Christov et al., 2006). 

However when the purified Y RNAs were added along with these two protein 

fractions, the proportion of replicating nuclei increased in a dose-dependent 

manner to 50 % (Christov et al., 2006). Furthermore, targeted depletion of Y 

RNAs from the cytosolic extract inhibited DNA replication. A degree of functional 

redundancy with regards to the Y RNAs was found in this system as addition of 

any of the four Y RNAs to the depleted extract was sufficient to reinstate DNA 

replication. This requirement for Y RNAs for DNA replication was also seen in 

mouse cell nuclei, where interestingly, human Y RNAs could also initiate mouse 

DNA replication indicating that these factors are evolutionarily conserved. Non-
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vertebrate Y RNAs could not reconstitute DNA replication in vertebrate systems 

(Gardiner et al., 2009). 

 Importantly, the sequence and structure of the Y RNAs were shown to be 

the contributing factors which initiated DNA replication (Christov et al., 2006). A 

conserved double stranded 9 base pair motif sequence in the upper stem of the Y 

RNAs identified in screens of hY1 mutants was sufficient to drive DNA replication 

in the presence of protein fractions QA and ArFT (Gardiner et al., 2009). This 

motif was found to have a consensus sequence of 5’-GUAGUGGG-3’ on the 5’ 

strand and 5’-CCCACUGCU-3’ on the 3’ strand. This motif was not found in non-

vertebrate Y RNAs. The addition of this double stranded sequence alone was 

sufficient to drive DNA replication without the requirement of the other protein 

binding domains of the Y RNA (again, in the presence of QA and ArFT). 

Interestingly, the same results were not observed with the addition of this sequence 

in a DNA from. 

Although Y RNAs can be complexed with cellular proteins such as Ro60, 

La and nucleolin, none of the associated Y RNA binding proteins are required for 

DNA replication, and addition of any of these proteins does not affect the 

percentage of actively replicating nuclei in the cell-free system (Langley et al., 

2010). It was found via real-time PCR that around 50 % of cellular Y RNAs were 

not bound by Ro60/La/Nucleolin, and it was argued that it is the non-protein bound 

portion of Y RNAs which have a role in DNA replication. This would leave the 

Ro60/La/Nucleolin bound Y RNAs to carry out distinct functions such as 

scavenging for misfolded RNAs.  
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In order to investigate exactly how Y RNAs facilitate chromosomal DNA 

replication, Krude and colleagues degraded Y1 and Y3 RNA in a cell-free system 

and monitored replication track extension rate (or the rate at which nascent DNA is 

polymerised) (Krude et al., 2009). They found that Y RNAs are required for the 

establishment and initiation of DNA replication forks, but are not required for the 

elongation of actively replicating DNA. Additionally, the stability of the DNA 

replication fork was not affected by depleting the Y RNA population. The 

reduction in the amount of single stranded nascent DNA by degrading Y3 RNA 

could be negated by the addition of Y1 RNA – further supporting the functional 

redundancy of Y RNAs in this process. In another study, using fluorescently 

labelled Y RNAs, it was shown that Y RNAs act in a ‘catch and release’ 

mechanism whereby Y RNAs associate with the unreplicated euchromatin in the 

late G1 phase of the cell cycle, and are displaced once initiation has taken place 

(Zhang et al., 2011). Around 20-70% of hY RNAs associate with nuclei in G1 

phase cells whereas only 4-10 % associate in G2. It was further shown that hY1, 

hY3 and hY4 co-localise with each other on euchromatin sites, but not with hY5 - 

which was enriched in nucleoli. Although it was previously shown that the upper 

stem region alone was sufficient to reconstitute DNA replication in template nuclei 

(Gardiner et al., 2009), it was demonstrated that the loop domain of the Y RNAs 

was required for targeting Y RNAs specifically to euchromatic sites. Y RNA 

mutants where only the upper stem maintained a wild-type sequence showed non-

specific site binding across the nucleus including heterochromatic regions (Zhang 

et al., 2011). 
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 Human Y RNAs appear to associate with DNA replication factors. This 

was demonstrated by conducting RNA pull-down assays where agarose beads are 

coupled to the 3’ termini of the Y RNA (Zhang et al., 2011). All 4 Y RNAs 

interact with members of the origin recognition complex (ORC 2 & 3 interacted 

with hY1, 3, 4 & 5 and ORC 4 & 6 interacted with hY1, 3 & 5 only). Furthermore, 

Cdt1, Cdc6, and the DNA unwinding protein DUE-B all interacted with the Y 

RNAs. None of the proteins associated with DNA replication elongation such as 

Mcm2-7, CMG and the DNA polymerases bound to the Y RNAs supporting earlier 

work that these non-coding RNAs are specifically involved in the initiation stage 

of replication (Krude et al., 2009; Zhang et al., 2011). 

 Finally, the most recent work with regards to Y RNAs and chromosomal 

DNA replication showed that the Y RNAs only act as licensing factors after the 

midblastula transition (MBT) stage of development (Collart et al., 2011) and not 

before. Using inhibitory morpholino nucleotides, it was demonstrated that Y RNAs 

are not needed for DNA replication in Xenopus and zebrafish embryos and egg 

extracts prior to MBT. After this stage, Y RNA specific morpholino nucleotide 

treated embryos died shortly before gastrulation. The lack of requirement for Y 

RNAs to facilitate in DNA replication prior to MBT may facilitate the need to 

replicate the cell’s DNA rapidly during early developmental stages. After this 

developmental stage, DNA replication takes significantly longer - such as in post-

MBT cells. 
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1.5 Y RNAs in cancer 

 

Cancer is a complex genetic disease which results in uncontrolled cell 

proliferation and tissue invasion. It can have multiple genetic origins, but 

essentially it arises as a result of the overexpression or mutation of proto-

oncogenes (normal genes which have the ability to cause cancer) and the 

underexpression of tumour suppressors (Dalmay, 2008). Cancer development is a 

multistep process that involves six hallmark events: uncontrolled proliferation, 

apoptosis evasion, tissue invasion, the ability to grow without external biochemical 

signals, the ability to ignore anti-growth signals and sustained angiogenesis 

(Hanahan & Weinberg, 2000). Owing to the widespread and intricate role of small 

RNAs (sRNAs) in cellular processes, aberrant sRNA expression may promote 

cancer progression. The profiles of microRNAs (miRNAs), which are one type of 

sRNA, are significantly altered in breast cancer cells compared with normal breast 

tissue (Iorio et al., 2005). Understanding how sRNA profiles influence disease 

processes will aid the diagnosis and treatment of a variety of disorders. For 

example, as some cancer cells have distinct miRNA profiles, rapid diagnosis of 

disease type can be achieved via microarray or quantitative PCR (qPCR) (Dalmay, 

2008). Additionally, miRNA-mimics or miRNA inhibitors can be used to target 

specific microRNAs in order to prevent certain disorders. For example, the use of 

locked nucleic acid (LNA) in therapeutic studies has already been demonstrated 

(Elmen et al., 2008). 

As discussed, Y RNAs function in chromosomal DNA replication, 

implicating them in the control of cell proliferation, a characteristic which is 
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aberrant and uncontrolled in cancer. Indeed, it has been shown that if HeLa cells 

are transfected with siRNAs against hY1, there is a significant reduction in cell 

proliferation and a subsequent decrease in the number of cells in the S phase of the 

cell cycle (Christov et al., 2006).  Furthermore, transfection of siRNAs against hY1 

and hY3 into a range of different carcinoma cells (including bladder, prostate, 

cervical and lung) results in a similar reduction in cell proliferation (Christov et al., 

2008). This makes Y RNAs promising targets for future pharmalogical treatments 

in cancer patients. 

A study by Christov et al. also demonstrated using real-time PCR that all Y 

RNAs in humans are significantly upregulated in bladder, cervical, colon, kidney, 

lung and prostate cancers compared to the equivalent non-diseased tissues 

(Christov et al., 2008). The greatest level of hY1, hY3 and hY4 overexpression 

was seen in kidney tumours, and the highest hY5 levels were observed in lung 

tumours. The authors propose that Y RNAs are novel cancer biomarkers, and could 

be utilized for diagnosis in the future.  

 A more recent study has shown that small RNAs derived from full length Y 

RNAs are present in solid tumours (Meiri et al., 2010). Notably, 25 nt long RNAs 

derived from hY1, hY3 and hY5 were present in solid tumour samples at levels 

comparable with the cancer associated miRNA, miRNA-21, however, no 

microRNA-like function of these Y RNA products was shown (Meiri et al., 2010).  
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1.6 Y RNAs in apoptosis 

  

 Apoptosis is a highly regulated and well-orchestrated mode of cell death 

which is quite different from uncontrolled cell death which is disorganised and can 

be damaging to neighbouring cells (Taylor et al., 2008). Apoptosis is carried out by 

a family of proteases called caspases which initiate a molecular cascade resulting 

in important structural components of the cell being degraded. These include 

genomic DNA, the nuclear lamina and mitochondrial components. The entire 

process is self-contained and occurs without allowing the release of 

immunostimulatory molecules that may harm other cells. The resulting products of 

degradation are removed by phagocytic white blood cells. Mutations that impair 

apoptotic pathways can lead to cancer. 

 Apoptosis appears to strongly involve Ro RNPs. Firstly, it is well 

documented that the Ro60, Ro52 and La autoantigens cluster at the surface of 

apoptotic cells (Casciola-Rosen et al., 1994; Ohlsson et al., 2002). Specifically, 

Ro52 is found surface-exposed in small apoptotic blebs whereas the larger 

apoptotic bodies contain cell surface La and also Ro60. Intriguingly, La is 

dephosphorylated and cleaved at the C-terminus by caspase-3 during apoptosis 

(Rutjes et al., 1999b). La is known to play a role in preventing apoptosis by 

activating the translation of the X-linked inhibitor of apoptosis protein (Holcik & 

Korneluk, 2000). 

 The RNA component of Ro RNPs also appears to be altered during 

apoptosis. Human Y RNAs are rapidly and specifically cleaved during apoptosis in 

a caspase-dependant manner, and this occurs under the duress of a range of 
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apoptotic stimuli (Rutjes et al., 1999a). The Y RNA fragments produced during 

apoptosis are approximately 22-25 nts, with a larger fragment of 31 nts also being 

generated. The 31 nt fragment was still found bound to Ro60 and La, whereas the 

shorter fragments could only be immunoprecipitated by Ro60 antibodies, 

suggesting that the La binding site on these fragments was lost (Rutjes et al., 

1999a). Interestingly, the degradation of these Y RNAs is one of the first 

phenotypes of apoptotic cells, with cleavage products being detectable only 1.5 

hours after apoptosis induction. This makes Y RNA cleavage detection via qPCR 

an effective tool in assaying programmed cell death progression in cell samples 

(Asselbergs & Widmer, 2003). Other RNAs such as tRNAs and snRNAs were 

found to remain intact in the study by Rutjes et al., implying a specificity for Y 

RNAs (Rutjes et al., 1999a). Furthermore, this cleavage can be inhibited by 

apoptosis inhibitor proteins such as Bcl-2. The most conserved region of the Y 

RNAs, the main stem at the 3'/5' end, remains bound to the autoantigens after 

cleavage, with Ro60 having the strongest affinity for the degradation products 

(Rutjes et al., 1999a).  
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1.7 Small RNA biology 

 

1.7.1 The advent of ‘deep sequencing’ and the discovery of the ‘small RNA 

world’ 

 

 The birth of small non-coding RNA biology (sRNAs) (RNAs < 200nt) 

came with the discovery that small double stranded RNA molecules can bind to 

complementary mRNA targets and inhibit their expression into proteins (RNA 

interference – RNAi) (Lee et al., 1993; Fire et al., 1998; Hamilton & Baulcombe, 

1999). Since then, the advent of small RNA sequencing techniques based on 3’ and 

5’ adapter ligation and subsequent reverse transcription PCR (RT-PCR) (Elbashir 

et al., 2001) have allowed ‘deep sequencing’ of RNA samples. Various ‘Next-

generation sequencing’ (NGS) platforms such as Illumina (Solexa) and 454 

pyrosequencing have been developed which have increased the number of 

sequence ‘reads’ which can be obtained, to hundreds of millions per sample 

(Metzker, 2010). The improvement of this technology, the reduction of running 

costs and increase in availability has resulted in the discovery of millions of novel 

small RNAs (Wittmann & Jaeck, 2010). This in turn has completely revolutionised 

our view of how the cell controls the flow of genetic information and the 

hierarchical structure by which this is established.  
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1.7.2 MicroRNAs (miRNAs): A small RNA case study 

 

 MicroRNAs are some of the most abundant, well studied small RNAs, and 

have long been the focus of thousands of deep sequencing studies. MicroRNAs 

(miRNA) are endogenously produced post-transcriptional regulators which are 

imperfectly complementary to the 3'UTR (untranslated region) of their targets. 

They are ~22nt in length and form distinct, stem loop structures as a result of 

imperfect self-complementarity, (Lau et al., 2001). MiRNAs are thought to 

regulate at least 30%, and maybe as much as half of mammalian protein coding 

genes (Filipowicz et al., 2008), with each miRNA being able to regulate up to 100 

targets (Brennecke et al., 2005). Unlike siRNAs which direct cleavage of their 

mRNA targets, animal miRNAs are thought to primarily inhibit translation of their 

semi-complementary transcripts by firstly inhibiting 5' methylguanosine cap-

dependant translation initiation and then by deadenylation of the mRNA (Fabian et 

al., 2009), resulting in degradation by the exosome (Doma & Parker, 2007). 

 Most microRNAs are transcribed by RNA polymerase II (Lee et al., 2004), 

and following transcription, the miRNA folds into a dsRNA conformation 

containing a stem-loop structure at one end. This primary microRNA (pri-miRNA), 

which can be hundreds or thousands of nucleotides in length, can contain a variety 

of different miRNA species which will eventually be separated from each other 

(Filipowicz et al., 2008). In the nucleus, the pri-miRNA is enzymatically cleaved 

by the 650 kDa Microprocessor complex (Denli et al., 2004) which is composed of 

the RNase III-like enzyme Drosha, and the RNA binding protein, DGCR8 (or 

pasha in the case of Drosophila). The resultant precursor-miRNA (pre-miRNA) is 
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around 60-80 nt, and is characterised by a 2 nt overhang at its 3' end. The role of 

the Microprocessor complex is redundant in some miRNA species, where the pre-

miRNA forms a debranched intron and is generated during splicing. These 

'mirtrons' such as miR-1004, can be transported directly to the cytoplasm (Ruby et 

al., 2007).  

Following nuclear processing, the pre-miRNA is exported into the 

cytoplasm by the RanGTP dependant exportin-5 located in the nuclear envelope 

(Bohnsack et al., 2004). In the cytoplasm, another RNase III enzyme Dicer, along 

with the HIV-1 transactivating response RNA binding protein (TRBP), process the 

pre-miRNA into a 20-22 nt miRNA/miRNA* duplex (Chendrimada et al., 2005). 

Although Dicer is involved in the canonical microRNA maturation pathway, 

studies have demonstrated that a number of miRNAs circumvent the use of Dicer 

altogether (Cheloufi et al., 2010; Cifuentes et al., 2010). Pre-miR-451 in mouse 

and zebrafish for example does not require Dicer as part of its biogenesis, but 

instead requires the slicer activity of Ago2 for its maturation.  

The miRNA duplex contains a guide miRNA and a passenger miRNA*. 

The miRNA is semi-complementary to its mRNA target, and contains a 2-8 nt 

'seed' region at its 5' end. The seed region of the miRNA has a near perfect degree 

of complementarity to the miRNA recognition element (MRE) at the 3' UTR of the 

mRNA (Brennecke et al., 2005). The passenger miRNA* strand is usually 

discarded, however recent studies have shown that several species of miRNA*s 

can be actively selected for RISC incorporation (Ghildiyal et al., 2010). TRBP also 

functions as a recruiting factor by bringing the DICER-miRNA complex and the 
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Argonaute protein (AGO) based silencing complex (RISC) together, thereby 

forming the RISC loading complex (RLC) (Gregory et al., 2005).  

Once loaded into RISC, the process of gene silencing can take place. There 

is still an uncertainty about how exactly miRNA gene silencing is executed in 

animals, and the prevalence of translational repression and storage in cytoplasmic 

foci versus mRNA transcript degradation (Guo et al., 2010; Djuranovic et al., 

2012). 

 

1.8 Small RNAs derived from longer RNAs  

 

1.8.1 Filtering of deep sequencing data reveals extensive RNA fragmentation 

 

 Since 2008, there has been an abundance of deep sequencing studies which 

have identified small RNA fragments derived from longer RNAs, and this has been 

the subject of several excellent reviews (Wittmann & Jaeck, 2010; Rother & 

Meister, 2011; Tuck & Tollervey, 2011). Previous deep sequencing studies 

overlooked these fragments, as they were filtered out of data sets as assumed 

degradation products. For example, small nucleolar RNAs (snoRNAs), which are 

involved in ribosome biogenesis, have been shown to give rise to RNA fragments 

which can act as microRNAs (Ender et al., 2008; Brameier et al., 2011).  The first 

snoRNA-derived RNA (sdRNA) was discovered in HEK293 cells by deep 

sequencing of immunoprecipitated AGO1 & AGO2 associated RNAs (Ender et al., 

2008). This sdRNA was found to be processed by dicer (but independent of Drosha) 

and its RNAi function demonstrated by luciferase assay. However other sdRNAs 
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show potential dicer-independent maturation (Brameier et al., 2011). Further 

sdRNA discovery confirmed that these 18-35nt RNAs primarily mapped to the 5’ 

and 3’ stem of the full length snoRNA parent (Brameier et al., 2011).  

 Indeed, sRNA fragments from rRNAs, snoRNAs, snRNAs and tRNAs 

seem to give fragments predominantly from the 5’ and 3’ ends of mature parental 

RNA transcripts (Li et al., 2012). This seems to occur asymmetrically in human 

and mouse cells, with one end appearing more prominently in sequencing studies 

(similar to microRNA/ microRNA* level bias) (Li et al., 2012). 

 Additional AGO immunoprecipitation and deep sequencing studies 

uncovered small RNA fragments derived from ribosomal RNAs (rRNA), small 

nuclear RNAs (snRNAs), vault RNAs (vRNAs), transfer RNAs (tRNAs) and even 

messenger RNAs (mRNAs), all of which associated with the silencing protein 

family (Burroughs et al., 2011).  

 Vault particles are cellular organelles thought to be involved in nuclear 

export and play a role in multidrug resistance. They contain the 88-98 nt non-

coding vault RNAs (vRNAs). It was shown that these vRNAs can be cleaved to 

give rise to small 23nt vault-derived sRNAs (svRNAs), independent of dicer 

processing (Persson et al., 2009). Intriguingly, one of these svRNAs associates 

with an Argonaute protein (part of the RNAi silencing machinery) and can 

downregulate the mRNA encoding enzyme CYP3A4 which has a role in drug 

metabolism (Persson et al., 2009). 

 An analysis of a large collection of publically available, independent deep 

sequencing datasets has revealed that long non-coding RNAs (lncRNAs) can be 

processed into sRNA fragments (Jalali et al., 2012). The sRNA clusters 
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predominantly mapped to the 3’ end of lncRNAs. Interestingly, lncRNA-derived 

sRNA fragments were shown to be differentially processed in a variety of cell and 

tissue types, implying functionality rather than being simple products of 

degradation (Jalali et al., 2012). 

 

1.8.2 tRNA fragmentation 

 

 To date, the most well studied sRNA fragments studied are those derived 

from the tRNAs. The first reports of tRNA cleavage came in a study which showed 

that tRNA cleavage in Escherichia coli occurs following infection by 

bacteriophage T4 (Levitz et al., 1990). A more recent deep sequencing study in an 

animal system has found that sRNA fragments derived from tRNAs are more 

abundant than microRNAs (or certainly a close second), and are not simply the 

product of degradation pathways (Cole et al., 2009; Lee et al., 2009). 

There are two distinct classes of tRNA fragments; the tRNA regulatory 

fragments (tRFs) and the stress induced tRNA-derived RNAs (tiRNAs or ‘tRNA 

halves’). The tRFs are composed of three types of fragments (17-26nt) which were 

first discovered during deep sequencing of prostate cancer cell lines (Lee et al., 

2009). The tRF-1 species is released by RNAse Z (ELAC2) from the 3’ trailer of 

pre-tRNAs as part of tRNA maturation (Lee et al., 2009) and tRF-3 and tRF-5 

fragments are generated from mature tRNAs by dicer from the 3’ end and 5’ end of 

the mature tRNA respectively (Cole et al., 2009; Lee et al., 2009). RNAi mediated 

knockdown of one of the tRFs, tRF-1001, resulted in reduced cell proliferation 

(Lee et al., 2009). Although tRFs have been shown to be dicer dependant and some 



61 
 

tRFs can associate with Argonaute proteins (Cole et al., 2009; Haussecker et al., 

2010), the gene silencing capability of tRFs still requires further validation. 

Although modest gene silencing by tRFs has been observed despite widespread 

Argonaute association, the mechanism of tRF function is still under debate. It has 

been argued that rather than acting as bona fide microRNAs, tRFs globally 

modulate gene silencing by competing for AGO binding, thereby regulating 

AGO’s availability to bind with microRNAs (Haussecker et al., 2010). However, 

the latest research has shown that AGO2 associated 3’ tRFs are complementary to 

retroviral sequences in the human genome and can target these transcripts via 

RNAi (Li et al., 2012). 

 The second class of tRNA fragments is the stress induced tRNA-derived 

RNAs (tiRNAs). These tiRNAs, or ‘tRNA halves’ are longer than tRFs (31-40 nts) 

and are generated via cleavage in the anticodon loop of mature tRNAs following 

various stress stimuli (Thompson et al., 2008; Fu et al., 2009; Yamasaki et al., 

2009). Both 5’ and 3’ end derived tRNA halves can be detected. A variety of stress 

conditions, including nutrient depletion, hypoxia, hypothermia, heat shock and 

ultraviolet light irradiation have been shown to yield tiRNAs extremely rapidly 

(within 20 minutes) (Fu et al., 2009; Yamasaki et al., 2009). A low level of tiRNAs 

was also detected in unstressed cells (Thompson et al., 2008). Furthermore, this 

cleavage is not a mechanism to simply reduce the number of available tRNAs as 

only a small proportion of the full-length tRNA population are targeted (Fu et al., 

2009; Yamasaki et al., 2009).  

 The RNase A family member, angiogenin, was found to be the nuclease 

responsible for stress induced tRNA cleavage (Fu et al., 2009). Angiogenin is 
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bound to the ribonuclease inhibitor RNH1 under normal conditions. When 

angiogenin was overexpressed in cells there was an increase in tiRNA production 

(Fu et al., 2009) and when RNH1 was targeted via siRNA, a similar result was 

observed (Yamasaki et al., 2009). It was demonstrated that the function of tiRNAs 

was to inhibit translation. Specifically, transfection of 5’ tiRNAs (but not 3’ 

tiRNAs) inhibited protein synthesis and RNH1 depletion promoted translational 

arrest (Yamasaki et al., 2009). 

 Angiogenin-induced tiRNA fragments were shown to specifically target the 

initiation stage of translation. Protein synthesis is inhibited by tiRNAs association 

with the translational silencer YB-1, and subsequent displacement of the 

eukaryotic initiation factor eIF4G/eIF4A (Ivanov et al., 2011). A subset of these 

tiRNAs (5′-tiRNA
Ala

 and 5′-tiRNA
Cys

) were found to be the most potent translation 

inhibitors, and uncapped mRNAs were found to be preferentially targeted. This 

specific targeting of certain mRNAs suggests that tiRNAs reprogramme gene 

expression in stressed cells (Yamasaki et al., 2009). 

 To complicate the picture of tRNA cleavage fragment biogenesis and 

function further, a recent study has shown that several RNases, including 

angiogenin can also give rise to ~20nt fragments derived from the 3’ end of mature 

tRNAs (Li et al., 2012). These 3’tRFs can associate with AGO2 and direct gene 

silencing. It is truly surprising that multiple sRNAs can be derived from tRNAs 

with such diverse modes of function. 
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1.8.3 Y RNA-derived small RNAs 

 

 Over the last two years, there has been a flurry of publications where Y 

RNA-derived small RNAs have been detected in deep sequencing studies. Next-

generation sequencing of different human tumour samples identified 25nt Y RNA 

fragments from hY1, hY3 and hY5 which were more abundant than many 

microRNAs (Meiri et al., 2010). These fragments, which were first described 

during studies in apoptotic cells (Rutjes et al., 1999a), were suggested to have a 

function due to their high abundance and sequence stability, and not simply due to 

the protective properties of Ro60 which remains bound to the fragments after 

cleavage (Meiri et al., 2010). These Y RNA fragments were also detected in the 

serum of healthy people in this study. 

