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Abstract. This paper demonstrates a methodology for the analysis and
integration of airborne hyperspectral sensor data (445–2543 nm) with GIS
data in order to develop a vulnerability map which has the potential to assist
in decision making during post-disaster emergency operations. Hailstorms
pose a threat to people as well as property in Sydney, Australia. Emergency
planning demands current, large-scale spatio-temporal information on urban
areas that may be susceptible to hailstones. Several regions, dominated by
less resistant roofing materials, have a higher vulnerability to hailstorm
damage than others. Post-disaster operations must focus on allocating dynamic
resources to these areas. Remote sensing data, particularly airborne hyperspec-
tral sensor data, consist of spectral bands with narrow bandwidths, and have the
potential to quantify and distinguish between urban features such as roofing
materials and other man-made features. A spectral library of surface materials
from urban areas was created by using a full range spectroradiometer. The image
was atmospherically corrected using the empirical line method. A spectral angle
mapper (SAM) method, which is an automated method for comparing image
spectra to laboratory spectra, was used to develop a classification map that
shows the distribution of roofing materials with different resistances to
hailstones. Surface truthing yielded high percentage accuracy. Spatial overlay
technique was performed in a GIS environment where several types of
cartographic data such as special hazard locations, population density, data
about less mobile people and the street network were overlaid on the classified
geo-referenced hyperspectral image. The integrated database product, which
merges high quality spectral information and cartographic GIS data, has vast
potential to assist emergency organizations, city planners and decision makers in
formulating plans and strategies for resource management.

International Journal of Remote Sensing
ISSN 0143-1161 print/ISSN 1366-5901 online # 2004 Taylor & Francis Ltd

http://www.tandf.co.uk/journals
DOI: 10.1080/01431160310001642331

INT. J. REMOTE SENSING, 10 JULY, 2004,
VOL. 25, NO. 13, 2625–2639



1. Introduction

Hailstorms can cause substantial damage to property anywhere in the world.

For instance, on 14 April 1999, a thunderstorm was detected forming approxi-

mately 115 km south of Sydney, Australia, near Nowra. Within 25 minutes the

storm unleashed a maelstrom of icy fury, as the largest hailstones ever recorded in

Sydney crashed down from the skies at over 200 km h21. The storm carved a path

of destruction resulting in an estimated damage bill of 1.5 billion dollars (Fire News

1999). Table 1 shows the total estimated financial losses incurred by hailstorms and

other catastrophes from 1967 to 1998.

While the prevention of hailstorms is a myth, the management of dynamic

resources for rescue and post disaster operations is an important issue. From a

disaster management perspective it is vital to develop a database that shows areas

with different degrees of vulnerability from hailstorms. Hailstorm vulnerability can

be assessed in different ways, one of which is by mapping the type of roofing

material used for constructions, since different roofing materials have varying

degrees of resistance to hailstones. There is a high correlation of damaged roofs to

the material composition of the roofing material, which in turn determines their

resistance to hailstones (Andrews and Blong 1997, Vorobieff et al. date unknown).

The roof is the first point of impact from the hailstorm and thereafter severe

damage is caused to the houses and property. Various studies indicate that tiles,

gutters, windows, brittle cladding materials and metal sheeting are all at risk during

heavy hail. Thin metal sheeting is dented or even penetrated, while tiles develop

hairline cracks and are often shattered under the impact of hailstones. Age and

impact location are important factors for many roofing materials (Vorobief et al.

date unknown). A study carried out by Andrews and Blong (1997) reported that tile

roofs were the most commonly damaged roof type. The study ranked roof materials

in decreasing order of vulnerability to damage: aluminium, fibro, slate, tiles and

iron. Roofs contributed as one of the major cost items accounting for 22% of the

total cost.

Research in the past has explored the use of remote sensing data to study urban

surfaces mainly by means of classification of multi-spectral data materials (Lo 1997,

Forster 1983, Heiden et al. 2001). All these studies confirmed the inadequacy of

spectral resolution of broadband sensors to detect and map urban features.

