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SUBMANIFOLDS WITH NONPARALLEL FIRST

NORMAL BUNDLE REVISITED

Marcos Dajczer and Ruy Tojeiro

Abstract: In this paper, we analyze the geometric structure of a Euclidean sub-

manifold whose osculating spaces form a nonconstant family of proper subspaces of

the same dimension. We prove that if the rate of change of the osculating spaces is
small, then the submanifold must be a (submanifold of a) ruled submanifold of a very

special type. We also give a sharp estimate of the dimension of the rulings.
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The osculating space of a Euclidean submanifold Mn at a point is
the subspace of Euclidean space that is spanned by the tangent and
curvature vectors of all smooth curves in Mn through that point. If
all osculating spaces along Mn coincide with a fixed subspace H, it is
an elementary fact that Mn is contained in an affine subspace parallel
to H. Thus, it is a natural problem to study for which submanifolds the
osculating spaces form a nonconstant family of proper subspaces of the
same dimension. In this paper, we show that if the rate of change of the
osculating spaces is small, in a sense to be made precise below, then the
submanifold must be contained in a ruled submanifold of a very special
type.

Let f : Mn → RN denote an isometric immersion of an n-dimensional
connected Riemannian manifold into Euclidean space. The first normal

space of f at x ∈Mn is the normal subspace Nf
1 (x) ⊂ NfM(x) spanned

by the image of its second fundamental form αf at x, that is,

Nf
1 (x) = span{αf (X,Y ) : X,Y ∈ TxM}.

The osculating space of f at x ∈Mn is defined as f∗TxM ⊕Nf
1 (x). It is

easy to see that all osculating spaces of f have the same dimension and
are parallel to a fixed proper subspace of RN if and only if the first normal

spaces form a proper normal subbundle Nf
1 that is parallel in the normal
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connection; see [1] or [7]. Then f reduces codimension to p = rankNf
1 ,

that is, it can be seen as a substantial isometric immersion into an affine
subspace Rn+p of RN .

A rather simple argument shows that Nf
1 must be parallel in the

normal connection if p < n and at any x ∈ Mn the s-nullities νs of f
satisfy

(1) νs(x) < n− s

for all 1 ≤ s ≤ p; see [1], [4] or (7) below. Recall that

νs(x) = max
Us⊂Nf

1 (x)
dimN (αUs),

where Us ⊂ Nf
1 (x) is any s-dimensional vector subspace and

N (αU (x)) = {Y ∈ TxM : αU (Y,X) = 0 for all X ∈ TxM}

for αU = πU ◦ αf and πU : Nf
1 → U the orthogonal projection. Notice

that νp(x) is the standard index of relative nullity νf (x) = dimN (αf (x)),
that is, the dimension of the relative nullity subspace of f at x ∈Mn.

Consider the subspace S(x) of Nf
1 (x) spanned by the projections

onto Nf
1 (x) of the derivatives ∇̃Xµ in the ambient space, with X ∈ TxM ,

of local sections µ ∈ (Nf
1 )⊥ of its orthogonal complement in the normal

bundle NfM . If all subspaces S(x) have the same dimension along Mn,
and thus form a vector subbundle S = Sf , we may say that the rank s

of S measures to what extent the first normal bundle Nf
1 fails to be

parallel.

If S coincides with Nf
1 and p ≤ 6, it turns out that condition (1) fails

for the relative nullity, i.e., νf ≥ n − p > 0 at any point. The latter
has strong well-known geometric consequences, namely, the submanifold
carries a νf -dimensional totally geodesic foliation whose leaves are open
subsets of affine subspaces in RN .

Our main result is that there is a single class of submanifolds for which

S is a proper subbundle of Nf
1 of rank s ≤ 6, any other example being

a submanifold of an element of this class. These are ruled submanifolds,
with rulings of dimension at least n − s, for which S is constant in the
ambient space along the rulings. In particular, the rulings belong to
the kernel of αS , and therefore condition (1) is violated for s. Exam-
ples of such submanifolds, showing that the preceding estimate on the
dimension of the rulings is sharp, are constructed in the last section.
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As discussed in the next section, the results of this paper generalize
those in [5] for p ≤ 3. We also point out that, although stated for
submanifolds of Euclidean space, our results can easily be extended to
ambient spaces of constant sectional curvature.