 The study by Meiri et al. investigated the potential gene silencing capability 

of Y RNA fragments using the luciferase assay, but no silencing activity was 

demonstrated. However, the possibility that these fragments could still be acting as 

microRNAs has not been ruled out, and has been the subject of a recent review 

(Verhagen & Pruijn, 2011). Verhagen and Pruijn hypothesised that Y RNAs could 

be acting as pre-miRNAs in disguise and suggest that Dicer might potentially 

process the full length Y RNAs into microRNA molecules. This hypothesis has yet 

to be tested in the laboratory. 

 Plant siRNA and miRNA targets can be discovered by detecting degraded 

or cleaved mRNAs, as cleavage is the primary RNAi response in plants. This so 

called ‘degradome’ analysis (Addo-Quaye et al., 2008) is a technique that is 

seldom applied to animal systems owing to the assumed prevalence of translational 
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repression over cleavage in animal gene silencing. However, Bracken et al. applied 

the technique to mouse embryo and adult tissues (Bracken et al., 2011). As well as 

detecting microRNA-mediated cleavage products, fragments from endonucleases 

other than AGO2 were also identified. Multiple instances of cleavage events 

occurring in non-coding RNAs (ncRNAs) were found, including reads 

corresponding to both the 3’ and 5’ stems of the Y RNAs (Bracken et al., 2011). 

Intriguingly, as the methods used in this study only selected for RNAs with 

polyadenylated tails, the results show that these Y RNA cleavage products must 

have been polyadenylated, implying either selective biochemical stabilisation, or 

indeed, targeting for degradation in vivo. Polyadenylation is essential for the 

function and stabilisation of mRNA transcripts in the cytoplasm, but paradoxically 

is also a marker for degradation of some sRNAs by the exosome in the nucleus 

(LaCava et al., 2005).  

 Finally, a variety of sRNAs have been sequenced in a population of ‘shuttle 

RNAs’ present in the vesicles released by immune cells (Nolte-'t Hoen et al., 2012).  

RNA cleavage products derived from vault RNAs, tRNAs and Y RNAs were 

detected, whereas microRNAs were significantly underrepresented in the shuttle 

RNA population. Y RNAs were some of the most abundant RNAs present in the 

immune vesicles, with both 28 nt fragments and full-length Y RNAs being 

detected. The authors were astonished by the similarity by which Y RNAs were 

assimilated into immune cell-derived vesicles (Nolte-'t Hoen et al., 2012), and the 

nature by which they are selectively packaged into viruses which was reported 

previously (Garcia et al., 2009). They speculate that the Y RNAs could play a role 
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in sorting of regulatory RNAs into these vesicles, in stabilising the RNA during 

export or in guiding shuttle RNAs to specific locations in vesicle-targeted cells. 

 

1.9 Aims and objectives of the thesis 

 

 Like many microRNA research laboratories, our laboratory (under 

Professor Tamas Dalmay) also came across Y RNA fragments in one of our deep 

sequencing data sets. Originally looking for stress-induced microRNAs, we 

stumbled across Y RNA-derived sRNAs which were upregulated under certain 

stress stimuli. Previous reports have only described these fragments, and have 

never studied them in detail. Here I aimed to characterise the nature, occurrence, 

biogenesis and potential function of these Y RNA fragments, which I will refer to 

here on in as ‘YsRNAs’. In reading the thesis, it should be appreciated that 

understanding the biology of YsRNAs would not only shed light on these specific 

molecules, but would hopefully serve as a model for the emerging class of elusive 

30-40nt sRNA fragments already observed, with potential universal biological 

function. 
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Chapter 2 

Materials and Methods 
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2.1 Cell culture 

 

2.1.1 Cell lines and growth media 

 

MCF7, HeLa, HepG2 and HEK293 cells were cultured in Dulbecco’s 

modified Eagle’s medium (Gibco, 10938) supplemented with 10% fetal bovine 

serum (FBS) (PAA, A15-101), 1% L-Glutamine (Gibco, 25030) and 1% Penicillin-

Streptomycin (Gibco, 15140).  

MCF10A cells were purchased from the American Type Culture Collection 

(ATCC) and were cultured in MEGM Bulletkit medium (Lonza, cc-3150) 

supplemented with 100ng/mL cholera toxin (Sigma, C8052).  

DLD-1 wild-type and DLD-1 dicer
-/-

 exon 5 deletion cell lines were 

purchased from Horizon Discovery (Cambridge, UK). Both the DLD-1 cell lines, 

and HCT116 were cultured in DMEM/F-12 + Glutamax (Gibco, 31331), 

supplemented with 10% FBS and 1% Penicillin-Streptomycin. The dicer
-/-

 

genotype was confirmed by Northern blot analysis using a probe for microRNA-21 

which was done for each experiment. 

Wild-type and RNase L
-/-

 mouse embryonic fibroblast cells (MEF) were 

provided by Professor Robert H. Silverman’s laboratory (Zhou et al., 1997). The 

MEF cells were grown in RPMI 1640 + GlutaMAX media (Gibco, 61870), 

supplemented with 10% FBS and 1% Penicillin-Streptomycin. The genotype was 

checked for each experiment via polymerase chain reaction (PCR) (see following 

section).  
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The wild-type and Ro60
-/-

 mouse embryonic stem (mES) cell lines were 

provided by Professor Sandra L. Wolin’s laboratory (Chen et al., 2003). The mES 

cells were cultured in Knockout DMEM (Gibco, 10829), supplemented with 15% 

ES cell FBS (Gibco, 10439), 1% L-Glutamine and 1% Penicillin-Streptomycin, 1% 

mem Non-essential amino acids (Gibco, 11140), 100 u/mL ESGRO leukaemia 

inhibitory factor (Millipore) and 0.1 mM 2-Mercaptoethanol (Sigma, M7522). 

Stem cells were grown in flasks prepared with CELLstart CTS substrate (Gibco), 

or on gelatinised plates prepared with 0.1% gelatin solution (Millipore, ES-006-B) 

according to the manufacturer’s instructions. The Ro60
-/-

 genotype was confirmed 

for each experiment via Western blot (see section 2.11 on antibodies). 

Frozen stocks of cells were prepared in 1 ml cryovials by adding 2.5 - 5 x 

10
6
 cells in a solution containing 80 % media, 10 % additional FBS and 10 % 

dimethyl sulfoxide (DMSO) (Sigma). After addition of DMSO, cryovials were 

placed in an isopropanol bath at -80°C and left overnight. The following morning, 

cryovials were transferred to a liquid nitrogen filled Dewar for storage.  

 

2.1.2 PCR genotyping of RNase L
-/-

 cell lines 

 

The RNase L
-/-

 cell lines were created by using a targeting vector to insert 

the neomycin resistance gene (neo) in the reverse orientation into the RNase L 

gene (Figure 2.1) (Zhou et al., 1997). In order to confirm the genotype of these 

cells, PCR analysis of extracted DNA from RNase L
-/-

 and wild-type cells was 

done using primers which map a stretch of DNA flanking the neo gene (Figure 2.1). 

PCR products for insertional mutants should be 2.1 kb and 900 bp for wild-type 
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cells. A ‘no DNA’ control was also performed. DNA was extracted from mutant 

and wild-type cells (4 x 10
6
 cells each) using the DNeasy blood and tissue kit 

(Qiagen). PCR primers used were RNase L (Hind2) 5’-GGAGGAGAAGCTTT 

ACAAGGTG-3’ and RNase L (F1) 5’- GCATTGAGGACCATGGAGAC-3’. 

PCRs were performed using Phusion Hot Start high-fidelity polymerase (NEB). 

PCR cycling parameters were: 98°C for 2 min, followed by 44 cycles of: 98 °C (30 

s), 54 °C (30 s), 68 °C (5 min). This was then followed by 72 °C (10 min), and 

finally a 4 °C end temperature. PCR products were analysed on a 1 % agarose gel 

made with 0.5 x Tris/Borate/EDTA buffer (TBE) and stained with ethidium 

bromide (EtBr). Samples were electrophoresed in a glycerol/bromophenol blue 

loading buffer. A 100 bp DNA molecular weight ladder was used for fragment size 

analysis (Roche, 11721933001). 
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2.1.3 Passaging and cell growth conditions 

 

All cells were grown in a 37 °C, 5 % CO2 humified incubator and were 

only allowed to grow to ~75 % confluency prior to passaging. 

All cell lines, except mES and MCF10A cells, were passaged using 0.25% 

Trypsin - ethylenediaminetetraacetic acid (EDTA) (Gibco). This was achieved by 

removing cell media from a flask of growing cells, and replacing with a volume of 

trypsin sufficient to cover the entire surface of the flask. Cells were incubated with 

trypsin for 3 minutes at 37 °C at which point all cells had dissociated from the flask 

 

Figure 2.1 Map for the 5’ end of the RNase L gene and primer binding sites in mouse 

embryonic fibroblast cell lines. 

 

RNase L
-/-

 cells were made by insertional inactivation using the neomycin resistance 

gene (neo) into the 5’ end of the RNase L gene (Zhou et al., 1997). Genotype of both 

wild-type and mutant cells was achieved via PCR using the primers shown in blue. 

PCR products for insertional mutants should be 2.1 kb and 900 bp for wild-type cells. 

Fragment sizes were assessed on agarose gels. Image courtesy of the Silverman 

laboratory. 
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surface. After agitation of the flask by tapping and shaking to dislodge any 

remaining adhered cells, the trypsin digestion reaction was stopped by adding an 

equal volume of appropriate growth media to the flask, followed by gentle mixing. 

Cells were counted using a haemocytometer. 

Following cell dissociation from the flask and cell counting, cells were 

centrifuged to a pellet at 1,500 rpm (363 x g) for 2 min. The supernatant media was 

subsequently removed, and cells were resuspended in fresh growth media, and re-

seeded at a 1/10 dilution in order to achieve an appropriate confluency in the newly 

passaged flask. 

 For mES and MCF10A cells, 0.05 % Trypsin-EDTA was used. In the case 

of MCF10A cells, 0.1 % soybean trypsin inhibitor (Gibco, 17075-029) in 

phosphate buffered saline solution (Gibco, 14190) was used to neutralise the 

trypsin, as opposed to culture media.  

 

2.2  siRNAs and transfection 

 

All transfections were carried out on cells (~ 60 % confluency) in 6-well 

cell culture plates (Nunc) using Lipofectamine 2000 reagent (Invitrogen, 11668) 

and Opti-MEM + GlutaMAX (Invitrogen, 51985) according to the manufacturer’s 

instructions. Cells were seeded at 150,000 cells/well in a 6-well plate the day 

before transfection reactions in media without antibiotics.  

All siRNAs were used at a final concentration of 50 nM, and were 

transfected twice over a 48 hour period. Transfection reactions were allowed to 
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progress for 5 hours, after which the siRNA/Optimem media was replaced with the 

appropriate growth media. 

All siRNAs used were purchased from Qiagen: The negative control siRNA 

used in all experiments was the ALLStars negative control (Qiagen, 1027281), 

sequence not disclosed. Ro60 siRNA: FlexiTube siRNA Ro60 (Hs TROVE2) 

(Qiagen, SI03239628), (+)5’-GGUAGUAUACUCAACGCUATT-3’, (-)5’-UAGC 

GUUGAGUAUACUACCCA-3’. La siRNA (custom designed): (+)5’-GAAACAG 

ACCUGCUAAUACTT-3’, (-)5’-GUAUUAGCAGGUCUGUUUCTT-3’, already 

used in a previous study (Sommer et al., 2011). Two siRNAs were used together to 

target nucleolin: siRNAs used were FlexiTube siRNA nucleolin (Qiagen, 

SI00300923), (+)5’-GCUAUGGAGACUACACCAGTT-3’, (-)5’-CUGGUGUA 

GUCUCCAUAGCTT-3’, and (Qiagen, SI02654925), (+)5’-GGAAAUGGCCAA 

ACAGAAATT-3’, (-)5’-UUUCUGUUUGGCCAUUUCCTT-3’. Two siRNAs 

were used together to target RNase L: siRNAs used were FlexiTube siRNA RNase 

L (Qiagen, SI00129493), (+)5’-AGACUACACUAGUCCAUAATT-3’, (-)5’-

UUAUGGACUAGUGUAGUCUGG-3’ and (Qiagen, SI03079279), (+)5’-CUA 

UGAUUGGCAAACUCAATT-3’, (-)5’-UUGAGUUUGCCAAUCAUAGGG-3’. 

hAgo2 siRNA (custom designed): (+)5’-GCACGGAAGUCCAUCUGAAUU-3’, 

(-)5’-UUCAGAUGGACUUCCGUGCAC-3’. Angiogenin siRNA: Flexitube 

siRNA (Qiagen, SI02780197) (+)5’-CGUUGUUGUUGCUUGUGAATT-3’, (-)5’ 

UUCACAAGCAACAACAACGTT-3’. RNH1 siRNA: Flexitube siRNA (Qiagen, 

SI03164805) (+)5’CGGUUAGCAACAACGACAUTT-3’, (-)5’-AUGUCGUU 

GUUGCUAACCGTG’3’. 
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2.3 Poly(I:C) treatment 

 

Polyinosinic:polycytidylic acid potassium salt (PolyI:C) (Sigma, P9582) 

was prepared in distilled H20, and was used at a final concentration of 10 µg/ml. 

Poly(I:C) was transfected into cells using Lipofectamine 2000 reagent and Opti-

MEM + GlutaMAX as already described. Poly(I:C) transfection media was 

removed from cells after 5 hours of incubation and replaced with fresh media. 

Cells were harvested for RNA/Protein extraction 3 hours after this media change (8 

hours after exposure to poly(I:C).  

For experiments where gene knockdown was required prior to poly(I:C) 

stress treatment, the following experimental plan was implemented: day 1: cells 

were seeded, day 2: first siRNA transfection, day 3: second (repeat) siRNA 

transfection, day 4: poly(I:C) transfection followed by RNA and protein extraction 

after 8 hours. 

 

2.4 RNA extraction 

 

Total cellular RNA was extracted from cells using the phenol based Trizol 

reagent (Invitrogen, 15596) according to the manufacturer’s instructions, with 

amendments to the protocol mentioned below. Specifically, 1 ml of Trizol was 

used per 3 wells in a Nunc 6-well plate. Growth media was removed via pipette, 

and Trizol added, followed by a brief 1 min incubation period at room temperature. 

This was followed via vigorously pipetting the Trizol up and down in order to 

dissolve cells. For cells treated with poly(I:C) where most of the cells were floating 
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in the growth media, the media was first centrifuged in order to obtain a pellet of 

cells. The cell pellet was then dissolved in Trizol along with any remaining cells 

which were still adhered to the bottom of the well.  

All stages of RNA extraction following treatment of cells with Trizol were 

performed under ‘RNase-free’ conditions. All pipettes, bench surfaces, gloves and 

other consumables were treated with RNaseZAP (Sigma) prior to RNA extraction 

in order to avoid enzymatic degradation of the extracted RNA.  

Trizol used to dissolve cells (1 ml) was centrifuged at 13,000 rpm for 5 min 

at 4°C to remove insoluble debris. After transfer of the supernatant to fresh 

centrifuge tubes, 200 µl chloroform was added and vortexed vigorously for 15 s, 

followed by 2 min incubation at room temperature. The solution was then 

centrifuged at 13,000 rpm for 15 min. The aqueous phase from the Trizol–

chloroform step was added to excess Isopropanol (1 ml) as this has been found to 

be more effective at precipitating small RNAs (unpublished data). Additionally, 

RNA precipitation was carried out for at least 2 h at -20°C, which also improves 

sRNA precipitation. After precipitation, 1 µl GlycoBlue (Ambion, AM9515) was 

added and mixed via vortexing prior to centrifugation in order to improve 

formation and visualisation of the RNA pellet. RNA pellets were washed in 1 ml 

75 % ethanol. Air-dried RNA pellets were resuspended in 30 µl of analytical 

reagent grade H20 (Fisher Scientific) and stored at -80°C.  
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2.5 Assessment of RNA quality and concentration 

 

RNA quantification was achieved using the Nanodrop 2000 

spectrophotometer (Thermo Scientific). Sample purity was assessed using the 

260/280 ratio, which should be ~2.0 for RNA. RNA quality and integrity was 

evaluated by analysing 1µl of RNA on a 1.5 % agarose gel made with 0.5 x 

Tris/Borate/EDTA buffer (TBE) and stained with ethidium bromide (EtBr). RNA 

was added to a 95 % formamide based gel loading buffer; Gel loading buffer II 

(Ambion, 8546G), and denatured for 2 min at 70°C. Following 20-30 min 

electrophoresis at 120 V, the 28S and 18S ribosomal bands were observed by eye 

in order to assess RNA degradation. 

 

2.6 Protein extraction and quantification 

 

Proteins were extracted from cells using RIPA buffer (Sigma, R0278) 

supplemented with protease inhibitor (Sigma, P8340) according to the 

manufacturer’s instructions. Specifically, 300 µl of RIPA buffer was used per 3 

wells in a Nunc 6-well plate. Growth media was first removed, followed by 

washing the adhered cells with cold Phosphate Buffered Saline (PBS) (Gibco, 

14190). After removal of PBS, RIPA buffer was added to cells, followed by 

vigorous ‘scratching’ of cells with an upturned 1 ml pipette tip. The RIPA buffer 

was then incubated on ice for ~ 5 min. Protein lysate was then clarified by 

centrifugation at 8,000 x g for 10 min at 4°C. This was followed by flash freezing 

the lysate using liquid nitrogen. For cells treated with poly(I:C), the growth media 
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was first centrifuged to obtained a cell pellet from the floating cells, as already 

described, followed by RIPA buffer treatment. 

Protein quantification was done using the Pierce bicinchoninic acid (BCA) 

protein assay kit (Thermo Scientific, 23227) following the manufacturer’s protocol. 

Detection of colour change due to Cu
+
 production by the BCA reagent was 

achieved using the Wallac 1420 VICTOR2 multilabel, multitask plate reader. A 

standard curve was generated for each quantification by determining the absorption 

of Bovine Serum Albumin (BSA) solutions of known concentrations in triplicate. 

Standard curves and experimental sample concentrations were generated and 

calculated in Microsoft Excel. 

 

2.7 Small RNA Northern blotting 

 

2.7.1 Polyacrylamide gels for small RNA Northern blotting  

 

In order to detect small RNAs, total cellular RNA (1-10 µg) was separated 

on a 15 % denaturing polyacrylamide gel using the mini PROTEAN III system 

(Bio-Rad) using 1.0 mm gel plates. To make a single gel, 2.1 g urea was dissolved 

in 1.25 ml distilled water and 0.5 ml 5 x TBE in a 50 ml centrifuge tube (with ~20 

s microwaving to facilitate dissolving of the urea). Following this, 1.85 ml 40 % 

acrylamide/bis solution 19:1 (Bio-Rad) was added to the centrifuge tube, and the 

final volume was increased to 5ml using distilled water. After gentle mixing of the 

acrylamide-urea solution via several tube inversions, acrylamide polymerisation 

was achieved by adding 2.5 µl tetramethylethylenediamine (TEMED) and 50 µl of 
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a 10 % ammonium persulfate (APS) solution. This solution was pipetted into the 

gel cast rapidly, followed by adding a 10 well comb with 1.0 mm thickness. 

Additionally, it was found that the quality of the wells could be improved by 

applying constant pressure to the top of the gel plates during polymerisation by 

using small bulldog clips. This technique should only be used with urea based gels 

as application of the clips to standard non-urea polyacrylamide gels can cause a 

formation of a gap between the gel and the cover plate during polymerisation. 

 For experiments involving poly(I:C), 1 µg total RNA per lane was 

typically sufficient to detect Y RNA cleavage fragments. RNA samples were added 

to 95 % formamide based Gel loading buffer II (Ambion, 8546G) and denatured 

for 2 min at 70°C prior to gel loading. Electrophoresis was done in 0.5 x TBE 

buffer at 110 V for ~ 2 h. 

 

2.7.2 Northern blotting of RNA 

 

Following gel electrophoresis, gels were stained with ethidium bromide 

(EtBr) and imaged on a UV transilluminator (UVP) to check successful RNA 

separation. Transfer of RNA to nylon membrane was performed as previously 

described (Pall et al., 2007). Briefly, semi-dry transfer was achieved by placing the 

gel on a piece of 9 cm x 7 cm nylon hybridisation membrane (Amersham Hybond-

NX, GE Healthcare) pre-soaked in 0.5 x TBE. The gel and membrane were 

sandwiched between layers of filter paper (BLT2, Munktell), with three pieces of 9 

cm x 7 cm on either side, also pre-soaked in 0.5 x TBE. The layers of filter paper, 

gel and membrane were arranged in a semi-dry electroblotter (Scie-Plas, V20-
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SDB), removing excess buffer and air bubbles by rolling the surface with a 50 ml 

centrifuge tube. Transfer was done at 3 mA/cm
2
 for 45 min at 4°C. For example, 

250 mA for a single 9 cm x 7 cm membrane at constant Amps. This equates to 

approximately 15-20V for 45-60 minutes at 4°C.  

 

2.7.3 Carbodiimide-mediated cross-linking of RNA 

 

RNA was chemically cross-linked to Hybond-NX as previously described 

(Pall et al., 2007). It was proposed by Pall et al. that 3-(N-morpholino) 

propanesulfonic acid (MOPS) should be used instead of tris-based buffers during 

the gel making and running process, as it was thought that tris might interfere with 

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-mediated cross-linking. 

This is not the case, as discovered by researchers in the laboratories of Professor 

Tamas Dalmay, and Professor Sir David Baulcombe. Indeed, use of TBE buffers 

instead of MOPS actually results in superior gels and ‘crisper’ band detection 

following oligonucleotide hybridisation, as demonstrated by side-by-side 

comparisons in the Dalmay laboratory (data not shown). 

Cross-linking solution was prepared by adding 122.5 μl 12.5 M 1-

methylimidazole to 10 ml distilled water, with the pH adjusted to pH 8 using 10 µl 

HCL. This solution was added to 0.373 g EDC (Sigma), giving a 0.13 M solution. 

The final volume was adjusted to 12 ml final using distilled water. 

A piece of filter paper slightly larger than the nylon membrane was then 

soaked in the EDC solution, with excess solution subsequently removed. The nylon 

membrane was then placed onto the EDC soaked filter paper, with the RNA-side 
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facing up. This was then wrapped in Saran wrap and incubated at 60°C for 1-2 h. 

The membrane was then washed twice in distilled water in order to remove excess 

cross-linking solution. 

 

2.7.4 Pre-hybridisation of Northern blot 

 

Membranes were placed into hybridisation tubes with the RNA side facing 

the inside of the tube. A volume of UltraHyb-Oligo hybridisation buffer (Ambion) 

was added which was sufficient to cover the membrane. The tubes were then 

placed in a HB-1000 hybridisation oven (UVP), rotating at 37°C for 1 h. 

 

2.7.5 Northern blot probe synthesis 

 

Antisense DNA oligonucleotide probes were labelled with [-
32

P]-ATP 

(Perkin Elmer, NEG-502A-500UC) using 1 µl of T4 polynucleotide kinase (PNK) 

(Invitrogen). Specifically, 3 µl of -ATP (~ 1.4 MBq) was used to label 2µl of 10 

µM oligonucleotide (without a 5' phosphate) using the ‘forward’ reaction buffer. 

The solution, with a final volume of 20 µl, was incubated at 37°C for 1 h. 

Following incubation, unincorporated nucleotides were removed by first, diluting 

the reaction solution with an equal volume of distilled water, and applying the -

32
P oligonucleotide labelled solution to a home-made Sephadex G-25 (GE 

Healthcare) spin column, and centrifuging at 2,000 rpm for 2 min. The eluate was 

then added to the hybridisation buffer in the tube containing the Northern blot 
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following pre-hybridisation. Probe hybridisation was conducted at 37°C in a 

rotating oven overnight.  

Sephadex G-25 columns were made by piercing the base of a 0.5 ml 

centrifuge tube with a 0.8 mm x 40 mm (21 G x 1
 

 
 in) needle (Becton Dickinson) 

(only inserting half of the ‘face’ of the needle through the tube), and placing this 

tube into a larger 1.5 ml centrifuge tube. A few drops of glass bead solution was 

added to the 0.5ml centrifuge tube, followed by 300-400 µl Sephadex G-25. 

Column formation was achieved by centrifugation at 2,000 rpm for 2 min. 

 

2.7.6 Post-hybridisation washing of Northern blots and signal detection 

 

After overnight incubation, hybridisation buffer containing the -
32

P 

labelled probe of interest which had not hybridised to the membrane was discarded. 