Bhaskaran et al. (2001a) demonstrated a methodology that used airborne remote

sensor data to map vulnerability from hailstorms in Sydney. Furthermore, urban

Table 1. Largest Australian insured catastrophic losses 1967–1998 (Insurance Council of
Australia).

Event Location Date Insured loss (A$ million)

Earthquake Newcastle 1989 1125
Cyclone Tracy Darwin 1975 835
Hailstorm Sydney 1990 385
Cyclone Wanda Brisbane 1974 330
Bushfires Victoria, South Australia 1983 325
Hailstorm Brisbane 1985 300
Thunderstorm Sydney 1991 225
Hailstorm Sydney 1986 160
Hailstorm NSW 1976 130
Cyclone Madge Northern Australia 1973 150
Cyclone Althea Townsville 1971 150

2626 S. Bhaskaran et al.



feature objects occur heterogeneously in space and do not follow any specific

pattern, which compounds the problem of their systematic identification. Since

details extracted from broadband sensors such as Landsat, SPOT and other optical

remote sensor data have proven to be inadequate for sub-pixel analysis of urban

regions, the superior resolution (spatial and spectral) of an airborne hyperspectral

data (HyMap) was considered and used in the study.

Hyperspectral data, due to their narrow bandwidth and fine spectral resolution,

have the potential to distinguish between various surface materials (Goetz 1992,

Roessner et al. 1998, Bhaskaran et al. 2001b). The overall shape of a spectral curve

and the position and strength of absorption bands of hyperspectral data can be

used to identify and discriminate materials in an urban area (Bhaskaran and Datt

2000). The potential of hyperspectral data has been demonstrated by other studies

such as Ridd et al. (1997), Hepner et al. 1998, Crowley and Zimbelman (1996),

Fuimie and Marino (1997) and Roessner et al. (1998). Identification and quantifica-

tion of urban feature objects by using the albedo and chemical composition of

materials were also demonstrated by Bianchi et al. (1996), Fuimie and Marino

(1997) and Roessner et al. (1998). Crowley and Zimbelman (1996) used AVIRIS

data to map alteration minerals on the slopes of Mt. Rainier to delineate hazardous

sectors, to develop a model that has the potential to be applied to other areas. A

supervised classification of surface materials in an urban environment was created

by analysing the airborne HyMap data (Bhaskaran and Datt 2000) in the urban

areas of Perth, Western Australia and later in Sydney, Australia. Ben-Dor et al.

(2001b) demonstrated that in the terrestrial urban environment two major aspects

can be remotely sensed: natural targets (e.g. soil, water and vegetation) and man-

made targets (e.g. buildings, pools, roads and vehicles).

However, we believe that there have been few studies that explore the potential

of analysing and integrating high-resolution airborne hyperspectral data with GIS

data for mapping vulnerability in urban areas. Furthermore the HyMap remote

sensing data have not been used for mapping vulnerability in urban areas.

2. Objectives

The broad objectives of this paper were to explore the potential of HyMap data

and to map vulnerable areas that may be affected by future hailstorms. Specific

objectives were:

(a) to create a spectral library of urban surface materials, especially roofing

materials by using a field spectrometer under artificial illumination and

sunlight;

(b) to map the vulnerability of urban areas to hailstorm hazard by analysing the

hyperspectral sensor data; and
(c) to integrate classified hyperspectral data with GIS data for demonstrating

the potential of providing intelligent information and decision support

systems to emergency organizations.

3. Study area and airborne HyMap data

A narrow transect (3 km619 km) covering the region from Concord, located to

the south of the Parramatta River, to the Forestville region located to the north of

the Parramatta River, was mapped using the airborne HyMap sensor in early

September 1999, by HyVista Corporation, Sydney, Australia. For the purpose of

exploring the full potential and capability of hyperspectral data, it was necessary to
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select a study area which had various types of roofing materials representing

different land use and functions such as residential, commercial, educational,

industrial. These areas had a mixed type of land use and the occurrence of a wide

variety of roofing materials in close proximity. From the objective of the study and

potential of future hailstorm damage this was considered to be an ideal study area

and a potentially vulnerable region.

The HyMap sensor provides 126 bands across the reflective solar wavelength

region of 0.45–2.5 mm with contiguous spectral coverage (except in the atmospheric

water vapour bands) and bandwidths between 15–20 nm. HyMap provides a high

signal to noise ratio (w500 : 1) and therefore renders high image quality. Figure 1

shows the study area south of the Parramatta River imaged by the HyMap sensor

as well as by aerial photo images.

4. Preliminary field check

A good understanding of the surface features is essential for accurate analysis of

the Hymap image. A database was created for different land uses, showing the

material composition of the surface features, which ranged from roof types

(terracotta tiles, concrete tiles, slate tiles, corrugated fibro and metal) to concrete

pavers and bitumen. The database was created by surveying the study area with the

aid of a laptop and high-resolution aerial photo image as well as other GIS layers

such as street network and census layers. Most of the materials fell into the

category of terracotta tiles, concrete tiles, slate tiles, corrugated fibro and metal

roofs, pavers and bitumen which were found almost exclusively in some places and

in a mixed form in others. Since the spatial resolution of the HyMap image was

5 m65 m, care was taken to examine those areas that could also be spatially

resolved on the Hymap image. Apart from the material composition, the age,

location, use and function of the sampled rooftops were also recorded. In some

instances where the roofs could not be seen directly, local but reliable knowledge

was obtained from staff working at these places.

5. Methodology

Various samples of urban surface materials, mainly consisting of roofing

materials, were collected from different sources. Some of the surface materials used

in the analysis are as follows:

. Terracotta tile

. Concrete paver

. Brick

. Bitumen

. Sandstone

. Vegetation

. Wood

. Metal

. Slate

. Corrugated fibro

. Clay brick (red)

. Birch

. Concrete brick

. Basalt

. Marble
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Apart from the types of roofing materials collected, particular care was also

taken to collect weathered and non-weathered materials. One of the aims was to

generate a reference spectral library consisting of different types of spectra from

roofing materials. The HyMap sensor covers the reflective VIS (0.4–0.7 mm), NIR

(0.7–1.1 mm) and SWIR (1.1–2.5 mm) wavelengths. A FieldSpec1 Pro Full Range

(FR) spectroradiometer from Analytical Spectral Devices (ASD, Boulder, CO,

USA) that measures reflectance in the VIS, SWIR I and II was used to collect

reflectance using a Spectralon white reference panel. The spectrometer unit

incorporates three spectrometers to cover the 0.350–2.500 mm wavelength. The

Figure 1. Study area (Concord Bay, Sydney) exposed by HyMap sensor (left) and aerial
photo (right).
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HyMap image has 126 bands, which were reduced to 115 bands due to poor data

quality in bands 63–67, 94–97, 125 and 126. This was done for two reasons: firstly

to avoid data from pronounced absorption features operating outside the atmos-

pheric window such as water near 1.4 mm and carbon dioxide at 1.9 mm and

secondly to avoid some noisy bands in the sensor. Channels of HyMap and

spectrometer wavelengths were configured and the empirical line correction method

was employed to convert the radiance to apparent reflectance values. The image

was classified by the Spectral Angle Mapper (SAM) method, a supervised clas-

sification provided with the ENVI/IDL software. Accuracy of the classified image

was estimated by visiting selected sites on the field. Various GIS layers were

spatially overlain onto the classified image to assess the most vulnerable regions.

The entire methodology is summarized in figure 2.