The nylon membrane was then subjected to 2 x 30 min washing steps using a 0.2 x 

Saline-Sodium Citrate (SSC), 0.1 % Sodium Dodecyl Sulphate (SDS) solution at 

37°C. Membranes were then wrapped in Saran wrap, and signal was detected using 

phosphorimager screens (Fujifilm). The Bio-Rad molecular imager, FX proplus, 

was used for signal visualisation. Membranes could be re-used by stripping 

hybridised radioactive oligonucleotides by placing membranes in a solution of 

boiling 0.1 % SDS, with shaking for 30 min - 1 h. 
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2.8 Quantitative Northern blotting and statistical analysis of band 

intensities 

 

In order to calculate the concentration of an endogenous sRNA, 

oligonucleotides with the same sequence as the endogenous target were designed 

and purchased either in DNA form (Sigma) or RNA form (Dharmacon). Serial 

dilutions of synthetic sequences for a given target with concentrations ranging 

from 0.1 fmoles – 75 fmoles (depending on the experiment) were loaded on a 15 % 

denaturing polyacrylamide gel and subjected to Northern blotting. Between 0.1-10 

µg of total cellular RNA from an experimental sample was also run on a Northern 

blot. Both the serial dilution and experimental blots were hybridised to a probe 

with a complementary sequence to the target of interest in the same hybridisation 

tube, and exposed to phosphorimager screens together for the same time period. 

Signal strength of band intensities was quantified using the Quantity One software 

(Bio-Rad). Background signal strength was first removed from each of the raw 

values of the bands. A calibration curve was then created using Microsoft Excel for 

the serial dilution of synthetic targets. This calibration curve was then used to 

calculate the concentration of sRNA in the experimental target. 

 For analysis of Y RNA fragmentation from full length Y RNAs, signal 

strength intensities for a given Y RNA/YsRNA were normalised by dividing by the 

band intensity values of U6 snRNA (loading control) for each respective lane.  

For statistical analysis comparing the ratios of particular band intensities, t-

tests and Z-tests were performed by Dr Irina Mohorianu from the School of 

Computing Sciences, University of East Anglia. 
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2.9 Oligonucleotide probe sequences for Northern blot hybridisations 

 

2.9.1 Antisense DNA oligonucleotide probe sequences (Sigma): 

 

Y5 3' end: 5’-AGCTAGTCAAGCGCGGTTGTGGGGG-3’, 

Y4 3’ end: 5’-AGCCAGTCAAATTTAGCAGTGGGGG-3, 

Y3 3’ end: 5’-TAGTCAAGTGAAGCAGTGGGAG-3’, 

Y1 3’ end: 5’-AGACTAGTCAAGTGCAGTAGTGAGAA-3’,  

Y5 5' end: 5’-TAACCCACAACACTCGGACCAACT-3’,  

Y4 5' end: 5’-TAACCCACTACCATCGGACCAGCC-3’, 

Y3 5' end: 5’-AACACCACTGCACTCGGACCAGCC-3’, 

Y1 5' end: 5’-TAACTCACTACCTTCGGACCAGCC-3’, 

miR-21: 5’-TCAACATCAGTCTGATAAGCTA-3’,  

miR-25: 5’-TCAGACCGAGACAAGTGCAATG-3’, 

miR-93: 5’-CTACCTGCACGAACAGCACTTTG-3’, 

tRNA Met 5’ end: 5’-AGCACGCTTCCGCTGCGCCACTCTGCT-3’,  

U6 snRNA: 5’-GCTAATCTTCTCTGTATCGTTCC-3’. 

 

2.9.2 Locked nucleic acid (LNA) modified oligonucleotide probes (Exiqon): 

 

LNA is a modified RNA nucleotide which has a high binding affinity for 

RNA and results in an increased sensitivity when detecting target molecules. The 

LNA oligonucleotides used here contained DNA nucleotides with an LNA 
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molecule substituted every third base (denoted by a ‘+’ prefixed to the base which 

was substituted with LNA).  

 

Y5 (LNA) ‘loop’ probe: 5’- G+AGA+CAA+TGT+TAA+ATC-3’ 

 

2.10 Western blotting 

 

2.10.1 Polyacrylamide gel electrophoresis of proteins 

 

For protein electrophoresis, 10 µg of total protein was boiled in 1.5 ml 

centrifuge tubes for 5 min at 100°C in an equal volume of Laemmli buffer (Sigma), 

and then returned to ice. Proteins were separated on a precast NuPAGE 4-12 % 

Bis-Tris polyacrylamide gel (Invitrogen) using the XCell Surelock mini-cell 

electrophoresis system (Invitrogen). Electrophoresis was performed at 120 V in 

NuPAGE Mops SDS running buffer (NP0001). The protein size markers used were 

Kaleidoscope pre-stained standards (Bio-Rad, 161-0324) and Precision Plus 

protein standards (Bio-Rad, 161-0374).  

 

2.10.2 Blotting of proteins 

 

Proteins were transferred to Immun-blot Polyvinylidene fluoride membrane 

(PVDF), 0.2 µm (Bio-Rad, 162-0177). PVDF was first wetted in methanol. The gel 

and six pieces of filter paper (BLT2, Munktell), were wetted in NuPAGE transfer 

buffer (Invitrogen, NP0006-1) supplemented with 20 % methanol. The PVDF was 
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also wetted in transfer buffer following methanol ‘activation’. The wetted gel was 

put on the PVDF and placed between pieces of filter paper (3 pieces each side). 

The layers of gel, PVDF and filter paper were then secured between layers of 

transfer buffer soaked sponge pads. The entire complex was than arranged in the 

XCell II blot module (Invitrogen) and filled with transfer buffer. Transfer was done 

at 300 mA for 45 min at 4 °C. 

Following protein transfer to PVDF membrane, the membrane was then 

washed three times in phosphate buffered saline (made using Dulbecco `A’ Tablets, 

Oxoid). To avoid non-specific antibody hybridisation, the PVDF membrane was 

blocked for 1 h in a 5 % milk solution (Marvel) in PBS, supplemented with 0.1 % 

Tween20 (PBS-Tween). 

 

2.10.3 Western blot antibody hybridisation 

 

Western blot membranes were hybridised to the appropriate primary 

antibody at dilutions recommended by the manufacturers. Hybridisations were 

performed in 10 ml of 5 % milk, 0.1 % PBS-Tween in 50 ml centrifuge tubes 

rotating at 4 °C overnight in a hybridisation oven. The following day, membranes 

were washed three times for 15 min in PBS-Tween (0.1 %), without milk. 

Hybridisation of horseradish peroxidise (HRP) conjugated secondary antibodies, at 

dilutions specified by the manufacturers, was achieved in 5 % milk PBS-Tween in 

50 ml centrifuge tubes rotating at room temperature for 1 h. After hybridisation 

with the secondary antibody, membranes were washed three times as before in 

PBS-Tween. 



85 
 

Antibody signal was detected using enhanced chemiluminescence (ECL) 

SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific, 34080). 

The membrane was then incubated in activated substrate for 30 s - 3 min and then 

quickly removed and wrapped in Saran wrap. The Glow Writer Pen (Diversified 

Biotech) was used to mark on the Saran the positions of the size markers. Signal 

was detected using the Fujifilm darkbox (LAS-3000). After signal visualisation, 

PVDF membrane was stripped of antibodies using ReBlot Plus Strong antibody 

stripping solution (Millipore) according to the manufacturer’s instructions. 

 

2.11 Antibodies for Western blotting 

 

All antibodies were used at dilutions recommended by the manufacturer. 

Antibodies used were: human Ro60 (Santa Cruz, sc-20961), La (Abnova, 

H00006741-M01), Nucleolin (abcam, ab13541), Ago2 (abcam, ab57113), β-actin 

(abcam, ab6276), Angiogenin (abcam, ab10600 and Santa Cruz, sc-1408) and 

RNase L (abcam, ab13825). For detection of Ro60 in mouse, a previously 

described home-made antibody from the Wolin laboratory was used (Chen et al., 

2003). Secondary antibodies used were: Rabbit polyclonal Secondary Antibody to 

Mouse IgG - H&L (HRP) (Abcam, ab6728) used for detecting mouse Ro60, La, 

Nucleolin, RNase L, angiogenin (abcam antibody) and β-actin primary antibodies. 

Anti-Rabbit IgG (whole molecule)–Peroxidase antibody produced in goat (Sigma, 

A0545) for detecting human Ro60 primary antibody. Finally, donkey anti-goat 

IgG-HRP (Santa Cruz, sc-2020) was used for detecting angiogenin (Santa Cruz 

antibody). 
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2.12 Y5 expression construct 

 

The Y5 expression construct (pY5) was created by another PhD student in 

the lab, Carly Turnbull. Using the forward primer: 5’-

AATACTAGTGAAGATCCATGGAGGTACATC-3’ and the reverse primer 5’-

GTAAACGTTGTCTACTACTGTTATTAGTGC-3’ the hY5 gene, including 

endogenous promoter and terminator sequences, was amplified from HeLa 

genomic DNA and cloned into the pGEM-T Easy vector (Promega). The sequence 

was checked by Sanger sequencing on both the sense and antisense strands using 

the pUC/M13 forward (5’-CGCCAGGGTTTTCCCAGTCACGAC-3’) and 

pUC/M13 reverse (5’- TCACACAGGAAACAGCTATGAC-3’) primers. 

The pY5 construct was transfected (1 µg per well in a 6-well plate with a 1 

ml volume) using Opti-MEM + GlutaMAX and Lipofectamine 2000 reagent as 

already described. 

 

2.13 Angiogenin expression construct 

 

The angiogenin expression construct (pcDNA-ANG) was a gift from 

Xiaofei Zheng’s laboratory (Fu et al., 2009). The sequence was checked by Sanger 

sequencing on both the sense and antisense strands using the T7 (5’-

TAATACGACTCACTATAGGG-3’) and SP6 (5’ATTTAGGTGACACTATAG-

3’) primers.  
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The pcDNA-ANG construct was transfected (0.5 µg per well in a 6-well 

plate with a 1 ml volume) using Opti-MEM + GlutaMAX and Lipofectamine 2000 

reagent as already described. 

 

2.14 Plasmid purification 

 

Plasmids were transformed into super competent DH5α bacterial cells via 

heat shock. This was done using a 25s heat shock at 42 C, followed by addition of 

1 ml of  super optimal broth medium supplemented with 20 mM glucose (SOC) 

with a one hour recovery period in a 37C shaker incubator. Bacteria were then 

plated and colonies containing the desired plasmid were selected for on Luria broth 

(LB) plates with 100 µg/ml ampicillin. Plasmid recovery was achieved via a 

purification kit (Qiagen) following inoculation of a single bacterial colony in 5 ml 

LB with 100 µg/ml ampicillin. All bacterial handling and plating was done using 

aseptic techniques. 

Following sequence confirmation, desired plasmids were purified to high 

concentration using large scale 'midiprep' plasmid purification (Qiagen). 

Concentration and quality of DNA was assessed using the Nanodrop 2000 

spectrophotometer (Thermo Scientific). A sample absorbance 260/260 nm ratio 

was checked, which should be ~1.8 as an indication that the analysed sample is 

'pure' DNA. 
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2.15 Dideoxynucleotide chain termination (Sanger) sequencing 

 

Following plasmid purification, sequences were checked via 

dideoxynucleotide chain termination (Sanger) sequencing using the Big Dye 

terminator kit (Applied Biosystems). The Big Dye sequencing reaction contained 1 

μL of recovered plasmid, 1 μL of BigDye, 1 μL of Half Big Dye, 1 x sequencing 

buffer and 1 μL of sequencing primer in a 10 μL reaction. The polymerase chain 

reaction (PCR) used to generate dideoxynucleotide termination products was 

performed using the following cycling parameters: 96 C (4 min) followed by 25 

cycles of: 96 C (30 s), 50 C (15 s), 60 C (4 min). This was followed by a 4 °C 

holding temperature. The PCR reactions were sent to the Genome Analysis Centre, 

Norwich where the sequencing reactions were run. Sequence analysis was 

performed using the FinchTV software, version 1.4.0 (Geospiza).  

 

2.16 Anion exchange chromatography of non-stressed and poly(I:C) treated 

cells 

 

MCF7 cells were plated in 175 cm
2
 flasks (4 flasks per experiment) and 

allowed to grow to 70 % confluency. Flasks were either treated or not-treated with 

poly(I:C). For poly(I:C) treated flasks, cells were harvested 24 h after poly(I:C) 

induction, using 0.25 % Trypsin-EDTA as already described. Following trypsin 

neutralisation and pellet formation, cells were washed in cold Phosphate Buffered 

Saline (PBS) (Gibco, 14190). Following PBS washing and cell pellet formation via 

centrifugation (from 4 flasks combined), cells were lysed in 1 ml of column buffer 
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(20 mM Tris/HCl pH 7.5, 300 mM NaCl, 5 mM MgCl2, 5 mM DTT) 

supplemented with RNase inhibitor at 1 µl/ml (Promega) and protease inhibitor at 

5 µl/ml (Sigma, P8849). This was achieved via pressure/suction induced lysis 

using a 2ml syringe and a 0.5 mm x 16 mm (25 G x 
 

 
 in) needle (Becton 

Dickinson). A lysate was created by drawing the cell-lysis buffer mixture through 

the needle into the syringe and expelling the fluid back into the collection tube ten 

times. Insoluble material was removed by centrifugation at 16,000 g for 5 min at 

4 °C. 

Anion exchange was performed by a postdoctoral researcher in the 

laboratory, Dr Tibor Csorba. The extracts were separated using a 

diethylaminoethanol (DEAE) -anion exchange column (Pharmacia). Fractions from 

the anion exchange column were eluted in increasing salt concentrations between 

100 mM and 800 mM. RNA was extracted from every second fraction and 

separated on a 15 % denaturing polyacrylamide gel and subjected to Northern 

blotting as already described. 

 

2.17 Ago2 pull-down assay 

 

Ago2 immunoprecipitation (pull-down) was performed by a postdoctoral 

researcher in the laboratory, Dr Francisco Esteban Nicolas. Four flasks of 175 cm
2
 

confluent MCF7 cells were treated with trypsin and washed twice with PBS. Cells 

were lysed using 2 ml of Lysis Buffer (Promega, E3971) plus 2.5 mg/ml of heparin 

(Sigma). Lysate was spun down for 10 min at 10,000 rpm and the supernatant was 

moved to a clean tube. Then 10 μl of primary antibody Ago2 (Abcam, ab57113) 
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was added followed by incubation and rocking for 4 hours at 4ºC. Following this, 

50μl of protein A beads were blocked in 2 ml of lysis buffer plus 2.5 mg/ml of 

heparin for 1 h. Beads were spun down (2,000 rpm, 3 min) and mixed with the 

lysate, followed by incubation and rocking for 1 h at 4ºC. This was then washed 

three times followed by spinning the beads down and resuspension in 500 μl of 

lysis buffer with heparin 5 mg/ml. Then there was a final wash only with lysis 

buffer. This was eluted three times with 100 μl of glycin/HCl pH=2.3 100 mM. 

These three elutions were pooled and neutralized with 75 μl of Tris/HCl pH 9.0 

(1M). This was then purified with 1.2 ml of trizol. 

 

2.18 Angiogenin in vitro cleavage experiments 

 

Experiments using recombinant angiogenin protein to cleave total cellular 

RNA or cell lysate were based on previous experimental designs (Fu et al., 2009; 

Li et al., 2012). Recombinant human angiogenin powder (R&D Systems, 265-AN-

050) was made up to a 10 µM (140 µg/ml) stock solution in a filter sterilised buffer 

(PBS containing 0.1 % bovine albumin), and used at a working concentration of 1 

µM. Recombinant RNase A (Ambion, AM2269) (73 µM stock, 1 mg/ml) was used 

at a working concentration of either 1 µM or 1.5 nM. The experimental 

‘angiogenin buffer’ (30 mM HEPES pH 6.8, 30 mM NaCl, 0.0001 % BSA) was 

adjusted to pH 7 and then filter sterilised. The working buffer in the absence of any 

RNase was used as a control. 

Reactions were performed at 100 µl final volumes using 20 µg total RNA 

per reaction in 1.5 ml centrifuge tubes. For experiments using cell lysates, cells 
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were first dissociated from tissue culture flasks using trypsin. The cells were then 

washed in PBS, and then 2 x 10
6
 cells were lysed in 90 µl of angiogenin buffer 

using pressure/suction induced lysis with a 2ml syringe and a 0.5 mm x 16 mm (25 

G x 
 

 
 in) needle. The number of cells used was based on the assumption that one 

representative mammalian cell contains ~ 10 pg RNA (Tang et al., 2011). This 

would equate to 20 µg RNA per 2 x 10
6
 cells, which would make the in vitro 

cleavage RNA and cell lysate experiments comparable. After addition of 

angiogenin or RNase A, reactions were incubated on a heating block at 37 C for 

between 2 min – 1h. Reactions were stopped by addition of 1 ml Trizol. RNA was 

then extracted as already described. 

 

2.19 Adjustment of pH and filter sterilisation of buffers 

 

The pH of solutions and buffers was measured using the Suntex 

microprocessor pH meter SP-2200, applying dropwise addition of concentrated 

HCl or NaOH to adjust the pH value. Buffers and solutions which could not be 

autoclaved were filter sterilised by passing liquid through 0.2 µm filters (Sartorius 

Stedim Biotech) using a syringe. 

 

2.20 Mouse organ dissection and subsequent RNA isolation 

 

 All mice were provided by the Disease Modelling Unit, School of 

Biological Sciences, University of East Anglia. Adult male and female mice (~ 2 

months old) from BALB/c or C57BL/6 strains were sacrificed by a technician. 
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This was done humanely by cervical dislocation at the same time of the morning 

each time a mouse was used. Dead mice were quickly dissected (within 30 min of 

sacrifice) following brief sterilisation of the fur with 100 % ethanol. All dissection 

instruments used were autoclaved and sterile. Organs dissected were the brain, 

heart, both lungs, liver, both kidneys and femoral muscle from the left leg. Once 

extracted, organs were quickly cut into slices where at least one dimension was no 

more than 0.5 cm across. These tissue samples were placed in 5 volumes of 

RNAlater solution (Sigma) and kept on ice. Prior to RNA extraction, tissue 

fragments for each organ were removed from RNAlater solution and weighed on a 

digital scale. The mass of tissue fragments for each organ was used to calculate the 

volume of Trizol (Invitrogen) required to extract RNA as recommended by the 

manufacturer. Tissues were ground in Trizol using sterile pestle and mortars, 

applying liquid nitrogen intermittently. RNA pellets were resuspended in 200 µl of 

distilled H20 for each organ. 

 

2.21 Purification of sRNA (<200 nt) from total RNA 

 

 In order to isolate the sRNA fraction (<200 nt) from tissues, organs and cell 

culture extracts, 20 µg of total RNA was processed using the mirVana miRNA 

Isolation kit (Ambion). The small RNA fraction was eluted in a 50 -100 µl volume 

of distilled H20. This RNA was then concentrated via ethanol precipitation and 

resuspended in 10 µl distilled H20, giving a total recovery of ~ 2 µg sRNA from 20 

µg total RNA. 
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2.22 Concentrating RNA via ethanol precipitation or vacuum drying 

 

In order to concentrate RNA, two techniques were employed. Where only a 

small concentration was required (~ 20 µl reduction in volume), vacuum 

concentration was used. RNA solutions were centrifuged in the Eppendorf 

Concentrator 5301 in open-capped 1.5 ml centrifuge tubes. The rate of reduction in 

volume during centrifugation is approximately 1 µl/min. 

Where a greater volume concentration was required, ethanol precipitation 

was implemented. Taking a 100 µl volume of RNA, 12.5 µl of 3 M sodium acetate, 

375 µl 100 % ethanol and 2 µl GlycoBlue (Ambion, AM9515) was added and 

briefly vortexed. This solution was incubated at -80°C for 2 h, followed by 

centrifugation at 13,000 g for 20 min. The supernatant was then removed and 

followed by washing with 95 % ethanol. The air-dried RNA pellet was then 

resuspended in the desired volume of distilled H20. 

 

2.23 Small RNA library preparation  

 

Total RNA was isolated via Trizol extraction (Invitrogen) and small RNA 

was enriched using the mirVana miRNA Isolation kit (Ambion) as already 

described. Small RNA libraries were created using the TruSeq Small RNA 

preparation kit (Illumina, RS-200-0012 & RS-200-0024) using variable index 

primers (barcodes) to allow for multiplexing of samples. The protocol provided by 

the manufacturer was used to create libraries with amendments specified below.  

For the mouse organ sequencing experiments, 500 ng input sRNA was used per 
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reaction, and for the mouse embryonic stem cells/Ro60
-/-

 experiments, 2 µg input 

sRNA was used. Two biological repeats were done for both the mouse organ 

experiment and for the mES/Ro60
-/-

 experiment.  

Reactions were performed using half the volumes recommended by the 

manufacturer up to the reverse transcription (RT) stage, at which point full 

recommended reaction volumes were used. Truncated T4 RNA ligase 2 (NEB) was 

used for 3’ adapter ligation, and SuperScript II reverse transcriptase (Invitrogen) 

for creation of cDNA. PCR amplification of cDNA was achieved using Phusion 

Hot Start high-fidelity polymerase (NEB) using 4 µl of the RT reaction in two PCR 

reactions with different cycle numbers, with 20 µl final volume. The PCR 

conditions provided in the manufacturer’s protocol were used except 15 & 17 

cycles were used for the mouse organ library preparation, and 17 & 19 cycles for 

the mouse embryonic stem cells/Ro60
-/-

 experiment. These cycling parameters 

were optimised for library preparation of the 30-40mer sRNA fraction. The two 

separate PCR reactions for each sample were pooled for gel extraction. 

DNA libraries were separated on 8 % polyacrylamide gels and stained 

using SYBR gold. The 30-40mer class of sRNAs were isolated by cutting the 

appropriate portion of the gel with a sterile razor blade using the size markers 

provided by the kit as a guide. 

 

2.24 Illumina (Solexa) sequencing and bioinformatics 

 

Libraries were sent to Baseclear (Netherlands) where they were checked on 

a BioAnalyser (Agilent DNA 1000 chip) and quantified. Libraries were then 
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pooled and sequenced using the HiSeq 2000 system (Illumina) with a 50 cycle read 

length. The sequencing was done using two different lanes for each experiment. 

For the mouse organ experiment, the two biological repeats (6 organs from 2 

different mice) were sequenced on different lanes. For the mES/Ro60
-/-

 experiment, 

sequencing was performed in duplicate such that each sample was sequenced on 

each of 2 lanes. Data analysis was done by Dr Helio Pais, Matthew Beckers and Dr 

Irina Mohorianu from the School of Computing Sciences, University of East 

Anglia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



96 
 

 

 

 

 

 

 

 

Chapter 3 

Y RNAs are fragmented into Y RNA-derived sRNAs in 

a range of cell types under stressed and non-stressed 

conditions 
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3.1 Introduction 

 

 Cells need to respond to adverse conditions brought about by 

environmental change or internal fluctuations in biochemical states. This ‘stress’ 

response needs to be implemented quickly and efficiently in order to restore 

cellular homeostasis. One of the ways cells respond to stress is by altering the 

expression of microRNAs, which in turn tailors gene expression in order to adapt 

to new environmental conditions (Leung & Sharp, 2010). In the laboratory of 

Professor Tamas Dalmay, we study microRNAs in both animal and plant systems. 

Previous work in the Dalmay laboratory has demonstrated that plants use 

microRNAs to respond to stress. Specifically, it was shown that miR-395 in 

Arabidopsis is upregulated in response to sulphur starvation in different cell types 

(Kawashima et al., 2009), a nutrient which is essential for the synthesis of some 

amino acids. Increased miR-395 levels results in the differential regulation of 

sulphate transporter proteins which in turn facilitates the favoured translocation of 

sulphate to plant shoots (Kawashima et al., 2009; Kawashima et al., 2011). 

 A different study in the Dalmay laboratory aimed to uncover novel stress 

related microRNAs in animal cells. Here, postdoctoral researcher Dr Francisco 

Esteban Nicolas implemented a range of stress stimuli on the common breast 

cancer cell line, MCF7. These included heat shock, double heat shock, nutrient 

starvation, viral infection and a control. In order to mimic viral infection, 

polyinosinic:polycytidylic acid (Poly I:C) – an immunostimulant structurally 

similar to double-stranded RNA, was transfected into cells. RNA was then 

extracted from all stressed and control cells and subjected to Solexa (Illumina) 



98 
 

sequencing. The RNA size class corresponding to ~22 nt miRNAs was selected for 

library preparation. Strikingly, only three microRNAs were identified as being 

differentially regulated during stress. MiR-1246, miR-1979 and miR-1975 showed 

a significant increase in abundance in cells subjected to poly(I:C) treatment only. 

Further investigation via a literature search and using the Basic Local Alignment 

Search Tool – BLAST (Altschul et al., 1990) revealed that the 25 nt miRs-1979 

and 1975 were in fact fragments derived from non-coding RNAs called Y RNAs.  

Y RNAs were first discovered during investigations into systemic lupus 

erythematosus (SLE) as they were found to associate with the autoantigen Ro60 

(Lerner et al., 1981). Y RNAs have since been implicated in biological processes 

such as chromosomal DNA replication (Christov et al., 2006) and RNA quality 

control (O'Brien & Wolin, 1994).  

The Dalmay laboratory found that miR-1979 was derived from the 3’ end 

of human Y3 RNA (hY3) and miR-1975 was derived from the 3’ end of human Y5 

RNA (hY5). Indeed, a study published shortly after we discovered this also noted 

that these putative miRNAs were actually Y RNA fragments (Meiri et al., 2010), 

and they were subsequently removed from the microRNA online database, 

miRBase. Interestingly, these Y RNA fragments were first described 11 years prior 

to our discovery in cells undergoing apoptosis, where Y RNAs appeared to be 

specifically targeted for degradation (Rutjes et al., 1999a). No study has yet looked 

at these Y RNA-derived sRNAs (YsRNAs) in detail. 

 In this chapter, the aim was to characterise the nature and occurrence of Y 

RNA fragmentation in a range of animal cell lines. YsRNAs mapping to both the 3’ 

and 5’ ends of all four Y RNAs were identified in Solexa (Illumina) sequencing 
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data. The YsRNAs were detected in stressed cells via small RNA Northern blot 

and were also detected in non-stressed cells at levels comparable with microRNAs.  
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3.2 Results 

 

3.2.1 Y RNAs give rise to fragments originating from their 5’ and 3’ ends 

 

 Preliminary work by Dr Francisco Esteban Nicolas comparing poly(I:C) 

treated and untreated MCF7 cells utilised Solexa sequencing libraries which 

selected for 19-24 nt sRNAs. It was in these experiments that YsRNAs were shown 

to be upregulated during poly(I:C) treatment. Following Northern blot validation, it 

was noted that several of these candidates also showed larger bands, ~30 nt. It was 

then decided that new libraries should be made which would include this longer 

size class of small RNAs. 

MCF7 cells were subjected to a stress treatment by transfecting cells with 

poly(I:C). The effect of poly(I:C) on cell morphology can be seen in figure 3.1. 

Untreated MCF7 cells displayed a polygonal shape typical of other epithelial cells 

and were adhered to the cell culture flask. After poly(I:C) treatment (8h post-

transfection – when RNA was harvested), many cells had disassociated from the 

flask and displayed a shrunken, spherical morphology with blebbing of the plasma 

membrane, typical of cells undergoing apoptosis (Figure 3.1). RNA was then 

extracted from poly(I:C) treated and untreated cells and cDNA libraries were 

generated for the 19-33 nt size range of small RNAs. A size distribution of 

sequences revealed an expected peak around 22 nt representing the microRNA 

population, and an unexpected peak of around 30-33 nt (Figure 3.2). Following 

Solexa sequencing, 21,837,679 redundant reads were obtained for the poly(I:C) 

treated dataset, of which 79 % mapped to the genome. Out of the total number of 
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reads, this included 490,826 unique (non-redundant) reads of which 33 % mapped 

to the genome. The discrepancy between the percentage of mapped reads for 

redundant and unique sequences was owing to the presence of a small proportion 

of sequences with very high read counts which could be mapped. The 50 sequences 

with the highest read counts made up 83 % of the mapped reads (34 % of which 

were microRNAs, and 56 % of which were tRNA, snoRNA and rRNA fragments). 

Sequence reads were normalised using the total redundant read numbers which 

mapped to the genome. 
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Figure 3.1 Morphological effect of poly(I:C) on MCF7 cells. 

 

Photographs of normal MCF7 cells prior to treatment, and 8 h after poly(I:C) 

transfection (when RNA/protein samples were harvested). Photographs taken 

down a microscope lens at 20 X magnification (top photographs) and 10 X 

magnification (bottom photographs). Untreated MCF7 cells (left panels) looked 

normal for healthy epithelial cells, with a typical polygonal shape and were firmly 

attached to the cell culture flask in discrete patches. After 8 h following 

transfection with poly(I:C) (right panels), many cells had disassociated from the 

flask, with adhered cells looking more spherical and shrunken in size, with 

blebbing of the plasma membrane (indicated by arrows) characteristic of 

apoptosis. Scale bar represents 20 µm (approximate size). 
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Reads corresponding to YsRNAs were detected which were derived from 

all four human Y RNAs. When mapped to the Y RNA structures, these sequences 

corresponded exactly to the 5’/3’ stems of the Y RNAs, and included some of the 

single stranded region of the large internal pyrimidine rich loop (Figure 3.3A). No 

sequences corresponding to the remaining loop region were detected. 

 

Figure 3.2 Size distribution of sequences from MCF7 cells treated with poly(I:C) 

or not treated (control).  

 

RNA was extracted from poly(I:C) and untreated MCF7 cells. Libraries of 19-33 

nt were then generated (work by Dr Francisco Esteban Nicolas) and sequenced 

using Solexa sequencing technology. Two peaks are clearly visible: a peak of ~22 

nt representing the microRNA population, and a peak of around ~30 nt which 

includes Y RNA fragment sequences. 
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Figure 3.3 YsRNA sequences detected in poly(I:C) treated MCF7 cells by Solexa 

sequencing. 

 

(A) Y RNA structures (adapted from Christov et al., 2006) with the principle 

YsRNAs generated following poly(I:C) treatment highlighted in yellow. The Y 

RNA fragment size is also shown. (B) YsRNA read counts (normalised as reads per 

million using redundant reads mapping to the genome). The number of reads for the 

principle cleavage fragment generated is shown first. Read counts for the summed 

abundance of the consensus sequence and detected Y RNA fragment variants, 

(sequences with a +/- 2 nt deviation and up to 2 mismatches from the consensus 

sequence), is shown in brackets. The lack of detected variants for some YsRNAs 

(for example, both Y5sRNAs), may be due to bioinformatic or sequencing bias 

rather than lack of biological occurrence. Y RNA reference sequence obtained from 

NCBI database. Y RNA length differences between (A) and (B) is owing to 

heterogeneous poly-U tails as result of transcription by RNA Pol III. 
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The YsRNAs ranged in size from 27-32 nt, with the exception of the Y4-5’ 

fragment which had a shorter length of 18 nt (Figure 3.3A). The fragments from 

the 5’ and 3’ ends of each Y RNA with the highest read counts were selected for as 

the ‘YsRNA consensus sequence’ for each fragment (Figure 3.3B). Fragments with 

a +/- 2 nt deviation and up to 2 mismatches from the consensus sequence were also 

selected for analysis, and will be referred to as ‘YsRNA variants’. 

The Y5-3’ fragment had the highest read count, showing 1,553 reads per 

million reads (RPM) for the consensus sequence (Figure 3.3B). This was followed 

by the Y4-3’ fragment with 746 RPM and Y5-5’ fragments with 357 RPM. All 

other YsRNAs had read counts which were around 5-20 fold less than these three, 

with the exception of the Y4-5’ fragment which had a very low read count of 1 

RPM. Half of the eight different YsRNA species had a number of YsRNA variants 

with significant read counts, (summed abundance of read counts for the consensus 

sequence and YsRNA variants is shown in brackets in figure 3.3B).  

The Y1-3’ variants showed the highest proportion of sequences contributing 

to the summed abundance of variants and consensus read counts, with 41 % of 

total fragment reads coming from YsRNA variants. Neither of the Y5-3’ or Y5-5’ 

YsRNAs gave rise to variants using the criteria used. 

As a comparison, the normalised read counts of two microRNAs expressed 

in poly(I:C) treated MCF7 cells were calculated, taking into account reads with a 

+/- 1 nt deviation from the microRNA sequence in miRBase. The normalised read 

counts for miR-25 was 215 RPM and for miR-93 was 621 RPM. The read numbers 

for the two microRNAs were similar to the read numbers for the YsRNAs. 
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3.2.2 Detection of YsRNAs via Northern blot 

 

In order to see whether these YsRNAs were bona fide small RNAs and not 

merely unspecific degradation products, the fragments were validated via Northern 

blot. Initially, the Y5-3’ YsRNA was focused on as it had significantly higher read 

counts compared to the other YsRNAs. Total RNA was extracted from both 

untreated and poly(I:C) treated MCF7 cells and analysed on a Northern blot, 

probing with a sequence complementary to the 3’ end of Y5 RNA (Figure 3.4A). 

In the lane for untreated MCF7 cells, a single band corresponding to ~80 nt was 

detected. In the lane with RNA from poly(I:C) treated cells, the same ~80 nt band 

was present, along with two additional smaller bands. A band of 32 nt with a very 

strong signal was present, and a weaker band of 24 nt was also present. The size of 

these fragments was confirmed using size markers (Figure 3.4B). Comparing the 

Northern blot with the sequencing data, the larger 32 nt YsRNA fragment 

corresponded with the principle Y5 3’ fragment and the 24 nt fragment 

corresponded with the Y5 3’ stem minus the single stranded tail sequence (Figure 

3.4C). This 24 nt fragment was also present in the sequencing data at 289 RPM. 
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3.2.3 Y5 RNA 3’ fragments are generated under stress in a range of cell 

types 

 

 In order to see whether YsRNAs could be generated under poly(I:C) stress 

in cells other than MCF7, a range of human cell lines were cultured and either 

treated with poly(I:C) or not treated. These included the cancerous cell lines HeLa 

 

Figure 3.4 Y5 RNA fragment validation (3’ end). 

 

(A) Northern blot analysis of Y5 RNA fragmentation following poly(I:C) stress 

treatment. Full length Y5 RNA gives rise to two smaller fragments. (B) Validating 

size of Y5 YsRNAs using size markers. Solexa sequencing data showed a 32 nt Y5 

3’ fragment was the principle fragment and a 24 nt fragment with an overlapping 

sequence was produced at a lower abundance. 31 nt size marker used instead of 32 

nt as preliminary analysis hinted that the longer Y5 3’ fragment was 31 nt. (C) The 

32 nt and 24 nt fragments mapped to the full length Y5 RNA highlighted in yellow 

and red. The two fragments share the same sequence and differ by the single 

stranded 3’ tail shown in red. 
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(cervical cancer cells), DLD-1 (colorectal adenocarcinoma cells), HCT116 

(colorectal carcinoma cells) and HepG2 (hepatocellular carcinoma). Y RNAs have 

been shown to be upregulated in a range of cancerous tissues (Christov et al., 

2008), and YsRNAs also have a higher abundance in tumour samples (Meiri et al., 

2010). Therefore, two non-cancerous cell lines: HEK293 (embryonic kidney cells) 

and MCF10A (mammary epithelial cells), were investigated to see whether 

YsRNA generation was cancer specific. Total RNA was extracted from poly(I:C) 

treated and untreated cells and analysed via Northern blot, probing for the Y5 RNA 

3’ fragment (Figure 3.5). Northern blots for all cancerous and non-cancerous cell 

lines showed a single band representing full length Y5 RNA for untreated cells. All 

poly(I:C) treated cells also shared this ~80nt band, along with the two shorter 

bands representing YsRNAs. The band of 32 nt had a stronger signal than the band 

of 24 nt which was usually weaker and less defined. Upon closer inspection, it was 

also noted that YsRNA were also detectable at very low levels in some of the 

untreated cells. 

 

3.2.4 Y5 RNA 3’ fragments are produced in non-stressed cells at microRNA-

like levels 

 

Only a short exposure time was sufficient to detect Y5 RNA and its 

cleavage products on a phosphorimager screen after poly(I:C) treatment, and only 

1 µg of total RNA was required to detect the YsRNAs. This could have resulted in 

fragments which were produced at low levels being overlooked. Indeed, weakly 

produced YsRNAs appeared to be detectable in non-stressed cells (Figure 3.5). 
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Therefore, 10 µg total RNA from untreated MCF7 cells was analysed on a 

Northern blot with a Y5 RNA 3’ specific antisense probe, using 0.1 µg RNA from 

poly(I:C) treated cells as a size marker for the YsRNAs (Figure 3.6). The 

hybridised Northern blot was also left to expose for a longer time period (7 days 

instead of 7 h) in order to detect possible YsRNAs in cells grown under normal 

conditions. Intriguingly, the longer Y5 3’ fragment (32 nt) was clearly visible in 

non-stressed cells after Northern blot signal was left to develop for a week (Figure 

3.6). An siRNA with no target in the human genome was transfected as a control to 

test the effect of Lipofectamine 2000 on YsRNA generation. YsRNA generation 

mildly increased under these conditions (Figure 3.6). 
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Figure 3.5 Multiple cell lines show Y5 RNA fragmentation during poly(I:C) treatment.  

 

Total RNA extracts from various cell lines, either treated or untreated with the 

immunostimulant poly(I:C), were analysed by Northern blotting using a Y5-3’ antisense 

probe. These included the cancerous cell lines MCF7 (breast adenocarcinoma), HeLa 

(cervical cancer cells), DLD-1 (colorectal adenocarcinoma cells), HCT116 (colorectal 

carcinoma cells) HepG2 (hepatocellular carcinoma), as well as two non-cancerous cell 

lines; HEK293 (embryonic kidney cells) and MCF10A (mammary epithelial cells). The 

upper most band is the full length Y5 RNA (83 nt) and the two shorter bands are the Y5 

RNA 3’ cleavage products of 32 nt and 24 nt. A non-specific siRNA was transfected into 

MCF10A cells as a transfection control. The membranes were stripped and re-probed 

with a U6 specific probe to show equal loading.  

 



111 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the Northern blot signal (Figure 3.6), the level of Y5sRNA 

production in untreated cells appeared to be on a par with other sRNAs found in 

the cell. Therefore, Y5 RNA cleavage products were quantified in non-stressed 

cells and compared to the levels of two microRNAs. Using a synthetic RNA 

oligonucleotide corresponding to the longer Y5sRNA, a dilution series was made 

(Figure 3.7). Dilution series were also made using oligonucleotides corresponding 

to miR-25 and miR-93. After Northern blot hybridisation and generation of a 

calibration curve, the normal physiological level of the longer Y5 sRNA was 

calculated at 0.27 femtomoles/µg total RNA. To determine whether this level was 

 

Figure 3.6 Y5 RNA fragments are produced in non-stressed cells. 

 

Total RNA (10 µg) from MCF7 cells grown under normal conditions was analysed 

on a Northern blot using a probe specific to the Y5 3’ RNA fragment. A non-

specific siRNA was transfected into MCF7 cells to see how the process of 

transfection affected YsRNA generation. A small amount of RNA (0.1 µg) from 

poly(I:C) treated cells was used as a YsRNA size marker. The top band in each of 

the three lanes represents full length Y5 RNA. The YsRNAs detected in non-

stressed cells are indicated with an arrow. 

 

 



112 
 

similar to other short non-coding RNAs, similar experiments were carried out for 

the two miRNAs. The level of miRNA-25 (0.34 femtomoles/µg of total RNA) and 

miRNA-93 (1.4 femtomoles/µg of total RNA) was similar to that of the Y5sRNA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Quantification of endogenous Y5sRNA and microRNAs in untreated 

MCF7 cells. 

 

Serial dilutions were made using RNA oligonucleotides with the same sequence 

as the 32 nt Y5 3’ sRNA fragment. After probing with a Y5 3’ specific antisense 

probe, a calibration curve was created and then used to quantify the endogenous 

level of the Y5 3’ fragment in untreated MCF7 cells. Similar experiments were 

conducted for two microRNAs as a comparison (miR-25 and miR-93). The 

Y5sRNA was found to have a cellular concentration of 0.27 femtomoles/µg total 

RNA. This is comparable to microRNA levels in the cell such as miRNA-25 (0.34 

femtomoles/µg total RNA) and miRNA-93 (1.4 femtomoles/µg total RNA). For 

miRNA quantification, both experimental and serial dilution membranes were 

hybridised together and signal was developed and exposed under the same 

conditions. 

 

 



113 
 

3.2.5 Validation of other YsRNAs 

 

 In order to experimentally validate fragments generated from the other Y 

RNAs, oligonucleotide probes complementary to the 3’ ends of all the Y RNAs 

were used to analyse RNA from poly(I:C) treated RNA (Figure 3.8). The same 

membrane was re-probed, and a size marker was used to confirm the size of the 

YsRNAs generated.  

As there is considerable sequence complementarity between the 3’/5’ stems 

of the Y RNAs where the YsRNAs are derived (48 % sequence similarity based on 

a sequence alignment of the 25 nt from the last dsRNA stretch at the 3’ end of all 

the Y RNAs), the four YsRNA 3’ specific probes were tested using complementary 

sequences to check there was no cross-hybridisation of the different probes to the 

different Y RNAs (Figure 3.9). The four probes appeared specific and no cross-

hybridisation was detected for each probe used (Figure 3.9). 

 The sizes of the YsRNAs (3’ end) from all four Y RNAs largely agrees 

with the sizes derived from the Solexa sequencing data in Figure 3.3. The Solexa 

data indicates that Y1, Y3 and Y4 RNAs give 27 nt 3’ derived YsRNAs. The 

Northern blot analysis appears to agree with this (Figure 3.8). Similarly, the Y5 

YsRNA appears to be the longest, around 32 nt, which is also confirmed by 

Northern blot data (Figure 3.4B and 3.8).  
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Figure 3.8 Validation and comparison of YsRNAs from all four Y RNAs. 

 

MCF7 RNA from poly(I:C) treated cells was analysed via Northern blot. The 

same membrane was re-probed with oligonucleotides complementary to the 3’ 

ends of all the Y RNAs. Owing to the sequence similarity of the stem regions of 

the Y RNAs, the probes used to detect YsRNAs 1-5 were all tested to make sure 

there was no cross-hybridisation of the different probes to the different Y RNAs. 
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Figure 3.9 Specificity of the probes used to detect YsRNAs (3’ end derived). 

 

Due to the sequence complementarity between the stems of the Y RNAs where 

the YsRNAs are derived (48 % sequence similarity based on a sequence 

alignment of the 25 nt from the last dsRNA stretch at the 3’ end of all the Y 

RNAs), the four YsRNA 3’ specific probes were tested using complementary 

sequences to check there was no cross-hybridisation of the different probes to the 

different Y RNAs. The same membrane was used for all hybridisations. 
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3.3 Discussion 

 

 Previously, YsRNAs have been detected in cells undergoing apoptosis 

(Rutjes et al., 1999a) and were also found to be upregulated in cancerous cells 

(Meiri et al., 2010). These two findings seem to be contradictory because if 

YsRNAs were upregulated to assist the uncontrolled cell proliferation associated 

with cancer cells, why would they also be upregulated in cells undergoing cell 

death? As Y RNAs have been shown to be essential for DNA replication (Christov 

et al., 2006), one explanation could be that the fragmentation of Y RNAs somehow 

disrupts the controlled regulation of chromosomal DNA replication - which would 

certainly fit with the apoptosis scenario, as replication of genetic material is not a 

priority in cells undergoing cell death. In the case of increased fragmentation in 

cancerous cells, perhaps some oncogenic factor would replace the role of Y RNAs 

as initiators of DNA replication which would facilitate uncontrolled cellular 

proliferation? However, the fragmentation of Y RNAs appears to maintain the 

integrity of the 9 base pair motif sequence which has previously been shown to be 

essential for chromosomal DNA replication when in a double stranded form 

(Gardiner et al., 2009). As we do not know whether the 5’ and 3’ YsRNAs remain 

bound to each other following fragmentation, it is not clear what affect Y RNA 

fragmentation would have on the function of this 9 bp motif sequence. 

Alternatively, YsRNA generation and upregulation during cell stress could 

facilitate the reported quality control function of Ro60 (O'Brien & Wolin, 1994) 

resulting in a moderated chaperone activity so that Ro60 targets a different subset 

of misfolded RNAs generated under adverse conditions. 
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Here it was shown that all four Y RNAs give rise to fragments deriving 

from the 3’ and 5’ ends which has not previously been reported. Strikingly, this 

pattern of 3’/5’ fragmentation is identical to the fragmentation pattern of other 

sRNAs fragments derived from longer RNAs such as tRNA, snoRNA and rRNA 

fragments (Brameier et al., 2011; Li et al., 2012). Indeed, Li et al. found that the 

processing of sRNAs from these longer precursor molecules occurs asymmetrically, 

similar to microRNA/microRNA* strand level bias. Comparing the normalised 

read counts for YsRNAs, there also appears to be an asymmetric bias for either the 

5’ or 3’ YsRNA for each of the Y RNAs. With the exception of Y3 RNA, YsRNAs 

derived from the 3’ end have higher read counts than those from the 5’ end.  

The asymmetric processing of all the YsRNAs needs to be confirmed via 

Northern blot analysis. During library preparation for Solexa sequencing of stress 

induced microRNAs, sRNA populations were not dephosphorylated to remove 5’-

polyphosphates. The T4 RNA ligase used during library preparation can only ligate 

the 5’ adapter to 5’-monophosphates, which does not present a problem during 

microRNA library preparation as these molecules have a native 5’-monophosphate. 

However, with novel sRNAs, 5’-tri or diphosphates (or indeed other modifications) 

may be present, such as with the Y RNAs which all have a 5’-PPP. This would not 

present a problem with the 3’ YsRNAs, as following cleavage, a 5’ phosphate and 

3’ OH group would be present which is required for Solexa library preparation. 

The differential biochemical modifications at the termini of 5’ and 3’ YsRNAs 

may explain the high read counts from 3’ YsRNAs compared with 5’ YsRNAs. In 

retrospect, if it was known that the investigation would have developed into a non-

microRNA based project, the library preparation protocol would have been revised. 
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This would have involved firstly, dephosphoroylating all sRNAs using an enzyme 

such as alkaline phosphatase, followed by re-phosphorylation of a 5’-

monophosphate using polynucleotide kinase. Experimental strategies used for 

sequencing novel sRNAs with a variety of 5’ and 3’ end modifications has been 

well reviewed elsewhere (Zhuang et al., 2012). The reason why 5’ YsRNAs still 

had significant read counts in the experiment reported here despite not 

dephosphorylating/re-phosphorylating during library preparation may be due to the 

presence of a small population of Y RNAs with 5’ monophosphates, perhaps due to 

degradation or processing errors, or due to a varying dynamic range of 5’-

monophosphate containing Y RNAs within a given cellular population.  

In the case of some of the Y RNAs, two fragments with an overlapping 

sequence appear to be generated from the same strand. This is clearly demonstrated 

by weak, smeared bands shown in figure 3.8 which run near to the principally 

generated fragment. Specifically for the 3’ Y5sRNA, a 32 nt and a 24 nt fragment 

are both clearly present in the sequencing data and also appear on a Northern blot, 

with the 32 nt being much more abundant. As the 3’ tail region is the only 

difference between the longer and shorter fragments (Figure 3.4C), this differential 

fragment formation may be due to differential binding of the La protein which has 

been shown to bind to this region (Pruijn et al., 1991). This will be investigated in 

chapter 5. It remains to be seen if the longer and shorter Y5 3’ sRNAs both have 

biological functions. As the 32 nt Y5sRNA is produced at a much higher level, it is 

possible that the 24 nt Y5sRNA fragment is functionally redundant.  

The level of the longer Y5sRNA in normal, non-stressed cells was found to 

be comparable to some microRNAs (Figure 3.7). As microRNAs are thought to 
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regulate 30-50 % of mammalian protein coding genes (Filipowicz et al., 2008), this 

indicates that YsRNA molecules may have specific functions even in the absence 

of apoptosis. However, it cannot be ruled out that in a population of cultured cells, 

there may be a small number of cells that are undergoing apoptosis even if this is 

not evident under the microscope.  
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Chapter 4 

Biogenesis of Y RNA-derived small RNAs is 

independent of the microRNA pathway 
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4.1 Introduction 

 

 MicroRNAs are endogenously produced, small ~22 nt molecules which 

regulate gene expression by targeting protein coding transcripts and preventing 

their translation or inducing mRNA cleavage (Bartel, 2004). A detailed description 

of microRNA biogenesis and function can be found in chapter 1 (section 1.7.2).  

 Y RNA-derived sRNAs (YsRNAs) are generated in cells following 

poly(I:C) treatment, and are also produced in non-stressed cells, as demonstrated in 

chapter 3. These YsRNAs are similar in size to microRNAs. Indeed, other non-

coding RNAs which have biological functions which are unrelated to gene 

silencing, such as snoRNAs and tRNAs, have been shown to produce RNA 

fragments which can enter the microRNA pathway (Ender et al., 2008; Cole et al., 

2009). One group has tried to address the possibility that YsRNAs have gene 

silencing potential by using the Luciferase assay experiment (Meiri et al., 2010). 