5.1. Spectral library of urban surface materials

The spectra of urban materials were measured under artificial illumination in

the laboratory. A spectral library of pure urban materials was created and

resampled to match the 126 channels of HyMap. A second batch of spectra was

generated under natural light. A clear and sunny day was chosen for collecting

spectra from surface materials. This exercise was carried out between 12 p.m. and

1 p.m. in order to reduce the effect of the sun angle. The two urban spectral

libraries were named urban spectra artificial light (USAL) and urban spectra

natural light (USNL). Figures 3(a, b) (radiance data) show some laboratory and

HyMap image spectra respectively.

5.2. Image calibration

In order to compare hyperspectral image radiance spectra directly with field

reflectance spectra, the encoded radiance values in the image must be converted to

reflectance. The empirical line method was used to convert the image radiance data

to reflectance. The empirical line calibration technique is used to force image data

to match selected field reflectance spectra (Roberts et al. 1985, Conel et al. 1987,

Kruse et al. 1990). Field reflectance spectra were acquired for two ground targets

that had a wide albedo range and were large enough to recognize in the image.

Known dark (concrete) and bright targets (sandstone) from the Hymap image were

selected and paired with the reference spectra of the same objects for the empirical

line calibration. A linear regression was calculated between the reference spectra

and the image spectra for each of the 126 Hymap bands. The regression lines were

used to predict the surface reflectance spectrum for each pixel from its original

image spectrum (ENVI Tutorials 1999).

In this study several known targets such as sandstone, terracotta and vegetation

were used during the SAM technique. All these images came up with different

percentages of roofing materials. For instance, when terracotta tile was used as the

known target during calibration the SAM, a high percentage of terracotta tiles were

yielded in the output classification. This percentage reduced when other known

targets such as sandstone and vegetation were used. This clearly indicates that to

classify particular roofing materials the best option would be to use the same

feature as the known target for calibration. Present spatial resolution of airborne

hyperspectral sensor data does not enable spectral unmixing especially in this

study where the roofing materials occur spatially in a juxtaposed manner. As a

result, a single pixel at a 5 m65 m spatial resolution results in spectral confusion
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Figure 2. Methodology.
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in heterogenous urban areas. An improved spatial resolution will result in

identification of pure end-members and a more accurate surface abundance map.

At the moment hyperspectral sensors are carried on aircraft. The future will see

Earth observations by these sensors from space-borne platforms. The proposed

spatial resolution is rather broad to be useful for much urban analysis, but it is

expected that the resolution will improve in time. Until then airborne hyperspectral

data will be the most effective scale independent source of studying urban surfaces.

The high cost of acquiring airborne hyperspectral data is an impediment to its

widespread use.

6. Results

Results included a calibration of spectra (reference and image), a spectral library

of surface materials and interpretation, classification map of roof types, and finally

integration of image analysis results with other surface data.

6.1. Interpretation of urban roof spectra

Generally, the total reflectance of a given object across the entire visible region

(also termed albedo) is strongly related to the physical condition of the relevant

Figure 3. Spectra from (a) laboratory (reflectance) and (b) image (in radiance).
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targets (shadowing effects, particle size distribution, refraction index, etc.), whereas

the spectral peaks are more related to the chemical condition of the sensed target

(specific absorption). Several urban related chromophores do provide significant

absorption features in the VIS-NIR, such as chlorophyll (at 0.68 mm) and iron

oxides (at 0.50, 0.56 and 0.88 mm; Hunt et al. 1971). In addition to these specific

absorption features the shape of the spectral curve also is important in distinguish-

ing urban surface materials (Bhaskaran and Datt 2000).

Unlike concrete and terracotta, metal roofs show a high reflectance in the visible

range due to the presence of steel and aluminium. Terracotta is mainly composed of

clay, which shows strong absorption peaks in the VIS range and in the far infrared

region at around 2160 nm, due to the presence of hydroxide ions in kaolinite, a

naturally occurring mineral found in clay-based materials. This absorption feature

at 2160 nm is notably absent from other roof types such as metal, slate, and

concrete. However, older terracotta shows higher absorption when compared to

newer terracotta due to weathering and fading of the original colour. Concrete tile

roofs show high reflectance in the VIS but generally are featureless throughout the

spectrum. Roofing slate is a dense natural material that is practically non-

absorbent. The colour of slate is determined by its chemical composition. Because

these factors vary from region to region, slate is available in a variety of colours.

These same factors also influence how vulnerable slate is to changing colour upon

exposure to the weather. In the study this character of slate made it difficult to

detect slate roofs accurately. The presence of dark objects such as bitumen and

basalt (figure 3(a)) created some difficulty in identification which was due to their

low albedo values across the entire spectrum, with no absorption signals. The

reflectance of urban materials is a mixture of both chemical (specific absorption

behaviour) and physical (specific albedo behaviour) chromophores. In the field,

both mechanisms are active, whereas in the laboratory the chemical effects are more

pronounced, assuming that the physical effects, such as illumination, particle size

and sample geometry, are constant (Ben-Dor et al. 2001).

6.2. Mapping vulnerable regions by supervised classification: Spectral Angle

Mapper (SAM)

SAM is an automated method for comparing image spectra to individual

spectra or a spectral library (Boardman, Huntington 1996, Boardman, unpublished

data, 1992, CSES 1992, Kruse et al. 1993). The SAM classification was used for

comparing image spectra to the reference spectra. The SAM algorithm determines

the similarity between two spectra by calculating the spectral angle between them as

unit vectors in spectral space with dimensionality equal to the number of bands

(ENVI Tutorials 1999). A classified image was produced by supervised classification

in which each pixel was assigned to a class roofing material (figure 4(a, b)).

The study area is dominated by old and new terracotta tile roofs. The

predominant land use is residential, interspersed with some commercial establish-

ments along the major highways and some industrial facilities, which had metal

roofing. Some of the residential dwellings were made of concrete structures, which

appear in a random manner in the classified image. Some educational institutions in

the study area had roofing materials consisting of concrete and metal while their

surrounds were made up of concrete pavers. From the pattern of the land use and

distribution of surface materials one can assume that the main threat from
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hailstorms would be to residential areas since terracotta roofs are more susceptible

to hailstones.
In many instances by a combination of hyperspectral analysis and scientific

visualization (photo-interpretation using elements such as shape, colour, pattern

and association) the land use may be determined, which in turn assists the spectral

analysis of urban materials. Two twin structures belonging to the Department of

Housing were initially recorded as concrete roofs, but the spectral analysis showed

that they were indeed some type of metal roof. This was confirmed later to be

corrugated iron during the field verification process. Reliable local knowledge was

used wherever access to the roofs was impossible.

(a) (b)

Figure 4. (a) HyMap image (RGB 2,17,47) over study area of Concord Bay, Sydney. (b)
Classified (SAM) HyMap image. Colours indicate roof types as follows: blue~
terracotta; red~concrete; white and yellow~metal; green~slate.
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6.3. GIS analyses

The analysis of the hyperspectral data provided a major input in the form of

distribution of roof types in the study area. Vulnerability from hailstorms or any

other hazard can be assessed by a combination of factors such as roofing materials,

land use, population density and demographic characteristics. Risk may be

explained with the help of these variables if they can be analysed in combination

and not separately from each other. Different layers of roof materials were

generated from the classification and exported as a vector to a GIS. Integration of

hyperspectral and GIS data revealed spatial patterns indicating vulnerability that

was otherwise difficult to detect. For instance, if a certain area contained mainly a

less resistant roof material such as terracotta tile, and a high population density

with a majority of ethnic background, then the overall vulnerability of the area may

be significantly higher as compared to an area occupied by more resistant roofs

only. Spatial variations in vulnerability were mapped by spatial overlay technique.