Meiri et al. tried to see whether the activity of a Luciferase gene containing a 

complementary sequence to the YsRNAs could be reduced in cancerous cells 

which produce these fragments. No gene silencing activity was detected, although 

the authors did not rule out the possibility that these YsRNAs could act as 

microRNAs. Meiri et al. relied on endogenous YsRNA levels in Hep3B cells to 

mediate silencing and did not transfect artificial siRNA-like molecules containing 

YsRNA sequences. Therefore, the endogenous levels of possible miRNAs derived 

from Y RNAs might not have been high enough to detect silencing capability using 

the Luciferase assay system. Interestingly, two YsRNAs derived from the 3’ ends 

of Y3 and Y5 RNA were found in the microRNA database miRBase annotated as 
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miR-1979 and miR-1975 respectively. Both miR-1975 and miR-1979 have 

subsequently been removed from miRBase because they are derived from Y RNAs. 

A recent review has also discussed the hypothesis that Y RNAs might be 

processed into microRNAs (Verhagen & Pruijn, 2011). It was argued that Y RNAs 

and pre-miRNAs are both very similar in length and share a similar stem-loop 

secondary structure. It was noted that microRNA genes are found clustered in the 

genome, as are Y RNA genes which are within a single cluster on chromosome 

7q36. Verhagen and Pruijn (2011) also suggested that under stress conditions, 

Ro60 might be released from the Y RNAs and enter the nucleus, allowing Dicer to 

access the exposed Y RNAs and generate the YsRNAs. These fragments would 

then be available to bind to AGO proteins and mediate gene silencing. 

As the question of whether YsRNAs can act as microRNAs remains 

disputed and unresolved in the literature, this hypothesis was addressed 

experimentally here. Using human dicer
-/-

 cells it was shown that YsRNAs derived 

from all four Y RNAs are still produced following poly(I:C) treatment. 

Collaborative work also revealed that YsRNAs are in different complexes than 

microRNAs following analysis of cellular fractions from anion exchange 

chromatography, and that YsRNAs are not immunoprecipitated by Ago2. 

Therefore, it was concluded that YsRNAs do not enter the microRNA pathway. 
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4.2 Results 

 

4.2.1 Production of YsRNAs is Dicer independent 

 

 As the vast majority of microRNAs are produced from pre-miRNAs by the 

RNAse III enzyme Dicer, the generation of YsRNAs was investigated in dicer 

deficient cells (dicer
-/-

). Both wild-type DLD-1 and dicer
-/-

 DLD-1 cells were 

treated with the immunostimulant poly(I:C) in order to induce a stress response 

which has been shown to upregulate YsRNA generation (Chapter 3). Total RNA 

from these cells was then analysed by Northern blot, using antisense 

oligonucleotide probes for all of the YsRNAs (3’ end derived) (Figure 4.1A), and 

also using miR-21 to demonstrate the Dicer
-/-

 genotype (Figure 4.1B). 

 As expected, a single band representing the full length Y RNA was present 

in both wild-type and dicer knockout cells under normal conditions for all four Y 

RNAs. When transfected with poly(I:C), wild-type DLD-1 cells gave rise to the 

expected YsRNAs described in Chapter 3. A principle YsRNA was present for 

each Y RNA represented by the band with the strongest signal. Additionally, 

YsRNAs were also represented by the presence of weaker bands or a smeared 

signal. 

 For dicer knockout cells treated with poly(I:C), the YsRNA fragments from 

each of the four Y RNAs were still produced, even in the case of Y3sRNA which 

is only weakly produced in wild-type cells. Indeed, the production of YsRNA 

looked stronger in Dicer
-/-

 cells in the case of Y5sRNA and Y4sRNA. Interestingly, 
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in the case of Y1 RNA, the band intensities for the different YsRNAs slightly 

changed in dicer knockout poly(I:C) treated cells compared to the wild-type cells. 
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A 

 

B 

Figure 4.1 YsRNAs are produced in Dicer knockout cells. 

 

(A) Total RNA from wild-type or Dicer
-/-

 DLD-1 (human colorectal 

adenocarcinoma cells) either treated or not treated with the immunostimulant 

poly(I:C) was analysed by Northern blot. Oligonucleotide probes antisense to each 

of the four YsRNAs (3’ end) were hybridised to the same Northern blot membrane 

in separate hybridisation reactions. Bands representing YsRNAs were generated 

following poly(I:C) treatment in both wild-type and Dicer 
-/-

 cells. (B) Genotyping 

of DLD-1 wild-type and Dicer
-/-

 cell lines via Northern blot. An oligonucleotide 

probe for microRNA-21 was used. MiR-21 was present in the wild-type cell line, 

but only the precursor miRNA was present in Dicer knockout cells. The membrane 

was stripped and re-probed for U6 RNA to show equal loading. 
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4.2.2 YsRNAs and microRNAs are in different protein complexes 

 

 MicroRNAs bind to Argonaute proteins within the RISC complex. 

Therefore, it was investigated whether YsRNAs are present in the same complex as 

miRNAs. Protein lysates from poly(I:C) treated cells were prepared, and then 

separated according to their net charge by anion exchange chromatography 

(chromatography done by Dr Tibor Csorba). Fractions were eluted at increasing 

salt concentrations and RNA was extracted from every second fraction. RNA 

derived from these fractions was then analysed by Northern blot (Figure 4.2). First, 

antisense oligonucleotide probes specific to the 3’ end of all 4 Y RNAs were used 

to analyse the RNA content of the different fractions. The full length Y RNAs were 

mainly detected in fractions 63-69 for Y1, Y3 and Y4 RNAs. In the case of Y5 

RNA, the full length molecule was eluted earlier, mainly in fractions 41-43. The 

YsRNAs from all Y RNAs appeared to reside mainly in fractions 39-49. 

Interestingly, the 32 nt Y5sRNA and the 24 nt Y5sRNA appeared in different 

fractions: the 32 nt Y5sRNA  mainly in 39-41 and the 24 nt Y5sRNA in fractions 

45-49 (Figure 4.2). 

 The RNA contained within the different protein fractions was also 

hybridised with a probe against miR-21. MiR-21 appeared to be eluted at a very 

low salt concentration (100mM), mainly in fractions 11-15 (Figure 4.2). Therefore 

YsRNAs and microRNAs are in different complexes. However, it was noted that a 

small amount of miR-21 and a small amount of both full length and fragmeted Y 

RNAs appeared together in fractions 67-69. 
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Figure 4.2 YsRNAs and microRNAs are in different complexes. 

 

Protein lysates of poly(I:C) treated MCF7 cells were separated by anion exchange 

chromatography. Fractions were eluted with increasing salt concentration between 

100 mM and 800 mM. RNA was extracted from every second fraction and analysed 

by Northern blot. Membranes were probed in different hybridisation reactions using 

antisense oligonucleotide probes to Y1, Y3, Y4 and Y5 RNAs (3’ end). The 

membrane was also probed for miR-21. MiR-21 is present mainly in fractions 11-

15. The YsRNAs are all mainly present in fractions 39-49. Interestingly for 

Y5sRNA, the longer 32 nt and shorter 24 nt fragments are in different fractions. 

Ro60 protein levels in the respective fractions were not analysed in this particular 

experiment for technical reasons. Arrows indicate full length Y RNAs, asterisks 

indicate YsRNAs. 
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4.2.3 YsRNAs are not generated by or associated with the Argonaute 2 

silencing protein 

 

 In addition to the Dicer knockout and anion exchange chromatography 

experiments, the Argonaute 2 (Ago2) protein was also investigated in relation to 

YsRNA biogenesis and function. Ago2 is a key component of the microRNA 

guided RNA-induced silencing complex (miRISC) and some pre-miRNAs can also 

be processed into mature microRNAs by Ago2 instead of Dicer (Cheloufi et al., 

2010).  

Firstly, Ago2 was depleted via siRNA in MCF7 cells, and the cells were 

then subjected to poly(I:C) treatment (Figure 4.3). The level of miR-21 in poly(I:C) 

treated cells which had been transfected with an siRNA against Ago2 was 

significantly lower compared to cells treated with poly(I:C) only, as expected. 

However, the level of Y5sRNA remained at a high level in both poly(I:C) treated 

cells with normal or depleted Ago2 levels. 

Secondly, another member of the Dalmay laboratory, Dr Francisco Esteban 

Nicolas conducted an Argonaute 2 (Ago2) immunoprecipitation experiment 

(Figure 4.4). Total cellular lysate from non-treated and poly(I:C) treated MCF7 

cells was analysed by Northern blot and hybridised to oligonucleotide probes 

complementary to Y3sRNA, Y5sRNA and miR-21. For the poly(I:C) treated 

sample, both the 32 nt and 24 nt Y5sRNA fragments were detected by the Y5 RNA 

probe, with a single band being detected by the Y3sRNA and miR-21 probes. Non-

treated MCF7 cells only showed a signal for miR-21 and not for either of the 

YsRNAs.  
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Following Ago2 immunoprecipitation, miR-21 was pulled-down in both 

treated and non-treated cells as expected (Figure 4.4). However, neither Y5sRNA 

nor Y3sRNA were immunoprecipitated by Ago2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 YsRNA generation is not affected by depletion of Ago2. 

 

The Ago2 protein was depleted in MCF7 cells via siRNA, followed by treatment 

of cells with poly(I:C). The abundance of miR-21 was assessed by Northern blot  

analysis which indicated that the level of the microRNA in cells transfected with 

the Ago2 siRNA was greatly reduced compared to cells treated with poly(I:C) 

only, as expected. However, when the same membrane was analysed with a Y5 

RNA specific probe, the abundance of Y5sRNA generation appeared unaffected 

by depletion of Ago2. 
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Figure 4.4 YsRNAs are not bound by the Ago2 silencing protein.  

 

Northern blot analysis of lysates from poly(I:C) treated and non-treated cells before 

and after immunoprecipitation by Ago2. Lysate samples shows that miR-21 was 

present in both samples, whereas the YsRNAs were only present in poly(I:C) 

treated samples. Following Ago2 immunoprecipitation, miR-21 was pulled down in 

both treated and non-treated cells. However, YsRNAs were not immunoprecipitated 

under either condition. This shows that YsRNAs are not present in the miRISC 

complex. Work by Dr Francisco Esteban Nicolas. 
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4.3 Discussion 

 

 Canonical microRNAs are generated from precursor stem-loop containing 

molecules (pre-miRs) and are processed into mature ~ 22nt RNAs by Dicer. These 

mature miRNAs are then loaded into the gene silencing complex (RISC) which 

contains one of four Argonaute effector proteins in mammals (Ago1-4) (Filipowicz 

et al., 2008). Although Agos 1-4 can all associate with microRNAs, only Ago2 is 

catalytically active (Meister et al., 2004). The precise roles of the other Ago 

proteins are not as clear. For example, Ago1 has been shown to associate with 

Dicer (Okamura et al., 2004), indicating a role in miRNA biogenesis, but Ago1 has 

also been implicated in heterochromatin silencing (Janowski et al., 2006). 

Long non-coding RNAs unrelated to pre-miRs have been shown to be 

processed into fragments which then enter the microRNA pathway (Ender et al., 

2008; Cole et al., 2009). Additionally, it has been proposed that fragments derived 

from the hairpin-containing Y RNAs could potentially enter the microRNA 

pathway (Meiri et al., 2010; Verhagen & Pruijn, 2011). In this chapter, this 

hypothesis was investigated. 

 Here, it was shown that YsRNAs are not generated by Dicer (Figure 4.1). 

Intriguingly, processing of the full length Y RNA 1-4 appears to be more 

pronounced in poly(I:C) treated cells without Dicer, and leads to greater YsRNA 

production (for example see Y5sRNA in Figure 4.1, lane 4). This might be 

explained by the fact that Dicer can process some of the poly(I:C), since it mimics 

dsRNA, thereby reducing the amount of poly(I:C) available to cause cell stress. In 

Dicer knockout cells, this would result in a higher poly(I:C) concentration, 
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resulting in a stronger stress response. However, this hypothesis does not explain 

the altered abundance between the different YsRNA products for Y1sRNA 

between wild-type and dicer
-/-

 poly(I:C) treated cells (see Figure 4.1, Y1 RNA 

lanes 2 and 4). 

 Some microRNAs can be generated independent of Dicer through direct 

Ago2 processing of pre-microRNAs (Cheloufi et al., 2010). Therefore other steps 

in the microRNA pathway needed to be investigated in order to see whether 

YsRNAs could act as microRNAs, starting with the protein complex in which the 

YsRNA resides. Anion exchange chromatography revealed that miRNAs and 

YsRNAs are mostly in very different complexes (Figure 4.2). However, it was 

noted that small amounts of miR-21, full length Y RNA and YsRNA appeared 

together in fractions 67-69. Generally, YsRNAs appear to be in a complex which is 

much more negatively charged than miRNAs. Intriguingly, YsRNAs from all four 

Y RNAs do not appear in exactly the same fraction, indicating potentially diverse 

functions. The Y1sRNAs appear to be principally eluted in fraction 47, (Figure 

4.2), Y3sRNA in fraction 45, Y4sRNA in fraction 43 and the longer Y5sRNA in 

fraction 41. The different protein association is quite striking considering that the 

stem of the Y RNAs from which the YsRNAs are derived is the most highly 

similar region between the Y RNAs. Additionally, Y1 and Y3 sRNAs are found in 

closely related fractions and Y4 and Y5 sRNAs are also in closely related fractions, 

but distinct to those of Y1/Y3 sRNAs. This might reflect the evolutionary origin of 

these two pairs of molecules. Y RNAs evolved from a common gene, which 

through gene duplication, gave rise to Y1/Y3 in one lineage and Y4/Y5 in the other 

(Mosig et al., 2007). 
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  Depletion of Ago2 in poly(I:C) treated cells by RNAi showed that, 

although the level of a common microRNA was greatly reduced, YsRNA levels 

were unaffected (Figure 4.3). This indicates that the slicer activity of Ago2 is not 

required for generation of YsRNAs from full length Y RNAs and secondly; 

YsRNAs do not bind to the Ago2 complex. If Ago2 levels are depleted, the amount 

of microRNA within the cell will be reduced (as shown in Figure 4.3). This could 

be a result of retardation of the microRNA biogenesis pathway due to inhibition of 

a key step downstream of Dicer, reducing the amount of microRNA which can be 

produced. Alternatively, increased turnover and degradation of non-Ago2 protected 

mature microRNAs could also result in miR depletion. Both scenarios could 

explain the drop in miR-21 abundance shown in figure 4.3.  

In order to investigate whether YsRNAs are actually associated with 

miRISC, immunoprecipitation experiments were performed. Ago2 

immunoprecipitation revealed that YsRNAs do not bind Ago2 (Figure 4.4), 

whereas miR-21 was shown to be complexed with this silencing protein. However, 

this experiment did not rule out a possible association of YsRNAs with Ago1, 3 or 

4. Nevertheless, taken together with the Dicer knockout and anion exchange 

chromatography experiments, as well as the Luciferase assay results from Meiri et 

al, these data demonstrate that YsRNAs are not microRNAs. The results from this 

chapter have subsequently been published by our laboratory (Nicolas et al., 2012). 

Interestingly, preliminary data by Verhagen and Pruijn showed that neither 

Ro60 nor La could be co-immunoprecipitated by anti-hAgo antibodies 

(unpublished). However, work in Gunter Meister’s lab has shown that Ro60 

preferentially interacts with Ago2 in Dicer knockout mouse embryonic fibroblasts 
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(MEFs) (Frohn et al., 2012). These results could explain the mildly increased 

YsRNA generation in dicer knockout cells, as when Ro60 binds to Ago2 under 

these artificial conditions, perhaps Ago2 inflicts slicer activity on Ro60-bound Y 

RNAs. Why Ro60 would bind Ago2 under dicer
-/-

 conditions is unclear, but may 

point towards a primordial RNA quality control mechanism whereby misfolded 

RNAs are processed by AGO, directed by Ro60. 
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Chapter 5 

YsRNA generation is dependent on the autoimmune 

protein Ro60 
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5.1 Introduction 

 

 Most RNAs within the cell can associate with proteins, forming 

ribonucleoproteins (RNPs). Y RNAs have been shown to bind to a range of cellular 

proteins with diverse cellular functions (Hendrick et al., 1981; Bouffard et al., 

2000; Fabini et al., 2000; Fabini et al., 2001; Fouraux et al., 2002; Hogg & Collins, 

2007; Sim et al., 2012). The Ro60 and La autoimmune proteins are the primary 

constituents in Y RNPs (Hendrick et al., 1981; Pruijn et al., 1991). Furthermore, 

the ribosome maturation related protein, nucleolin, has been shown to bind to a 

subset of the Y RNAs (Y1 and Y3), and potentially functions as a Y RNA nuclear 

export factor (Fouraux et al., 2002). Unlike Ro60 and La which bind to the lower 

stem and 3’ tail regions of Y RNAs respectively, nucleolin binds to the pyrimidine-

rich internal loop. 

 Long RNA molecules can be processed into shorter RNAs via enzymatic 

cleavage by proteins called RNases. There are eight canonical, catalytically active 

RNases in humans (numbered 1-8) (Sorrentino, 2010), but there are also many 

other proteins which have RNase activity, such as Ago2 - which has a domain 

similar to ribonuclease H (Song et al., 2004). RNA cleavage can occur at a specific 

region on the RNA molecule owing to recognition of a sequence or structural 

element by the enzyme (like with Dicer) or RNA cleavage can occur non-

specifically (like with RNase A).  

The biogenesis pathway of novel RNA fragments has recently started to be 

investigated. For example, angiogenin has been uncovered as being the nuclease 

responsible for the generation of stress-induced tRNA halves (Fu et al., 2009; 
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Yamasaki et al., 2009). These tRNA fragments then go on to inhibit protein 

synthesis by targeting the initiation stage of translation (Ivanov et al., 2011). 

However, it is possible that multiple RNases have a role in generating different 

functional RNA fragments under various stimuli. For instance, RNase L is an 

enzyme which is activated downstream of the 2’,5’-oligoadenylate pathway (OAS) 

as a part of the interferon induced antiviral response (Silverman, 2007). RNA 

degradation is one of the main mechanisms through which this antiviral response is 

mediated. RNase L cleaves RNA both from the host and invading virus and it is 

possible that some of the resultant RNA fragments are functional and not merely 

products of degradation. 

 Although YsRNAs have been shown to be generated by Dicer independent 

mechanisms and are not part of the microRNA pathway (see Chapter 4), the 

proteins involved in the biogenesis of these molecules remains unknown. In this 

chapter, the mechanism of YsRNA production was investigated experimentally. 

First, the enzyme angiogenin was investigated as a possible candidate owing to its 

role in generating tRNA halves. RNA in vitro cleavage experiments showed that 

angiogenin non-specifically degraded the Y RNAs, but specifically cleaved tRNAs 

to generate the previously reported tRNA halves. The stress induced enzyme 

RNase L also contributed to YsRNA generation, as determined by RNA 

interference (RNAi) and RNase L
 
knockout cell line experiments. Y RNA binding 

proteins were also specifically investigated by RNAi which showed that nucleolin 

had little effect on YsRNA generation whereas the La protein was a contributory 

factor in the biogenesis of Y5sRNAs. In order to elucidate the role of Ro60 in 

YsRNA biogenesis, gene knockdown, knockout and in vitro cleavage experiments 
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showed that Ro60 is essential for YsRNA generation. YsRNA production appears 

to be due to Ro60 protection of the lower stem region of the full length Y RNAs 

from a cocktail of stress induced cellular RNases. This was further supported by 

the failure to detect the pyrimidine-rich internal loop region of Y5 RNA using an 

LNA probe as this region would be detectable if a specific cleavage reaction took 

place. 
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5.2 Results 

 

5.2.1 Angiogenin non-specifically degrades Y RNAs but specifically 

generates tRNA halves 

 

 As angiogenin has been shown to be the RNase involved in generating 

tRNA halves from full length tRNAs, it was investigated as a possible candidate 

for generating the YsRNAs. First, siRNAs were used to knockdown angiogenin in 

MCF7 cells followed by poly(I:C) treatment. RNAi mediated knockdown was also 

applied to the angiogenin inhibitor (RNH1) in a similar experiment. Total RNA 

was then analysed by Northern blot (Figure 5.1A). As expected Y5sRNAs were 

produced in poly(I:C) treated cells. Y5sRNAs were not produced in cells treated 

with a negative control siRNA. RNAi mediated knockdown of  angiogenin (ANG) 

and RNH1 also failed to result in Y5sRNA generation. When poly(I:C) was 

transfected 48 h after both siRNA treatments, Y5sRNAs were still produced. 

Additionally, tRNA halves were produced from tRNA Methionine in all three 

poly(I:C) treated samples (Figure 5.1A). However, angiogenin could not be 

detected by Western blot using two different antibodies (Figure 5.1B). Despite 

failure to detect angiogenin by Western blot, tRNA halve generation can be used as 

an indicator of a functional angiogenin protein. Therefore, it was concluded that 

the angiogenin targeting siRNA did not knock down the expression level of 

angiogenin. 

 Another approach was taken in order to investigate angiogenin in relation 

to YsRNA biogenesis. An angiogenin expression construct (pcDNA-ANG) used in 
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a previous study (Fu et al., 2009) was transfected into MCF7 cells with or without 

subsequent poly(I:C) treatment (Figure 5.2). YsRNA generation appeared mildly 

increased in cells transfected with pcDNA-ANG compared to cells transfected with 

a negative control GFP expression construct (pcDNA-GFP). However, tRNA 

halves were not generated at sufficient levels in pcDNA-ANG transfected cells to 

indicate that angiogenin was present. As measurement of tRNA halves is an 

alternative method of measuring angiogenin activity instead of direct Western blot 

detection, actively expressing pcDNA-ANG could not be validated. 
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Figure 5.1 Targeting of angiogenin and the angiogenin inhibitor (RNH1) via RNAi. 

 

MCF7 cells were transfected with siRNAs specific to either angiogenin (ANG), RNH1 or 

with a negative control siRNA. Cells were then either treated or not treated with poly(I:C). 

(A) Total RNA was analysed by Northern blot. Full length Y5 RNA was detected in all lanes. 

Y5sRNAs were generated in poly(I:C) cells with or without siRNA knockdown of ANG and 

RNH1, and the stress induced tRNA halves were also produced in all poly(I:C) treated cells 

despite attempted knockdown of angiogenin. Membrane was reprobed for U6 RNA to show 

equal loading. (B) Western blot analysis using two different antibodies raised against 

angiogenin failed to detect the 14 kDa protein.  
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Figure 5.2 Effect of angiogenin overexpression on Y5sRNA generation. 

 

An angiogenin overexpression construct (pcDNA-ANG) was transfected into MCF7 

cells which were then either treated or not treated with poly(I:C). A plasmid expressing 

green fluorescent protein (GFP) was transfected as a negative control. Y5sRNAs were 

generated following poly(I:C) treatment in MCF7 cells alone, and also in cells 

transfected with the negative control plasmid. YsRNA generation appeared mildly 

increased in cells transfected with pcDNA-ANG compared with cells transfected with 

pcDNA-GFP, however tRNA halves were not generated despite the presence of an 

angiogenin overexpression plasmid. Cells with pcDNA-ANG which were treated with 

poly(I:C) did not show a marked increase in YsRNA generation compared to cells 

treated with poly(I:C) alone or with the negative control plasmid. 
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As angiogenin could not be detected by Western blot, and owing to the 

failure to validate expression from transfected pcDNA-ANG, a third and final 

approach was employed. Recombinant human angiogenin was used directly for 

RNA in vitro cleavage experiments – an approach also used in two recent studies 

(Fu et al., 2009; Li et al., 2012). Firstly, a pilot experiment was done to see the 

effect of angiogenin on Y5 RNA in MCF7 cells. Total RNA was incubated either 

with the reaction buffer only, or with the angiogenin enzyme for 10 min and 30 

min at 37 °C (Figure 5.3). RNA was then analysed by Northern blot. The full 

length Y5 RNA appeared to be targeted during angiogenin incubation, but so was 

U6 RNA and ribosomal RNA. However, bands representing Y5sRNAs did not 

show a high production level during angiogenin incubation comparable to those 

usually generated following poly(I:C) treatment. Although no size-marker was 

used for this pilot experiment, 2-4 extra faint bands were detected using a Y5 probe 

for both angiogenin incubations (Figure 5.3). When the same membrane was 

analysed for tRNA Methionine, specific tRNA halves were generated for both 

angiogenin incubation time points, but were absent in both the RNA used for the 

experiment (input) and the buffer only incubation.  

 In order to investigate the role of angiogenin on Y RNA fragmentation 

further, a more comprehensive study was performed. Both purified total RNA and 

total cell lysate (with RNA and bound proteins) were analysed in separate 

experiments for MCF7, incubating with angiogenin or RNase A (control RNase). 