The classified image was geo-referenced to the Universal Transverse Mercator

(UTM) projection system, zone 56. The census data provided by the Australian

Bureau of Statistics (ABS) was used for creating new derived layers such as popula-

tion density, percentage of less mobile people and socio-economic characteristics

which were spatially overlaid (see figure 5(a, b)). When a seamless and accurate

database can be created at a regional level, additional analyses such as shortest path

and proximity analysis can be performed. An internet-based model can be used for

sending and receiving processed and analysed spatial data rapidly across a wide

area. This type of informed decision-making system is being developed at the

New South Wales Fire Brigades.

7. Accuracy estimation
Surface truthing by random field check and current aerial photo images exposed

over the study area revealed a high accuracy percentage (90%). Selected locations

were visited on the field and cross-checked with the image classification. To verify

the results of the spectral analysis and classification results, 40 randomly selected

points were visited on the ground. The area around the golf courses to the south of

the study area comprised terracotta type roofs, which were accurately detected by

the SAM classification. The individual structures along Hilly Street were accurately

identified by the classification. In some instances where the structures were found to

have concrete and metal roofing materials together the classification matched the

features accurately. The metal roofs along the highway were identified successfully.

There were some areas with slate roofs in combination with concrete and terracotta,

which were not clearly identified; this may be attributed to the inadequate spatial

resolution of the HyMap image. Slate roofs were also identified accurately but there

were many instances where other materials having similar spectral characteristics to

slate such as bitumen and asphalt were wrongly classified as slate. It is our belief

that a detailed analysis particularly of the spectral shape and curve of such

practically non-absorbent materials may yield better results. The field verification

confirmed the immense potential in integration of imaging spectroscopy for any

urban region and its integration with GIS for informed decision making.

8. Scope and discussion
Emergency services have to make decisions at short notice, and these are influ-

enced by numerous factors, most of which have a spatial and temporal dimension.
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For instance, the issue of resource allocation is influenced by spatio-temporal

factors such as location of potential hazard prone regions, existing predominant

land use, population density, socio-economic characteristics and so on. Since

dynamic resources have to be managed in an efficient way the combined analyses of

remote sensing data and GIS data are inevitable. There are many important aspects

(a)

(b)

Figure 5. (a) Vector map of classified image; (b) GIS operations: spatial overlay.
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of such information, such as currency, accuracy and reliability. Integrated spectral

analysis of hyperspectral and GIS data enables us to study complex urban areas

and plan more effectively for emergencies.

The spatial resolution of hyperspectral data has to be sufficiently high particu-

larly in urban areas due to the variations in the shape and size, heterogeneity and

dense pattern of urban features. Systematic appraisal of what features need to be

detected and analysed will lead to the selection of an appropriate spatial resolution,

which will in turn increase the accuracy of spatial unmixing and will improve the

sub-pixel analysis of urban areas. In the present study there were some instances

where the spatial resolution was not good enough to determine the spectra of some

features. Airborne hyperspectral sensor data have a definite advantage over pro-

posed space-borne hyperspectral sensors in that they are scale-independent and may

be flown over any region to the required resolution. This aspect is important for the

study of urban areas given the irregularity and dynamism of urban features.

The variations within a surface material such as terracotta due to weathering,

colour change, irregularity in the chemical composition and material composition

may create problems in accurate analysis and mapping, but with a careful approach

they may be addressed to some extent. For instance, tiles belonging to certain

categories related to the age, colour or chemical composition may be classified and

spectrally analysed separately. This may address the reasons for the differences in

urban spectral characteristics of the same material over a period of time. It may be

argued that the variables selected in the study may not show comprehensive overall

vulnerability, but the objective was to demonstrate the utility and scope of

integrating HyMap and GIS data for mapping vulnerability particularly in urban

areas.

This indicates that there is tremendous scope for the application of imaging

spectroscopy to problem solving but there is a need to approach this technology

prudently. On the other hand it is quite clear that imaging spectroscopy and

integration with GIS is arguably the best option for the study of urban areas.
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