Preliminary experiments found that if the same final concentration of RNase A was 

used as angiogenin (1 µM), all RNA was degraded in the sample rapidly at all 

time-points (data not shown). Therefore, an RNase A serial dilution experiment 
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was used to determine an appropriate concentration of RNase A which could be 

used to have comparable effects on total RNA as angiogenin (Figure 5.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Angiogenin in vitro cleavage of MCF7 RNA (pilot experiment). 

 

Total RNA was incubated with reaction buffer only, or recombinant human 

angiogenin in reaction buffer for 10 min or 30 min at 37 °C. RNA was then 

analysed by Northern blot. Input RNA is the RNA used for the in vitro experiment. 

Y5 RNA showed an overall reduction in abundance following angiogenin (ANG) 

incubation and the level of full length Y5 RNA decreased with ANG incubation 

time compared with incubation with reaction buffer only. No significant signal was 

detected for bands corresponding to YsRNAs. However, when the same membrane 

was analysed for tRNA-Met, a strong specific signal was detected for tRNA halves 

in both angiogenin treated samples. RNA was also analysed on an agarose gel to 

monitor the effect on ribosomal RNA, which showed degradation following ANG 

incubation. The U6 loading control also showed degradation following extended 

(30 min) incubation with ANG. 
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Figure 5.4 RNase A dilution series and effect on RNA degradation. 

 

Mouse total RNA was incubated with varying dilutions of RNase A from a 1 

µg/µL stock (73 µM stock). Reactions were incubated in buffer at two different 

time points. RNA was then analysed by Northern blot and agarose gel. Full length 

Y1 RNA appeared to be completely degraded in the 
 

  
 and 

 

   
 RNase A dilutions, 

but showed only moderate degradation at 
 

   
 (comparing 

 

   
 RNase A for 30 min 

with the RNA incubated with buffer only). This degradation pattern was also 

similar for U6 RNA and also for ribosomal RNA (when analysed on an agarose 

gel). Therefore 
 

   
  dilution RNase A was selected for use in other experiments. 
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 First, MCF7 total RNA was subjected to angiogenin or RNase A in vitro 

cleavage for 2 min, 10 min or 30 min (Figure 5.5). The 1 h time point was omitted 

as preliminary data showed complete degradation of RNA using both enzymes for 

this duration (data not shown). Following incubation with both RNases, total RNA 

was analysed by Northern blot and agarose gel. The full length Y5 RNA showed a 

mild reduction in abundance in a time-dependent manner with both angiogenin and 

RNase A (Figure 5.5). The longer Y5sRNA was only detected at a weak level for 

all reactions, including the input RNA, and did not vary significantly between 

experimental conditions. However, it was noted that a previously unreported 

Y5sRNA fragment longer than 32 nt was detectable in 10 min and 30 min 

angiogenin incubations at a very weak level. When the membrane was analysed for 

tRNA Methionine, tRNA halves were shown to be specifically generated at high 

levels in both the 10 min and 30 min angiogenin treated samples, but not in RNase 

A treated samples. Analysis of ribosomal RNA (rRNA) on an agarose gel showed 

that rRNA was significantly degraded in all angiogenin incubations and to a lesser 

extent by RNase A. As no change was seen in Y5sRNA abundance across the 

time-course, this result suggests that the 32 and 24 nt Y5sRNAs are not generated 

by angiogenin, but angiogenin may specifically generate a longer than 32 nt 

fragment from the Y5 RNA with a very low efficiency. 

 In order to investigate the effect of native RNA binding proteins on YsRNA 

biogenesis, total cell lysates were used for in vitro cleavage reactions. Cell lysate 

from MCF7 cells were treated with angiogenin and RNase A (Figure 5.6). The full 

length Y5 RNA was detected in all samples, and showed a reduction in abundance 

after 1 h treatment with either ANG or RNase A. The Y5sRNA appeared to be 
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increased slightly in all 1 h incubations using buffer alone, angiogenin or RNase A. 

The tRNA halves were specifically generated at high levels in both the 30 min and 

1 h angiogenin incubation reactions, but not with RNase A. This result suggested 

that neither angiogenin nor RNase A could specifically generate the YsRNAs but 

that something in the lysate could produce them instead. 
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Figure 5.5 MCF7 total RNA subjected to angiogenin and RNase A in vitro 

cleavage.  

 

Following incubation of total RNA with recombinant human angiogenin (ANG) or 

RNase A, analysis by Northern blot showed that overall abundance of full length Y5 

RNA decreased slightly in a time-dependent manner with both enzymes. The natural 

endogenous 32 nt Y5sRNA was detectable at a weak level in all samples, including 

the input RNA used for the reactions, and did not increase with ANG incubation. 

However, a previously unreported Y5sRNA fragment which was longer than 32 nt 

was detected at weak levels in both 10 min and 30 min ANG incubations. 

Comparing with tRNA cleavage, tRNA halves from tRNA Methionine were 

specifically generated at high levels in ANG treated samples at both 10 and 30 min 

time points.  
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Figure 5.6 MCF7 cell lysate subjected to angiogenin and RNase A in vitro 

cleavage.  

 

Total cell lysate was prepared from MCF7 cells and incubated with either 

recombinant human angiogenin or RNase A in reaction buffer. Northern blot 

analysis showed that full length Y5 RNA was present in all samples but was at a 

reduced level in the 1 h ANG and RNase A time point. The 32 nt Y5sRNA 

increased slightly during 1hr incubation with ANG, but this was also the case for 

RNase A treatment, and with incubation with reaction buffer alone for 1h. The 

tRNA halves from tRNA Methionine showed specific generation at a high level for 

both ANG 30 min and 1 h incubations, but not for any RNase A incubations. U6 

showed slight degradation in all reactions, and so did rRNA (as demonstrated by 

agarose gel analysis). 
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5.2.2 Ro60 is essential for YsRNA biogenesis 

 

 Considering the integral role of Ro60 and La in forming the Ro-

ribonucleoprotein complex, these proteins were investigated in relation to Y RNA 

fragmentation. First, Ro60 was investigated in a pilot experiment using siRNAs 

against Ro60 (siRo60) (Figure 5.7). MCF7 cells were transfected with Ro60 

specific, or Ago2 specific (control) siRNAs prior to poly(I:C) treatment, or treated 

with poly(I:C) alone. Ago2 knockdown was confirmed by miR-21 levels. Ro60 

protein levels were not assessed in this pilot experiment, although siRo60 

efficiency was confirmed by Western blot in later experiments (Figures 5.8-5.10). 

Northern blot analysis showed that full length Y5 was present at a constant level in 

all three poly(I:C) treated samples. However, in cells where an siRNA against 

Ro60 was transfected prior to poly(I:C) treatment, Y5sRNA levels were greatly 

reduced compared to poly(I:C) treated cells alone or where a siRNA against Ago2 

was used prior to poly(I:C) treatment (Figure 5.7). This suggested that Ro60 

affected YsRNA biogenesis. 

 A more detailed investigation was then undertaken with respect to Ro60, 

and also La. Both Ro60 and La were targeted by siRNA in separate samples prior 

to poly(I:C) treatment. The experiment was repeated three times (Figures 5.8-5.10). 

Protein depletion was confirmed by Western blot for both proteins, and all four Y 

RNAs were analysed by Northern blot. Where siRNAs against La were used prior 

to poly(I:C) treatment, there was no noticeable change in YsRNA production from 

Y1, Y3 or Y4. However, in the case of Y5sRNA, the 24 nt fragment was detected 

at a considerably higher level in La depleted poly(I:C) treated cells compared to 
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where a negative control siRNA was used prior to poly(I:C) treatment, with a slight 

reduction in the longer 32 nt fragment. Strikingly, when an siRNA against Ro60 

was used prior to poly(I:C) treatment, YsRNAs from all four Y RNAs were 

drastically reduced in all three repeat experiments compared to where a negative 

control siRNA, or an siRNA against La was used prior to poly(I:C) treatment. 

 It was noticed that the amount of full length Y RNA in poly(I:C) treated 

samples was at a lower level compared to control cells. Therefore, it was possible 

that the rate of Y RNA cleavage was the same in the absence of Ro60 as in the 

control cells but that there was simply a reduction in the amount of full length Y 

RNA available for cleavage. To test this, the intensity of the signals of full length 

Y RNA and respective YsRNA were quantified in the three independent 

experiments for all four Y RNAs. Following normalisation using U6 RNA for each 

lane for each of the three repeat experiments, the ratio of full length Y RNA to the 

respective principle YsRNA produced in each lane was calculated. This ratio was 

almost identical in the two poly(I:C) control samples (no siRNA or negative 

control siRNA) for all Y RNAs: Y1 (9.7 and 9.3 respectively), Y3 (18.0 and 15.0 

respectively), Y4 (7.1 and 7.3 respectively) and Y5 (14.6 and 14.5 respectively). 

However, the ratio of Y RNA full length to YsRNA in Ro60 knockdown poly(I:C) 

treated samples was significantly higher compared to negative control siRNA 

poly(I:C) treated samples for all four Y RNAs: Y1 (33.9 ; one-tailed Z-test 

p=0.002), Y3 (43.0 ; one-tailed Z-test p=0.05), Y4 (21.2 ; one-tailed Z-test p=0.03) 

and Y5 (20.6 ; one-tailed Z-test p=0.13). This raised the possibility that Ro60 had a 

significant effect on Y RNA cleavage, and not just on the overall level of full 
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length Y RNA. It was therefore decided to investigate the role of Ro60 in YsRNA 

biogenesis further. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Ro60 targeting by siRNA reduces Y5sRNA following poly(I:C) 

treatment (pilot experiment). 

 

MCF7 cells were treated with siRNAs targeting Ago2 or Ro60 prior to 

poly(I:C) treatment, or poly(I:C) alone. Northern blot analysis of miR-21 

confirmed Ago2 knockdown. Ro60 protein level was not assessed in this 

pilot experiment, but the Ro60 siRNA (siRo60) efficiency was confirmed by 

Western blot in later experiments. The Y5sRNA fragment was produced at 

high levels for poly(I:C) only and siAgo2 poly(I:C) treated cells. However 

when an siRNA against Ro60 was transfected, poly(I:C) treatment only 

mildly induced Y5sRNA production. 
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Figure 5.8 Knockdown of Ro60 and La affects the generation of YsRNAs: 

Repeat number 1. 

 

Expression of Ro60 and La proteins was inhibited by RNAi mediated 

knockdown using siRNAs siRo60 and siLa respectively. A negative control 

siRNA was used as a comparison. Accumulation of YsRNAs was measured by 

Northern blot analysis before and after poly(I:C) treatment, with or without prior 

siRNA transfection. Use of siLa only affected Y5sRNA production in poly(I:C) 

treated cells: the 24 nt Y5sRNA fragment was detected at a considerably higher 

level compared to where a negative control siRNA was used, with a slight 

reduction in the longer 32 nt Y5sRNA fragment. When Ro60 was knocked down 

in poly(I:C) treated cells however, YsRNAs from all four Y RNAs were 

significantly reduced compared to control samples. The Northern blot membrane 

was stripped and re-probed with a U6 specific probe to show equal loading. The 

efficiency of the siRNAs was tested by Western blot using Ro60 and La specific 

antibodies. The Western blot membrane was re-probed with a β-actin antibody to 

show equal loading. 
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Figure 5.9 Knockdown of Ro60 and La affects the generation of YsRNAs: 

Repeat number 2. 

 

Expression of Ro60 and La proteins was inhibited by RNAi mediated 

knockdown using siRNAs siRo60 and siLa respectively. A negative control 

siRNA was used as a comparison. Accumulation of YsRNAs was measured by 

Northern blot analysis before and after poly(I:C) treatment, with or without prior 

siRNA transfection. Use of siLa only affected Y5sRNA production in poly(I:C) 

treated cells: the 24 nt Y5sRNA fragment was detected at a considerably higher 

level compared to where a negative control siRNA was used, with a slight 

reduction in the longer 32 nt Y5sRNA fragment. When Ro60 was knocked down 

in poly(I:C) treated cells however, YsRNAs from all four Y RNAs were 

significantly reduced compared to control samples. The Northern blot membrane 

was stripped and re-probed with a U6 specific probe to show equal loading. The 

efficiency of the siRNAs was tested by Western blot using Ro60 and La specific 

antibodies. The Western blot membrane was re-probed with a β-actin antibody to 

show equal loading. 
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Figure 5.10 Knockdown of Ro60 and La affects the generation of YsRNAs: 

Repeat number 3. 

 

Expression of Ro60 and La proteins was inhibited by RNAi mediated knockdown 

using siRNAs siRo60 and siLa respectively. A negative control siRNA was used 

as a comparison. Accumulation of YsRNAs was measured by Northern blot 

analysis before and after poly(I:C) treatment, with or without prior siRNA 

transfection. Use of siLa only affected Y5sRNA production in poly(I:C) treated 

cells: the 24 nt Y5sRNA fragment was detected at a considerably higher level 

compared to where a negative control siRNA was used, with a slight reduction in 

the longer 32 nt Y5sRNA fragment. When Ro60 was knocked down in poly(I:C) 

treated cells however, YsRNAs from all four Y RNAs were significantly reduced 

compared to control samples. The Northern blot membrane was stripped and re-

probed with a U6 specific probe to show equal loading. The efficiency of the 

siRNAs was tested by Western blot using Ro60 and La specific antibodies. The 

Western blot membrane was re-probed with a β-actin antibody to show equal 

loading. 
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To obtain definitive proof for the involvement of Ro60 in YsRNA 

generation, a Ro60
-/-

 mouse embryonic stem cell line (mES) was employed (Chen 

et al., 2003) to investigate how this would affect Y RNA processing. As mice only 

possess the Y1 and Y3 RNA genes, mES wild-type and Ro60
-/-

 cells were 

transfected with a Y5 RNA expression construct (pY5) so that Y5sRNA biogenesis 

could be monitored. The effect of poly(I:C) treatment was then analysed by 

Northern blot (Figure 5.11). As expected, there was no Y5 RNA present in non-

pY5 transfected mES wild-type and Ro60
-/-

 cells either in the presence or absence 

of poly(I:C), whereas Y1 and Y3 RNAs were expressed. In all cells transfected 

with the pY5 expression construct, the full length Y5 RNA was detectable by 

Northern blot but Y5sRNAs were detected only in poly(I:C) treated wild-type and 

not Ro60
-/-

 cells. Similarly, this was the case for Y1sRNAs, which were only 

generated in wild-type and not Ro60 knockout cells (Figure 5.11). Y3sRNAs were 

only detected at weak levels following poly(I:C) treatment in wild-type cells, and 

not at all in Ro60
-/-

 cells. This demonstrated that the presence of Ro60 is essential 

for YsRNA biogenesis.  
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Figure 5.11 YsRNA generation is Ro60 dependent. 

 

Wild-type (wt) and Ro60
-/-

 mouse embryonic stem cells (mES) were transfected with 

a Y5 RNA expressing plasmid (pY5) and treated with poly(I:C) (P(I:C)). Full length 

Y5 RNA was detected only in the pY5 transfected cells because mouse lacks the 

endogenous Y5 gene. Y5sRNA was detected only in the wild-type but not in the 

Ro60
-/-

 cells. This was also the case for Y1sRNA and Y3sRNAs (although 

Y3sRNAs were only weakly detectable in mES wt). The Northern blot membrane 

was stripped and re-probed with a U6 specific probe to show equal loading. The 

absence of Ro60 in the knockout cells was confirmed by Western blot and a β-actin 

antibody was used to show equal loading. For Y1 and Y5 RNAs, different panels are 

shown for the corresponding YsRNAs as different contrast settings were required to 

show bands clearly to avoid signal saturation from the full length molecule. 
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In order to investigate whether Ro60-dependent YsRNA production was 

owing to RNase protection by Ro60, cell lysate in vitro cleavage reactions were 

performed using wild-type mouse embryonic stem cells (mES) and mES Ro60
-/-

 

cells. The two cell lines were genotyped by Western blot (Figure 5.12). Lysates 

from wild-type mES cells were incubated with RNases under the same conditions 

as already described for MCF7 lysates (Figure 5.13). Y1 RNA was analysed by 

Northern blot as mouse cells do not have the gene for Y5 RNA. Full length Y1 

RNA was detected at a high level in all samples except in incubations with 

angiogenin for 30 min and 1 h where it was greatly reduced in abundance and 

almost completely degraded after 1 h. The 27 nt Y1sRNA (see chapter 3 for 

YsRNA size descriptions) was present at a very low level in the input lysate used 

for the cleavage experiments, but was at a higher level in all of the lysate 

incubations (Figure 5.13). The incubation reaction for 1 h with angiogenin showed 

a very high Y1sRNA production, but was at a similar level between buffer only 

and RNase A incubations for the same time point. The tRNA halves were 

generated specifically by angiogenin and not RNase A, but the level of tRNA 

halves was lower at the 1 h incubation compared to the 30 min time point. Similar 

to experiments done using MCF7 cell lysates (Figure 5.6), this result suggested that 

neither angiogenin nor RNase A could specifically generate the YsRNAs but that 

something in the lysate could produce them instead. 
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The same in vitro cleavage experiments were then implemented in mES 

Ro60
-/-

 cells in order to investigate YsRNA generation by RNase protection by 

Ro60 (Figure 5.14). The full length Y RNAs were detected in all but one lane 

(ANG 1 h). However, the Y1sRNA (27 nt) which was detectable in wild-type mES 

cells (Figure 5.13), was not detected in any of the experiments conducted with 

mES Ro60
-/-

 cells under the same RNase and incubation conditions (Figure 5.14). 

This result suggested that RNases in the cell lysate do not specifically generate 

YsRNAs, but generate them via RNase protection owing to Ro60 binding. 

 

 

 

 

 

 

Figure 5.12 Genotyping of wild-type and Ro60 knockout mES cells. 

 

An antibody specific to mouse Ro60 was used to differentiate between the wild 

type and Ro60 knockout mouse embryonic stem cells (mES) by Western blot. 
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Figure 5.13 Wild-type mouse embryonic stem cell (mES) lysate subjected to 

angiogenin and RNase A in vitro cleavage.  

 

Cell lysates were prepared from wild-type mES cells and incubated with either 

angiogenin (ANG) or RNase A in reaction buffer. Northern blot analysis showed that 

full length Y1 RNA was present in most samples, but was at a reduced level in both 

30 min and 1 h ANG treated samples. The 27 nt Y1sRNA increased in abundance in 

reaction samples with increasing incubation time. Y1sRNA levels did not vary 

between ANG and RNase A treatments for each time point. Generation of tRNA 

halves from tRNA methionine occurred in ANG 30 min treatment, but reduced at the 

1 h time point. RNase A incubation did not give rise to tRNA halves. U6 and rRNA 

showed signs of mild degradation in all incubations. 
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Figure 5.14 Ro60 knockout mouse embryonic stem cell (mES Ro60
-/-

) lysate 

subjected to angiogenin and RNase A in vitro cleavage.  

 

mES Ro60
-/-

 cell lysates were prepared from cells and incubated with either 

angiogenin (ANG) or RNase A in reaction buffer. RNA was analysed by Northern 

blot. Full length Y1 RNA was detected in each of the reaction samples, except in the 

lysate incubated with angiogenin (ANG) for 1 h which showed no signal. No 

YsRNAs of 24-31 nts were detected in any sample. tRNA halves derived from tRNA 

methionine were generated in ANG incubated lysates, but not with RNase A. U6 

RNA (northern blot) and rRNA (agarose gel) were mildly degraded in all lysates. 
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5.2.3 RNase L contributes to YsRNA generation 

 

 RNase L is an enzyme which is activated as part of the interferon induced 

antiviral response. As poly(I:C) treatment induces an immune response, RNase L 

was investigated as a candidate for having a potential role in YsRNA biogenesis. 

An RNase L knockout, mouse embryonic fibroblast cell line (MEF RNase L
-/-

) was 

employed which was used in a previous study (Zhou et al., 1997). The wild-type 

and RNase L
-/-

 cells were genotyped by PCR as described in the materials and 

methods (Figure 5.15). As expected, the wild-type MEF cells had a 900 bp 

amplicon generated from the 5’ end of the RNase L gene whereas the knockout 

cells which had an insertion mutation at the 5’ end of the gene gave a 2.1 kb 

amplicon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15 PCR genotyping of wild-type and RNase L knockout cell lines. 

 

Mouse embryonic fibroblast (MEF) cells were genotyped by polymerase chain 

reaction (PCR) amplification of the 5’ end of the RNase L gene. Wild-type (wt) 

cells gave rise to a 900 bp amplicon whereas RNase L
-/-

 cells with an insertion 

mutation at the 5’ end of the gene gave rise to a 2.1 kb amplicon. 
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Both wild-type and RNase L knockout cells were subjected to poly(I:C) 

treatment. As mouse cells only have genes for Y1 and Y3 RNA, a Y5 RNA 

expression construct (pY5) was transfected prior to poly(I:C) treatment so that 

Y5sRNA biogenesis could be monitored. RNA was then analysed by Northern blot 

from two independent experiments (Figure 5.16).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16 Analysis of YsRNA biogenesis in RNase L knockout cells. 

 

Both wild-type (wt) and RNase L
-/-

 MEF cells were subjected to poly(I:C) (P(I:C)) 

treatment. As mouse cells only have genes for Y1 and Y3 RNA, a Y5 expression 

construct (pY5) was transfected into a subset of cells prior to stress treatment in order to 

monitor Y5sRNA biogenesis. Experiments were repeated twice. Northern blot analysis 

showed Y5 RNA was present in cells transfected with pY5 but not in non-pY5 

transfected cells. Poly(I:C) treatment only gave Y5sRNAs in wild-type cells which had 

been transfected with pY5, but not in cells which lacked pY5. Y5sRNAs were produced 

at noticeably higher levels in poly(I:C) treated pY5 wild-type cells than in RNase L
-/-

 

cells under the same conditions. Y1sRNAs were highly expressed in wild-type poly(I:C) 

treated cells, but were only very weakly produced in RNase L knockout cells. 
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The full length Y5 RNA was only present in cells transfected with pY5. Wild-type 

cells with pY5 gave rise to the expected Y5sRNAs following poly(I:C) treatment 

(Figure 5.16). However the level of Y5sRNAs was lower in poly(I:C) treated 

RNase L knockout cells with pY5 for both experimental replicates. As the full 

length Y5 RNA was lower in the RNase L
-/-

 cells for one of the replicates, Y1 

RNA was also analysed. Full length Y1 RNA expression was relatively constant 

between wild-type and RNase L knockout samples. Y1sRNAs however showed a 

very high level of production in wild-type MEF cells treated with poly(I:C), but 

were detected at a much lower level in RNase L
-/-

 poly(I:C) treated cells. This data 

suggested that RNase L contributed to YsRNA generation in mouse. 

 YsRNA generation was then investigated in relation to RNase L activity in 

human cells. As no human RNase L knockout was available, RNase L was 

knocked down in MCF7 cells using RNAi (Figure 5.17). Intriguingly, poly(I:C) 

treated cells where RNase L had been depleted by siRNA had similar levels of 

Y5sRNA and Y1sRNA compared to cells where a negative control siRNA was 

used. However, the full length Y1 and Y5 RNAs both appeared more stable in 

RNase L knockout cells following poly(I:C) treatment compared to cells with 

normal RNase L levels. This suggested that RNase L did not affect YsRNA 

production in human MCF7 cells as it did in mouse MEF cells, and could therefore 

indicate either cell line or species specific differences in YsRNA biogenesis. 
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Figure 5.17 YsRNA biogenesis in MCF7 cells following RNase L depletion by 

RNAi. 

 

MCF7 cells were transfected with either no siRNA, a negative control siRNA or an 

RNase L specific siRNA. RNase L knockdown was confirmed by Western blot. 

Cells were then either treated or not treated with poly(I:C) following siRNA 

transfection. Y1sRNAs and Y5sRNAs were still generated in poly(I:C) cells where 

RNase L was targeted by RNAi at levels comparable to where only a negative 

control siRNA was used. Equal loading was confirmed by a U6 specific probe for 

the Northern blot and a β-actin antibody for the Western blot. 
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5.2.4 Nucleolin does not affect the biogenesis of YsRNAs 

 

 As Ro60 and La appeared to contribute to YsRNA production, experiments 

then focused on another Y RNA binding protein as a potential candidate for 

involvement into the maturation of these fragments. Nucleolin has been shown to 

bind to the pyrimidine-rich loop of hY1 and hY3 RNAs (Fouraux et al., 2002). 

Here, nucleolin was targeted using siRNAs prior to poly(I:C) treatment (Figure 

5.18). YsRNA generation was then assessed by Northern blot. Y1 RNA was 

analysed (which has been shown to bind to nucleolin), and so was Y5 RNA. 

Northern analysis showed that both YsRNAs were still generated in Nucleolin 

depleted cells following poly(I:C) treatment at comparable levels to where a 

negative control siRNA was used (Figure 5.18). 
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Figure 5.18 The RNA-binding protein and Ro-RNP subunit, nucleolin, does not 

affect Y RNA cleavage. 

 

Nucleolin mRNA was targeted by RNAi prior to poly(I:C) treatment. Reduced 

nucleolin levels were confirmed by Western blot. The level of Y1sRNA and 

Y5sRNA was analysed by Northern blot. Following nucleolin depletion and 

poly(I:C) stress treatment, YsRNAs from both Y1 and Y5 were still generated. 

Equal loading of RNA and protein was confirmed using U6 and β-actin probes 

respectively. SiNucleolin indicates the Nucleolin targeting siRNA. 
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5.2.5 Investigating the mechanism of YsRNA maturation via Y RNA stem-

loop detection 

 

 Earlier experiments which utilised cell lysates for in vitro cleavage analysis 

with wild-type and Ro60 knockout cell lines (Figures 5.13-5.14), as well as RNase 

L knockout experiments (Figure 5.16) hinted at the possibility that YsRNAs are 

generated via Ro60 protection of the lower region of the full length Y RNAs from 

non-specific, stress-induced RNase degradation. In order to address this hypothesis, 

it was investigated whether the pyrimidine-rich loop region of Y5 RNA could be 

detected by Northern blot. The rationale for this experiment is that if Y RNAs were 

generated by a specific cleavage event, then the ‘loop’ region might be detectable 

by Northern blot (Figure 5.19A). If on the other hand YsRNAs were generated by 

non-specific degradation of non-Ro60 protected regions, the loop sequence would 

not be generated or indeed, be detectable. 

 The 19 nt Y5 RNA loop sequence was not detected in Solexa sequencing 

data of poly(I:C) treated cells, but the size of the loop region falls outside of the 

size-class selected for library preparation. Therefore, a highly sensitive LNA probe 

was used to detect the loop sequence in a range of RNA samples from poly(I:C) 

treated MCF7 cells (Figure 5.19). Only full length Y5 RNA was detected using the 

LNA loop probe in non-treated and poly(I:C) treated cells, whereas an 

oligonucleotide corresponding to the exact sequence of the 19 nt loop region could 

be detected at amounts as low as 1.0 femtomole (Figure 5.19B). A standard DNA 

oligonucleotide probe specific to the Y5 3’ end was able to detect the stress 

induced Y5sRNAs. To investigate whether the loop sequence could be detected in 
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the presence or absence of Ro60, siRNAs were used to knockdown Ro60 in 

poly(I:C) treated and non-treated cells and RNA was then analysed by Northern 

blot (Figure 5.19C). Again, no sequence corresponding to the Y5 RNA loop region 

could be detected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19 Y5 RNA stem-loop analysis. 

 

(A) Annotated diagram of Y5 RNA structure. If Y RNAs were specifically cleaved by 

an enzyme to generate the 5’ and 3’ YsRNAs (shown in yellow), the pyrimidine rich 

loop region would be produced (shown in blue). (B) Attempt to detect the Y5 RNA loop 

region by Northern blot using LNA ‘loop’ probe (top panel). MCF7 cells were either 

treated or not treated with poly(I:C) and RNA was analysed by Northern blot, along with 

known concentrations of oligonucleotide sequences corresponding to the exact region of 

the expected loop sequence. Only full length Y5 RNA was detected using the LNA loop 

probe and no sequence corresponding to the putative 19 nt loop sequence was detected. 

The poly(I:C) induced Y5sRNAs were detected using Y5 3’ end specific DNA 

oligonucleotide probe (middle panel), and not by the LNA loop probe. (C) MCF7 cells 

were either treated or not treated with siRNAs against Ro60 (siRo60) prior to poly(I:C) 

treatment. Again, no Y5 RNA loop derived sequence was detected by LNA loop probe, 

whereas Y5sRNAs were detected using a Y5 3’ end specific probe. A U6 RNA specific 

probe was used to confirm equal loading (bottom panel). 
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5.3 Discussion 

 

There are three possible models of how YsRNAs might be produced. 

Firstly, the YsRNAs could be specifically transcribed from the gene encoding the 

Y RNA. Although this was not specifically addressed here, based on the fact that 

the YsRNAs increased in abundance in lysates during in vitro cleavage reactions 

where transcription could not take place owing to reaction conditions (Figures 5.6 

& 5.13), and that Y5sRNAs could be produced form a Y5 expression construct in 

poly(I:C) treated cells using only the promoter for the full length Y5 RNA (Figures 

5.11 & 5.16), this scenario seems highly unlikely. Secondly, YsRNAs might be 

generated by a single enzyme which cleaves the full length Y RNA at specific 

regions to give the 5’ and 3’ YsRNAs. And finally, YsRNAs biogenesis could be 

explained by a simple protein protection model whereby the activity of a cocktail 

of cellular RNases which have access to only the non-protein bound regions of the 

Y RNA, would result in Y RNA fragments protected by the proteins being 

produced. This latter scenario will be referred to as the ‘RNase protection 

hypothesis’. As some cellular RNases are upregulated during cell stress and 

apoptosis, this might explain the increase in YsRNAs detected under these 

conditions. 

In this chapter, knockout, knockdown and in vitro cleavage experiments 

have demonstrated that Ro60 is essential for YsRNA production for all four Y 

RNAs (Figures 5.7-5.14). The decrease in YsRNAs was shown to be independent 

of the corresponding reduction in the stability of the full length Y RNA. Indeed, 

others have also shown that the full length Y RNA is stabilised by Ro60 (Labbe et 
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al., 1999; Chen et al., 2003; Sim et al., 2009). The Ro60-dependant YsRNA 

production data shown in this chapter supports the RNase protection hypothesis 

because if Ro60 is absent, then RNases would have access to all regions of the Y 

RNA, resulting in complete degradation. However, previous experiments have 

specifically mapped the Ro60 binding site (Wolin & Steitz, 1984), and the region 

which gives rise to the YsRNAs is not completely encompassed by Ro60. 

Nevertheless, this does not rule out that Ro60 binding can prevent RNases from 

having access to some sequence region which is not directly bound by Ro60. 

Furthermore, the experiments used to determine the Ro60 binding site had to be 

repeated several times before they were successfully published, and used an 

excessive amount of pancreatic RNase to map this binding site (personal 

communication with Professor Sandra Wolin). This in turn might have given an 

exaggerated impression of the exact sequence regions which Ro60 protects. 

Angiogenin, which specifically generates the biological functional tRNA 

halves, did not appear to give rise to YsRNAs based on in vitro cleavage 

experiments (Figures 5.5 & 5.6 and Figures 5.13 & 5.14). Interestingly, in MCF7 

and mES wt cell lysates, YsRNAs from both Y1 and Y5 were shown to increase 

following extended incubation with angiogenin, RNase A or reaction buffer alone 

(Figures 5.6 & 5.13). However, these YsRNA fragments were not detected in Ro60 

knockout cell lysates (Figure 5.14). This data would also support the RNase 

protection hypothesis for YsRNA generation, as RNases within the cellular lysate 

were clearly producing the YsRNAs only in the presence of Ro60, even in the 

absence of RNase A or angiogenin.  
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RNase L specifically had an effect on YsRNA biogenesis, but only in 

mouse cells (Figure 5.16). It is possible that RNAi targeting in the human MCF7 

cells was sufficient to show an RNase L depletion by Western blot (Figure 5.17), 

but some low level of cellular RNase L may have still been present at functionally 

active but undetectable levels. Alternatively, this data could imply a differential 

YsRNA biogenesis pathway between human and mouse. As RNase L depletion 

only reduced YsRNA generation and did not completely eliminate it, this supports 

the hypothesis that a cocktail of RNases contributes to YsRNA production, and no 

one enzyme alone. Unfortunately, the experiments done here have not revealed all 

the RNase(s) involved. This could be investigated in future studies by using a 

comprehensive, genome wide RNAi screen against all the individual cellular 

RNases. 

The relative abundance of the YsRNAs is reflective on the approximate 

molar ratios of full length Y RNAs within the cell, as determined in previous 

studies (Gendron et al., 2001; Christov et al., 2006). Y5 RNA makes up ~ 60 % of 

the total Y RNA population and gives the strongest signal for YsRNA fragments 

on a Northern blot (Figures 5.8-5.10, and see Chapter 4). Y4 is the next most 

abundant Y RNA and also gives rise to the next most abundant YsRNA. Y1 is 

expressed at a slightly lower level than Y3, but Y1sRNAs are more abundant than 

Y3sRNAs. The nature of YsRNA abundance reflecting cellular concentrations of 

full length Y RNAs would further support a case for the RNase protection 

hypothesis, as non-specific degradation of exposed non-Ro60 protected regions 

would be equal for all Y RNAs. Failure to detect the pyrimidine-rich loop region of 

Y5 RNA in poly(I:C) treated cells (Figure 5.19) also supports the proposed model 
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for YsRNA biogenesis. However, it is possible that if a specific cleavage were to 

occur in order to generate YsRNAs, the half-life of any resulting by-product (the 

loop region) might be too short for the purpose of Northern blot detection. 

Other Y RNA binding proteins did not appear to have the same essential 

role for YsRNA generation as Ro60. Nucleolin depletion did not affect YsRNA 

generation (Figure 5.18). Although, as siRNA targeting did not achieve a complete 

knockdown of the protein, it is possible that the small amount of nucleolin 

remaining was enough to be functional.  

Depletion of La protein levels only appeared to affect Y5sRNA biogenesis 

by resulting in an increase of the shorter, 24 nt Y5sRNA. Considering the 

structures of the Y RNAs, the 3’ tail region which La binds is much longer in Y5 

RNA compared to the other Y RNAs. The longer (32 nt) and shorter Y5sRNA (24 

nt) have identical sequences apart from the 8 nt 3’ tail region (Chapter 3). 

Therefore, one possible explanation is that when La is absent, the 3’ tail region is 

de-protected and therefore vulnerable to degradation from the 3’ end, resulting in 

more 24 mer YsRNA (which remains protected by Ro60). As the other Y RNAs 

have much shorter 3’ tails, depletion of La would not have such a drastic change in 

YsRNA size, as reflected in figures 5.8-5.10. 

Interestingly, YsRNAs were still generated in mouse embryonic stem cells 

despite the fact that the interferon response has been shown not to occur in ES cells 

(Yang et al., 2001). Nonetheless, poly(I:C) treatment still triggered YsRNA 

generation in these cells, which might indicate an immune-independent function of 

the YsRNAs. 
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 Functional sRNAs are usually generated with specificity. For example, 

Dicer generates microRNAs and angiogenin generates tRNA halves. MicroRNAs 

and tRNA halves then go on to serve precise biological functions. If YsRNAs were 

generated by the RNase protection hypothesis, it would not be unreasonable to 

assume that the resulting products are not functional based on the chaotic nature of 

their biogenesis. Having said this, it does not rule out that a biological function has 

evolved to utilise these YsRNAs, which may have originally arisen in ancestral 

cells by chance through RNase protection, but have since become functional. 

Based on the high abundance of YsRNAs within the cell, and the evidence that 

they are specifically incorporated into immune cell-derived vesicles (Nolte-'t Hoen 

et al., 2012), this would certainly hint at biological functionality.  

Future work should aim to characterise the biological role of these YsRNAs. 

Work in our laboratory has started to address this question by subjecting proteins 

in the same biochemical fraction as YsRNAs to mass spectrometry. We identified 

around 160 proteins, including Ro60, La and nucleolin (data not shown). 

Interestingly, many proteins related to proteolysis, including E3 ubiquitin ligase, 

several proteasome subunits and heat shock proteins such as Hsp70 and Hsp90, 

were also found in the same biochemical fraction as YsRNAs. Additionally, we 

found that two proteins which have been shown to antagonise apoptotic pathways, 

nucleophosmin and the 14-3-3 protein (Fu et al., 2000; Dhar & St Clair, 2009), 

also co-purified with the YsRNAs according to our mass spectrometry data. This 

preliminary work would suggest that YsRNAs are associated with pathways related 

to survival following cellular stress, which is perhaps why they show a specific 

increase following apoptosis and viral infection. 
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Chapter 6 

Next-generation sequencing of a novel class of small 

RNAs 
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6.1 Introduction 

 

 Next-generation sequencing (NGS) technologies have allowed high 

throughput analysis of small RNA populations, and facilitated the subsequent 

discovery of novel small RNAs. For example, a recent study has discovered 16-28 

nt RNAs in chloroplasts following deep-sequencing of Arabidopsis (Ruwe & 

Schmitz-Linneweber, 2012). Interestingly, it was shown that these chloroplast 

sRNAs were footprints of the translation related pentatricopeptide repeat proteins 

(PPR) and were generated via RNase protection of intergenic regions of 

chloroplast transcripts. The question of whether these chloroplast sRNAs are 

merely footprints or whether they go on to serve a biological function remains 

unanswered. A different study which analysed non-coding RNAs (ncRNAs) in 

differentiating mouse ES cells via NGS sequencing (Skreka et al., 2012) identified 

a class of differentially expressed 18-30nt RNAs, also derived from intergenic 

regions, most of which were novel ncRNAs lacking characteristic microRNA 

features. Two other size classes were also found in the study, a 45-47 nt class and a 

71-78 nt class. 

 The reasons why these novel sRNAs were missed in previous years is 

owing to firstly; the increased number of reads which can now be analysed in a 

single sequencing reaction (the ‘depth’ of sequencing), and secondly; that gene 

silencing-related RNAs are predominantly 18-24 nt, resulting in specific selection 

of these small RNAs during library preparations, neglecting RNAs of other sizes. 

Indeed, in relation to this project, early Northern blot analysis of Y RNA fragments 

(Chapter 3) revealed unexpected bands of 28-33 nt RNAs, which encouraged 
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specific selection of these additional sRNAs during library preparations in 

subsequent sequencing experiments. In these later experiments, it was noted that a 

peak of ~30 nt found following Illumina (Solexa) sequencing of MCF7 cells 

(Chapter 3, Figure 3.2) contained unknown sRNAs in addition to YsRNAs. These 

~30 nt RNAs did not map to the well characterised 24-31 nt Piwi-interacting RNAs 

(piRNAs) which act in pathways to protect the genome against transposable 

elements (Siomi et al., 2011), indicating that they were from a different class of 

sRNAs. 

The millions of reads generated during sequencing reactions which aim to 

detect novel small RNAs make it very challenging to differentiate functional 

molecules from degradation products. For microRNAs, computer programmes 

exist which can identify functional molecules using a set of well-established 

parameters (Moxon et al., 2008). Obviously, the function and therefore 

characteristic features of putative novel sRNAs is not known prior to their 

discovery. However, several experimental designs can be employed which help to 

filter out background degradation products. Analysis of cells and tissues which are 

treated under different conditions, or are at different stages of development, as well 

as sequencing only RNAs which are protein bound, can all facilitate the 

identification of functional sRNAs over degradation products (Skreka et al., 2012). 

Solexa (Illumina) sequencing is the most widely used deep sequencing 

technique for small RNA detection. Indeed, the majority of miRNAs in miRBase 

have been discovered using Illumina sequencing technology. The current 

sequencing protocol relies on RNA ‘adapter’ molecules ligating to the 3’ and 5’ 

ends of total RNA extracted from a tissue or cell sample. Ligation of adenylated 3’ 
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adapters to the small RNAs is achieved using a truncated form of T4 RNA ligase 2 

(Rnl2) and then 5’ adapters are ligated to the small RNAs using T4 RNA ligase 1 

(Rnl1). Reverse transcription followed by PCR (RT-PCR) then results in 

generation of complementary DNA molecules (cDNA) from the ligated product 

which can then be separated on a polyacrylamide gel. The desired size class of 

small RNA can then be selected for sequencing by purifying the appropriate cDNA 

band from the gel using size markers as a guide. However, recent work has 

demonstrated that a considerable bias exists by which the adapter molecules can 

ligate to target small RNAs of interest (Linsen et al., 2009; Hafner et al., 2011). 

The sequencing bias in small RNA libraries is ligase dependent (Nandakumar & 

Shuman, 2004) and results in failure to detect thousands of non-adapter or reduced-

adapter ligated small RNAs in library preparations. 

In this chapter, in order to better characterise the population of 30-40 nt 

novel sRNAs in which YsRNAs are found, Illumina (Solexa) sequencing was 

employed to identify putative candidates. As poly(I:C) treatment induced the 

generation of stress related YsRNAs, and as Ro60 appeared to be responsible for 

their biogenesis, both wild-type and Ro60 knockout cells either treated or not-

treated with poly(I:C) were subjected to NGS, selecting for molecules between 30-

40 nt. Over 150 sRNAs were identified which were found to be upregulated 

following poly(I:C) treatment, but which were not produced in the absence of 

Ro60 under the same conditions, implying that Ro60 was required for the 

production of these molecules. Intriguingly, most of these sRNAs mapped to 

exonic regions of the genome. Furthermore, the reads of these novel sequences 
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showed a high sequence conservation at their 3’ end, but had a more variable 5’ 

end.  

In addition to testing the Ro60 dependency of the ~30 mer sRNAs, 

experiments were performed to give an indication of the abundance of this size 

class in adult mice. Small RNAs of the ~30 mer class were selected for sequencing 

from a range of six organs in mouse which revealed a specific size peak at 40 nt 

and also 33 nt. Again, these sRNAs primarily mapped to exons. Bioinformatic 

analysis of both these data sets is ongoing. 

In collaboration with others in the laboratory and with the School of 

Computing Sciences, University of East Anglia, a technique of reducing the 

sequencing bias of small RNAs was developed and tested. The new technique 

utilised adapters with degenerate tags (variable sequences) called ‘high definition’ 

adapters (HD adapters). Using quantification of small RNAs by Northern blot as a 

standard, data obtained using HD adapters correlated better with absolute 

quantifications than did standard Illumina adapters. The use of HD adapters will be 

a highly useful tool for future investigations of novel classes of small RNAs. 
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6.2 Results 

 

6.2.1 Deep sequencing of RNA from Ro60 knockout cells reveals novel Ro60-

dependent small RNAs 

 

 As the Ro60 autoantigen is essential for YsRNA biogenesis (see chapter 5), 

this raised the question as to whether other 30-40 nt non-Y RNA related small 

RNAs were also regulated by Ro60. In order to address this, both wild-type mouse 

embryonic stem cells (mES) and mES Ro60 knockout cells (Ro60
-/-

) were either 

treated or not treated with poly(I:C). This was repeated in duplicate, generating 

eight biological samples. Ro60 knockout cells were genotyped by Western blot as 

before (see chapter 5). RNA was then isolated from all cells. Small RNA libraries 

were generated using the latest Solexa protocol (TruSeq Small RNA) using 

different ‘barcodes’ (specific PCR primer sequence to allow for multiplexing) for 

each of the libraries. The Illumina Truseq protocol is optimised for microRNA 

library preparation. As this new size class of 30-40 nt had not specifically been 

investigated before, the protocol had to be modified in order to better select for this 

new size class. It was found that using 2 µg small RNA (rather than 1.0 µg total 

RNA suggested by Illumina) for adapter ligation was optimal for library 

preparation of this size class. Therefore, RNA extracted from cells was enriched 

for the small RNA fraction (RNAs <200 nt) prior to library preparation. 

Additionally, between 17-19 PCR cycles (as opposed to 11 cycles suggested by 

Illumina) was optimal for the generation of libraries for 30-40 nt sRNAs. A 

comparison of the resulting cDNAs generated using either the standard microRNA 
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or 30-40 nt specific library preparation protocols shows that the method developed 

here was highly efficient at selecting for this new size class (Figure 6.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Comparison of small RNA cDNA library preparations for microRNAs and 

30-40 nt sRNAs. 

 

Small RNA libraries were prepared using the TruSeq small RNA kit (Illumina). (A) 

Library preparation optimised for 30-40 nt sRNAs (investigated in this chapter) and 

separated by polyacrylamide gel. Libraries prepared using 2 µg enriched sRNA (<200 

nt) and RT-PCR protocol with high PCR cycle numbers (17-19 cycles). The size of the 

combined barcode and adapter-adapter cDNAs alone is 125 bp. Libraries of 22 nt 

microRNAs therefore gives a 147 bp band. Gel A shows result of second gel 

purification after selecting all cDNAs between 140-170 bp in a previous purification. A 

band representing microRNAs, as well as a larger band of ~160 bp (representing ~35 nt 

sRNAs) is clearly visible. The red bracket shows cDNA which was purified for 

sequencing, or the equivalent region on gel B. (B) An example of standard microRNA 

cDNA library preparation by another researcher in the laboratory, Dr Ping Xu, using 

the advised reaction conditions stated in the Illumina protocol. A band representing 

miRNAs is clearly visible in each of the three lanes representing cDNAs generated 

using different PCR cycles. However, the equivalent ~35 nt sRNA band shown in gel A 

is only detected at low levels in the first lane of gel B. 
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 Following library preparation, samples were sent for Solexa (Illumina) 

sequencing where they were first quantified and then each sample (including 

duplicated repeats) was sequenced on two different lanes on a flow cell using 50 

cycles to account for the longer than usual sRNA size. Data was analysed by firstly 

removing adapter sequences and then removing reads that were less than 16 nt 

(0.4-3 % of total reads) and greater than 45 nt (no reads were actually greater than 

43 nt). Reads mapping to a loci at chromosome 18 representing a highly abundant 

snoRNA fragment (from SNORD58) were also removed, as this sequence was 

overrepresented owing to sequencing bias.  

The resultant reads were then mapped to the GRCm 37 release (genome 

reference consortium for mouse) of the mouse genome using sequences with exact 

matches (Table 6.1). Between 9.9 and 18.1 million redundant reads (non-unique 

reads) were generated for each sample of which 79-89 % mapped to the genome. 

With regards to unique reads, between 7.7-13.1 % mapped to the genome. The 

discrepancy between the percentages of redundant versus unique reads which 

mapped to the genome is explained by the fact that a small number of unique 

sequences had high read numbers (this is a normal result for sequencing of a 

specific size class where there is low degradation or background ‘noise’). To better 

explain this, let us take a theoretical data set where we have 10 reads composed of 

three different sequences: 6 redundant reads with sequence ‘A’ (which map to the 

genome), 3 redundant reads with sequence ‘B’ (which do not map to the genome) 

and 1 redundant read with sequence ‘C’ (which does not map to the genome). In 

this scenario, 60% of redundant reads map to the genome, but only 33 % of unique 
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reads map to the genome, because only one read represented with sequence ‘A’ out 

of the three different sequences in total can map. 

A size distribution was then generated for each of the four biological 

conditions and for each of the biological repeats (Figure 6.2). Results were 

normalised using quantile normalisation which is more appropriate when 

comparing different samples than proportional normalisation (or ‘reads per million’ 

normalisation) (Garmire & Subramaniam, 2012). Briefly, quantile normalisation is 

based on ranking sequences in order of abundance for the different samples. This 

makes sequence distributions more comparable with each other, and does not 

introduce or reduce differential expression in the same way which proportional 

normalisation does. Size distributions for all samples showed clear peaks at 28 nt, 

33 nt and 38 nt (Figure 6.2). No peak at 22 nt representing microRNAs was found, 

as this size class was omitted during library preparation. 
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Table 6.1 Analysis of reads generated from deep sequencing of wild-type and Ro60 

knockout mouse embryonic stem (mES) cells either treated or not treated with 

poly(I:C). 

 

RNA was extracted from cells and enriched for <200 nt molecules. Experiments were 

repeated twice (biological replicates) represented by #. Following cDNA library 

preparation using a modified Illumina protocol optimised for 30-40 nt sRNAs, 

libraries were sequenced and mapped to the GRCm 37 release of the mouse genome. 

The discrepancy between the percentages of redundant versus unique reads which 

mapped to the genome is normal for sequencing of a specific size class, and is 

explained by the presence of a small number of unique reads with high read numbers. 

 

 

 

 

 



185 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Size distribution of sequences from wild-type mouse embryonic stem cell 

(mES) and mES Ro60 knockout (Ro60
-/-

) cells either treated or not treated with 

poly(I:C). 

 

Two biological replicates were sequenced using Solexa (Illumina) technology for 

each of the four experiments. Size distribution showed peaks at 28 nt, 33 nt and 38 

nt. As the microRNA size class was omitted during library preparation, there is no 

visible peak at 22 nt. Data was quantile normalised. 

 

 

 

 

 

 



186 
 

 As YsRNA biogenesis is dependent on Ro60, sequences derived from mY1 

and mY3 RNAs were first assessed as a positive control to see if the data set could 

reliably be used to find other Ro60 dependent small RNAs. A ‘presence plot’ was 

generated for both Y RNAs which plots the appearance of each nucleotide in all 

sequencing reads against its position in the genome (Figure 6.3). For example, 

taking two theoretical sequences which map to the same locus: GATC (with 4 

reads) and GATCGA (with 6 reads), the ‘abundance’ for each base at a particular 

position in the sequence is calculated as the sum of all reads covering that base. So 

with the example given, the abundance of ‘G’ at position one in both theoretical 

sequences (mapped to the same locus) would be 10  because it appears in both 

sequences at the same position and the sum of the reads of the two sequences gives 

an abundance value of 10. In the case of the last ‘A’ in sequence two; it would only 

have a value of 6 as it only appears in the second sequence which has 6 reads. 

The presence plot revealed that sequences from the 5’ and 3’ ends of mY1 

had a higher abundance in poly(I:C) treated wild-type mES cells than for non-

treated wild-type mES cells (Figure 6.3). The abundance of reads from mY1 in 

Ro60
-/-

 cells (treated and non-treated with poly(I:C)) remained low across the mY1 

locus. The presence plot for mY3 was not as conclusive as high abundance was 

only detected at the 3’ end and the overall abundance mY3 was low (see scale on 

the y-axis). Furthermore, the abundance for one of the non-poly(I:C) treated wild-

type mES cell repeat samples was much higher than for both poly(I:C) treated 

wild-type mES cell repeats. Earlier Northern blot data showed that Y3 RNA 

expression and Y3sRNA production is generally much lower compared to the other 

Y RNAs and does not seem to be representative of YsRNA biogenesis (for 
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example see Figure 4.1, 4.2, 5.9 and 5.11 from previous chapters). However, the 

mY1 presence plot did correlate with Northern blot analysis from Ro60 knockout 

experiments (see chapter 5) confirming that YsRNAs are dependent on Ro60. This 

in turn demonstrated that the sequencing data set could reliably be used to find 

other potential Ro60-dependent small RNAs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Presence plot for Y1 and Y3 RNA from wild-type mouse embryonic stem 

cells (mES) and mES Ro60 knockout (Ro60
-/-

) cells either treated or not treated with 

poly(I:C). 

 

The presence of each nucleotide in reads which mapped to the loci shown were 

analysed for mY1 (top) and mY3 (bottom) for all four experiments using redundant 

sequences. Data for biological duplicates is also shown. Presence plot for mY1 (top) 

showed that sequences from the 5’ and 3’ ends had higher read counts in wild-type 

poly(I:C) treated cells (mES_polyic) than in non-treated wild-type cells (mES_wt). 

Read counts for mY1 remained low across the locus for all Ro60 knockout (Ro60
-/-

) 

cells. Presence plot for mY3 (bottom) shows only fragments derived from the 3’ end 

of Y3 RNA. One of the replicates for non-poly(I:C) treated cells shows much higher 

read counts compared to wild-type poly(I:C) treated cells. Data was quantile 

normalised. 
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 In order to see if there were other Ro60-dependent small RNAs which were 

upregulated during cell stress, differentially produced sequences were filtered from 

the data set using two different parameters. Sequences were selected which showed 

a four-fold increase in production (2log2 offset fold change using an offset value of 

20) between wild-type mES cells and poly(I:C) treated wild-type mES cells, but 

which did not show differential production between Ro60
-/-

 cells and poly(I:C) 

treated Ro60
-/-

 cells. The most differentially produced sequences mapping to each 

loci were used in the analysis. Subsequently, 177 sequences were found which 

showed at least a four-fold increase during stress, but which specifically required 

Ro60 for their generation. These novel sequences will be referred to as rosRNAs 

(Ro60-dependent small RNAs).  

Interestingly, rosRNAs primarily mapped to exonic regions of the genome, 

implying that they were derived from mRNA transcripts. The list of 177 candidates 

did not include tRNA halves (as expected) but did include the 5’ end Y1sRNA - 

which appeared as the 26
th

 most differentially produced rosRNA. In order to 

further filter the list of candidates, all 25 sequences from loci showing a greater 

Ro60-dependent differential production than Y1sRNA were chosen for analysis, as 

well as 8 sequences which were the next most Ro60-dependent after Y1sRNA. 

These sequences were all between 31-41 nt in length.  

The presence plots for all sequences mapping to these 33 loci were then 

analysed, and only 6 of these sequences were then selected as bona fide rosRNAs 

(Table 6.2) based on more stringent analysis of their differential generation pattern 

between experiments (Table 6.3). The most differentially produced sequence from 

each Ro60-dependent locus was selected as the consensus sequence for each 
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rosRNA. The change in Y1sRNA-5’ production was also analysed (Table 6.3). 

None of the rosRNAs showed a fold change difference between untreated mES 

wild-type cells and  untreated Ro60
-/-

 cells, whereas Y1sRNA production reduced 

in an untreated Ro60
-/-

 background (-1.6 log2 offset fold change), as this sRNA is 

naturally produced in non-stressed cells and is Ro60 dependent (see Chapters 3 and 

5 respectively).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.2 Ro60 dependent small RNA (rosRNA) candidates. 

 

The sequence and origin of the six putative rosRNAs is shown. The candidates all 

mapped to exonic regions: either the coding regions of genes (CDS) or the 

untranslated regions (UTR). 
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Surprisingly, these six rosRNA sequences shared a common read structure, 

whereby the 3’ end showed high sequence conservation and the 5’ end showed 

greater variation (Figures 6.4-6.5). For example, rosRNA-1 has a very defined 3’ 

end whereas the presence plot for the 5’ end is more sloped with a less defined cut-

off point. This could be due to the rosRNA being derived from the 3’ end of a 

transcript, or due to evolutionary selective pressure at the 3’ end owing to 

conservation of important sequences, which is similar to the asymmetric end 

selection seen with animal microRNAs (but with the opposite end). The ‘seed’ 

region in microRNAs (nucleotide positions 2-8) is at the 5’ end and presence plots 

for microRNAs shows a fixed 5’ end and more variable 3’ end.  

 

Table 6.3 Fold change of rosRNA candidates and Y1sRNA between experimental 

conditions and cell lines. 

 

Table shows the log2 offset fold change values (using an offset value of 20) of 

rosRNAs between mES wild-type and Ro60
-/-

 cells under poly(I:C) treated or untreated 

conditions. Candidates were selected on the conditions that they showed a four-fold 

change between mES wt untreated and mES wt poly(I:C) treated conditions, but did 

not change between Ro60
-/-

 and Ro60
-/-

 poly(I:C) treated conditions. This confirmed 

that they were indeed Ro60 dependent. Fold change differences for Y1sRNA-5’ is 

shown as a comparison. 
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Upon closer investigation, it was noted that there was a ‘kink’ or step in the 

rosRNA presence plots consistently appearing at the 5’ end (Figures 6.4-6.5). This 

kink corresponded with a run of 3-4 T nucleotides at the 5’ end of these sRNAs 

(with the exception of rosRNA-5 where the run of Ts appears at a secondary kink 

in the centre of the sRNA). This is identical to the La binding motif. Indeed, the 

differential length of rosRNAs at the 5’ end may be due to differential La binding 

of these transcripts, which is what we have seen for Y5sRNA-3’. With Y5sRNA-3’, 

a 32 nt fragment is produced when La is present, and in its absence, the 24 nt 

Y5sRNA is preferentially produced (Chapter 5, Figures 5.8-5.10). Differential La 

binding might explain the 5’ end variation seen in rosRNAs. 

These rosRNA candidates are currently being subjected to further 

investigation in the laboratory. 
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Figure 6.4 Ro60-dependent small RNA (rosRNA) 1-3 presence plots.  

 

Sequences mapping to each locus were analysed. Mapped reads showed a highly 

conserved 3’ end and a more variable 5’ end. 
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Figure 6.5 Ro60-dependent small RNA (rosRNA) 4-6 presence plots.  

 

Sequences mapping to each locus were analysed. Mapped reads showed a highly 

conserved 3’ end and a more variable 5’ end. 
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6.2.2 Next-generation sequencing of 30-40 nt sRNAs in mouse organs 

 

 The 30-40 nt small RNA population studied using mouse embryonic stem 

cells was highly informative at revealing Ro60-dependent small RNAs. However 

the experimental design would not reveal the full extent of this novel RNA 

population in animals as only a single undifferentiated cell type was employed. 

Therefore, in order to better characterise this class of sRNAs in animals, 30-40 nt 

RNAs from different organs in mouse were investigated via NGS as described 

before. The brain, heart, kidney, liver, lungs and femoral muscle were all dissected 

from two different adult mice (one male and one female) and cDNA libraries were 

subjected to Illumina sequencing.  

As with rosRNAs, the 30-40 nt sRNAs in mouse organs were primarily 

composed of RNAs derived from exons. Analysis of the redundant size distribution 

of reads for all organs from these two individuals revealed a significant peak 

around 40 nt, and smaller peak at 33 nt (Figure 6.6). The kidney sample extracted 

from the female mouse showed a peak around 22 nt, but this was probably due to 

microRNA contamination during library preparation. Bioinformatic analysis of this 

data set is ongoing, but the initial read distribution results clearly demonstrated that 

a 30-40 nt small RNA population exists in the cell, and shows varied abundance 

between different organs. Small RNAs from this size class were most abundant in 

the brain and kidneys, and showed the lowest production in the heart (Figure 6.6). 

Individual sequences with high read counts showed organ-specific production 

which was reproduced in the two biological replicates (preliminary data not 

shown). 
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Figure 6.6 A population of 30-40 nt small RNAs in mouse organs. 

 

Six different organs (brain, heart, kidney, liver, lung and muscle) were 

extracted from two different mice (an adult male and adult female). RNA 

libraries were prepared using the Illumina protocol, selecting from the 30-40 nt 

size class. Size distribution of redundant sequences revealed specific peaks at 

40 nt and 33 nt. The peak visible at 22 nt for the female kidney sample is 

probably owing to microRNA contamination in that sample. 
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6.2.3 Improving next-generation sequencing of small RNAs by reducing 

sequencing bias 

 

 Current sequencing protocols have been shown to be biased with respect to 

which small RNAs are preferentially sequenced. This in turn could hinder the 

discovery of novel small RNAs and new classes of RNAs. The sequencing bias is 

due to RNA ligases having a preference for certain secondary structures at the 

adapter-small RNA ligation site (Nandakumar & Shuman, 2004). We found that 

the use of commercial adapters with fixed sequences worsened this problem by 

restricting the diversity of possible secondary structures generated between the 

fixed adapters and the small RNA molecules. In order to counteract this problem 

our laboratory developed and patented adapters with degenerate tags (varied 

sequences) called high definition adapters (HD adapters) thereby increasing the 

number of different secondary structures at adapter-small RNA ligation sites for 

each small RNA. Subsequently, this would increase the ligation efficiency and 

therefore the representation of certain small RNAs in cDNA libraries. Here, the 

effectiveness of HD adapters for detecting small RNAs was investigated in 

biological samples. 

RNA was extracted from the colon cancer cell line, DLD-1. Small RNA 

libraries were then prepared by a collaborator in the laboratory, Dr Karim Sorefan 

using the Illumina protocol. Libraries were prepared using either Illumina adapters 

or HD adapters and sent for sequencing. RNA from the same samples was then 

analysed by Northern blot for eight known microRNAs (miR-10a, miR-19b, miR-

21, miR-25, miR-29b, miR-93, miR-375 and let-7i) (Figure 6.7). To quantify these 
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microRNAs, serial dilutions were made with eight oligonucleotide sequences 

corresponding to each respective microRNA. Calibration curves were then 

generated and used to quantify endogenous microRNA concentrations in two 

technical replicates. Absolute quantifications determined from Northern blots were 

then compared to read numbers generated following cDNA library sequencing 

using either HD or Illumina adapters for each microRNA (Figure 6.8). Analysis 

revealed that libraries made using HD adapters correlated better with the cellular 

abundance of each microRNA as determined by quantitative Northern blot 

(R
2
=0.70) than libraries made with Illumina adapters (R

2
=0.12). For example, 

using Illumina adapters, miR-29b had 2,002 reads per million (RPM) whereas 

using HD adapters the read number was calculated as 74,339 RPM in the same 

sample. The high cellular abundance of miR-29b, quantified via Northern blot as 

1.68 femtomoles/µg total RNA, therefore reflected HD adapter data better. 

However, absolute quantification for one of the microRNAs, miR-10a, correlated 

better with Illumina adapter-generated reads than with HD adapter-generated reads. 

Overall, this result demonstrated that HD adapters are better at detecting small 

RNAs than commercially available adapters and will therefore be more effective in 

detecting novel small RNAs in future studies. 
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Figure 6.7 Quantification of known microRNAs in DLD-1 cells (epithelial 

adenocarcinoma cells).  

 

Total RNA (10µg) from DLD-1 cells was analysed via Northern blot in two 

different lanes. Serial dilutions of synthetic oligonucleotide sequences 

corresponding with the microRNA of interest were also generated for each of 

miR-10a, miR-19b, miR-21, miR-25, miR-29b, miR-93, miR-375 and let-7i. A 

calibration curve was then created and used to quantify the endogenous level of 

the corresponding microRNA in the two DLD-1 samples. The average calculated 

concentration for each microRNA is shown as femtomoles/µg total RNA. For 

miRNA quantification, both experimental and serial dilution membranes were 

hybridised together and signal was developed and exposed under the same 

conditions. 
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Figure 6.8 Comparison of HD and Illumina adapter-derived read numbers with 

Northern blot-quantification of microRNAs. 

 

Absolute quantification of eight known microRNAs was achieved by Northern 

blot and values were then compared with the number of times these microRNAs 

were sequenced using either Illumina or HD adapters in the DLD-1 cell line. The 

data obtained using HD adapters (black stripes) correlated better with absolute 

quantification (blue) (R
2
=0.70) than with Illumina adapters (red) (R

2
=0.12). The 

y-axis on the left represents the normalised read numbers calculated for HD and 

Illumina adapter samples. The y-axis on the right represents the absolute 

quantification values for the Northern blot data.  

 

 

 



200 
 

6.3 Discussion 

 

The 30-40 nt sRNAs revealed in this chapter are ‘novel’ in the sense that 

they are Ro60 dependent and this has not been reported previously. However the 

general class of 30-40 nt RNAs is itself not novel as small RNAs of this size have 

been reported in multiple studies in recent years. RNA fragments from this 30-40 

nt class have been shown to be primarily derived from tRNAs (Thompson et al., 

2008; Fu et al., 2009; Yamasaki et al., 2009), snoRNAs (Taft et al., 2009) and 

rRNAs (Li et al., 2012). The function of some of these molecules has been 

revealed. For example, tRNA halves have been demonstrated to modulate 

translation of certain transcripts following stress (Ivanov et al., 2011), whilst other 

20-40 nt RNAs from tRNAs, rRNAs and snRNAs can associate with a long form 

of tRNA endoribonuclease Z (tRNase Z
L
) and direct silencing of targets (Elbarbary 

et al., 2009). Indeed some 30-40 nt sRNA fragments still have the potential to bind 

Ago, and could then be trimmed to become functional siRNAs (Tuck & Tollervey, 

2011). 

 In the work done here, rosRNAs were found to primarily map to the exonic 

regions of genes, which is in contrast to the majority of intronic derived sRNAs 

discovered recently (Li et al., 2012; Ruwe & Schmitz-Linneweber, 2012; Skreka et 

al., 2012). Nonetheless, there are several studies which have also uncovered small 

RNAs which are derived from exonic regions. Capped analysis of gene expression 

(CAGE) experiments have shown that RNA transcripts can undergo cleavage and 

secondary capping (Fejes-Toth et al., 2009). Many of these reported mRNA-

derived sRNAs mapped to internal exons with some crossing exon-exon junctions. 
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These small RNAs were proposed to arise due to processing of mRNAs whereby 

spliced transcripts undergo continued cleavage and re-capping, generating a 

hierarchy of increasingly smaller fragments (Fejes-Toth et al., 2009). Another 

similar study found evidence of intraexonic post-transcriptional cleavage which 

generated 15-30 nt RNAs (Mercer et al., 2010). Furthermore, these fragments 

showed tissue and developmental stage specific expression which was not Dicer or 

Ago dependent (Mercer et al., 2010). The study showed that small RNAs produced 

as a result of this post-transcriptional cleavage did not appear to share any common 

structural or sequence motifs.  

Recently, two models have been proposed which explain how some of 

these mRNA-derived sRNAs are produced. Transcription start site-associated 

(TSSa) RNAs arise as a result of RNA polymerase II (RNAPII) stalling, and 

subsequent exonuclease processing by XRN1 and XRN2, generating RNAPII 

‘footprints’ (Valen et al., 2011). The same study also proposed that splice site-

associated (SSa) RNAs are generated owing to decay of upstream exons which fail 

to undergo splicing correctly.  

 It seems unlikely that rosRNAs are produced owing to RNAPII stalling as 

TSSa RNAs are typically ~17 nt long, reflecting the size of the RNA which fits 

inside RNAPII (Valen et al., 2011), and the rosRNAs are 30-40 nt. If the rosRNAs 

are produced as a result of splicing errors then this would imply that Ro60 has a 

role in transcript maturation. Indeed, preliminary mapping analysis indicated that 

rosRNAs are derived from the end of exons where splicing occurs. It is possible 

that when cells undergo stress and subsequent cell death, Ro60 might be recruited 
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to sRNAs which arise due to aberrant splicing errors because these may resemble 

misfolded RNAs which Ro60 has been shown to regulate (O'Brien & Wolin, 1994).  

Ro60 displays increased nuclear localisation following stress treatment 

(Sim et al., 2009). As the rosRNAs are essentially mRNA fragments, and could 

therefore be remnants of transcript splicing, one exciting hypothesis is that Ro60 

might enter the nucleus following stress and modulate splicing of a subset of genes.  

 Some of the exon derived rosRNAs were derived specifically from the 

untranslated regions of transcripts. One possible role for Ro60 in these transcripts 

could be that Ro60 masks a cellular localisation signal in the UTR which is 

modulated during stress. Ro60 binding would affect whether this signal was 

protected or cleaved and destroyed by RNases. This in turn would control and 

direct where these transcripts are translated in the cell. Looking at the list of UTR 

derived candidates (rosRNAs-2, 3 and 6), the genes seem to have diverse roles, 

including in stress response. For example, the ubiquitin specific peptidase 47 (from 

which rosRNA-6 is derived) catalyses the removal of ubiquitin in order to facilitate 

cell survival (Peschiaroli et al., 2010). Relocation of the translation of this protein 

due to modulated Ro60 binding might be a response to stress. 

 As with YsRNAs, rosRNAs might be produced as a result of Ro60-

mediated protection from RNases upregulated during cell stress. This assumption 

is not only based on YsRNA biogenesis, but also on the biogenesis of other 

recently described sRNAs (Valen et al., 2011; Ruwe & Schmitz-Linneweber, 

2012). This hypothesis would imply that the transcripts from which rosRNAs are 

produced are naturally bound by Ro60, or perhaps only during poly(I:C) treatment. 

Furthermore, the string of T nucleotides at the 5’ end of rosRNAs implies the 
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presence of a potential La binding site, and this might explain the variable 5’ end 

seen on rosRNA presence plots; differential La binding will produce transcripts of 

different length owing to protection/de-protection as seen with Y5sRNA-3’.  

The rosRNAs need to be analysed by Northern blot to validate them as 

specifically produced sequences and not mere degradation products. One other 

possible experiment could be to synthesise and transfect these small RNAs with 

biotin tags and then immunoprecipitate them to investigate possible protein-RNA 

interactions. This might uncover components of any potential biological pathway 

in which the rosRNAs are involved. Ro60 binding should also be validated using 

similar experiments.  

 Although work into the mouse organ 30-40 nt sRNAs is ongoing, it is 

interesting to note that the sequences identified in this experiment were also 

derived from exons. Individual sequences showed highly varied abundances 

between organs which was conserved between replicates. The brain and kidneys 

had the highest number of 30-40 nt sRNAs, with the heart having the lowest. This 

also reflects the complexity of these organs. The differential pattern of production 

of these sRNAs between organs implies functionality. 

Poly(I:C) treatment of human cells results in the increased production of a 

population of RNAs which are principally 31 nt in length (see Figure 3.2). 

However, in mouse cells, the population of small RNAs (in either stressed or non-

stressed cells) appear to have a principal size of 33 nt (Figures 6.2 and 6.6). It is 

therefore possible that the size of stress related small RNAs is species specific. 

 In this chapter, techniques were developed and optimised so that 

identification of novel sRNAs will be more efficient in the future. The Illumina 
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protocol was modified to better select for 30-40 nt sRNAs. Interestingly, during 

library preparation it was noted that several sized bands were present following gel 

electrophoresis of cDNAs which were not adapter-adapter, microRNA or 30-40 nt 

associated. These could represent even more distinct sRNA size classes which have 

yet to be investigated. 

 The work done here also contributed to the development of HD adapters 

which significantly reduce sequencing bias of small RNAs, as demonstrated in 

figure 6.8. The data in this chapter contributed to the publication of this technique 

by our laboratory (Sorefan et al., 2012). The HD protocol could double read 

coverage and uncover previously unidentified microRNAs (Sorefan et al., 2012). 

HD adapters serve as a valuable tool for future investigations into small RNAs. 
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Chapter 7 

Summary and general discussion 
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The aim of this thesis was to characterise the biogenesis of small RNA 

fragments produced from Y RNA molecules (YsRNAs). The purpose of this 

characterisation was to enable further understanding of an emerging class of small 

RNAs which are slightly longer than traditional gene silencing small RNAs.  

In chapter 3, it was found that YsRNAs were produced from both the 5’ 

and 3’ ends of all Y RNA molecules in a cancer-independent manner. This is 

similar to how other recently discovered small RNAs are produced, some of which 

are also derived from the ends of longer molecules (Li et al., 2012). Although 

YsRNAs were produced at high levels following stress treatment, they were also 

present in unstressed cells at levels which are similar to microRNAs.  

In chapter 4, Dicer knockout, Ago immunoprecipitation and anion 

exchange chromatography experiments showed that the YsRNAs did not appear to 

have gene silencing potential. This indicated that YsRNAs do not fall into the same 

category as small RNA fragments derived from miRNA precursors, tRNAs and 

snoRNAs which do have gene silencing activity (Ender et al., 2008; Li et al., 2012). 

In chapter 5, potential enzymes involved in YsRNA biogenesis were 

investigated. A natural assumption was that the enzyme which produces similar 

sized fragments from tRNAs, angiogenin, was responsible for YsRNA production. 

This was shown not to be the case. RNase L did appear to contribute to YsRNA 

production, but only in mouse. However, using a variety of techniques in mouse 

and human cells, the autoimmune protein Ro60 was shown to be essential for 

YsRNA generation. The La protein also seemed to affect the production of one of 

the YsRNAs. Experiments from this chapter appeared to support a model of 

YsRNA biogenesis through RNase protection by Ro60 and indeed, by La. This 
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model is in line with how some other novel small RNAs have been shown to be 

made (Valen et al., 2011; Ruwe & Schmitz-Linneweber, 2012). 

In chapter 6, after establishing that Ro60 was integral to YsRNA biogenesis, 

it was investigated whether other small RNAs in the same 30-40 nt size class were 

also Ro60 dependent. This was indeed found to be the case, and deep sequencing 

experiments led to the discovery of a new, highly abundant class of Ro60 

dependent small RNAs (rosRNAs). This chapter demonstrated that analysis of the 

biogenesis of YsRNAs has resulted in a better understanding of the small RNA 

class in which it resides. Not only was this one of the major aims of the thesis, but 

it increased the impact of the work across many different research disciplines, 

beyond the Y RNA community. Indeed, the additional discovery in chapter 6 of 

other exon derived small RNAs which are differentially produced in mouse organs 

would be of interest to developmental biologists and molecular geneticists alike.  

Although this work did not uncover the biological function of YsRNAs, it 

has uncovered a class of other related molecules, the rosRNAs. Therefore, studying 

these rosRNAs might facilitate the discovery of a biological function in the near 

future. 

Following the RNA ‘renaissance’ which was marked by the discovery of 

gene silencing related molecules, sequencing technologies have unveiled a plethora 

of other small RNAs which were once mistakenly considered to be degradation 

products. The last part of this thesis involved testing a new deep sequencing 

protocol developed in the laboratory using biological samples. The ‘HD’ protocol 

significantly reduced sequencing bias and better reflected absolute quantification 

of small RNAs. As a result, HD adapters will now facilitate the discovery of other 
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small RNAs in the future. Studies have already managed to determine the function 

of some of these small RNAs, such as tRNA halves (Ivanov et al., 2011). However 

others, such as YsRNAs, remain elusive in their function. The small RNA journey 

of discovery continues. 
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