1. The result

In this section, we first give a precise statement of our main result
and then discuss some particular cases.

Let f : Mn → RN denote a locally substantial isometric immersion of
a connected Riemannian manifold, i.e., there is no open subset U ⊂Mn

such that f(U) is contained in a proper affine subspace of RN . Assume

that f is 1-regular, i.e., the first normal spaces Nf
1 (x) have constant

dimension p. Thus, these subspaces form a vector subbundle Nf
1 of the

normal bundle NfM which we assume to be proper, i.e., p < N − n.

Assume p < n and let φ : (Nf
1 )⊥ ⊕ TM → Nf

1 be the tensor defined
by

φ(µ,X) = (∇⊥Xµ)Nf
1
,

where ( )Nf
1

denotes the Nf
1 -component. We say that f has nonparallel

first normal bundle at x ∈Mn if φ(x) 6= 0, i.e., if the dimension s(x) of

the normal vector subspace S(x) ⊂ Nf
1 (x) given by

S(x) = span{φ(µ,X) : µ ∈ (Nf
1 )⊥(x) and X ∈ TxM}

is nonzero. Thus, along each connected component of the open dense
subset of Mn where s(x) = s is constant, the vector subspaces S(x) form

a vector subbundle S of Nf
1 .

In the following statement, that an isometric immersion F : Nm →
RN , m > n, is an extension of the isometric immersion f : Mn → RN
means that there exists an isometric embedding i : Mn → Nm such that
f = F ◦ i. Also, by f being d-ruled we understand that there exists a
d-dimensional integrable distribution in Mn whose leaves are (mapped
by f into) open subsets of affine subspaces in the ambient space.

Theorem 1. Let f : Mn → RN be a 1-regular locally substantial isomet-
ric immersion such that s(x) = s is constant with 0 < s < n and s ≤ 6.
Then, either

(i) s = p and f has index of relative nullity νf ≥ n− p, or

(ii) 1 = s < p and f has an extension F : Nn+p−1 → RN such that
νF = n+ p− 2 and NF

1 is nonparallel of rank one, or
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(iii) 1 < s < p and there is an open dense subset of Mn, the union of
open subsets Uk,d with d ≥ n−s and n−d ≤ k ≤ q := n−d+p−s,
such that:
(a) f |Uq,d

is d-ruled and Sf is constant in RN along the rulings,
and

(b) f |Uk,d
, k < q, has a ruled extension F : Nn+q−k → RN such

that NF
1 is nonparallel of rank p + k − q and SF is constant

along the rulings. The rulings have dimension n + p − k − s
and coincide with N (αF ) if k = n− d.

Moreover, if s = 2 we have that Uk,d = ∅ for k ≥ 5.

Observe that the ruled extensions in parts (ii) and (b) of (iii) are as
in (i) and (a) of (iii), respectively.

For a ruled Euclidean submanifold, it is easily seen that for any vec-
tor X tangent to a ruling the Ricci curvature satisfies Ric(X) ≤ 0, with
equality if and only if X belongs to the relative nullity subspace. Hence,
we have the following immediate consequence of Theorem 1.

Corollary 2. Under the assumptions of Theorem 1, cases (i) and (iii)(a)
cannot occur if RicM > 0. If RicM ≥ 0 then f |Uq,d

in case (iii)(a) sat-
isfies νf = d.

To illustrate Theorem 1 we discuss next the cases p = 1, 2 and 3.
Notice that these are the cases that have already been considered in [4].

Example 3. The case p = 1. Here, the only possibility is that s = 1,
and hence νf = n− 1. In particular, the manifold Mn is flat.

Submanifolds as above can be easily described parametrically. For
instance, consider the image under the normal exponential map of a
parallel normal subbundle of the normal bundle of a curve with non-
vanishing curvature; see also Theorem 1 in [5].

Example 4. The case p = 2. We only have the following two possibili-
ties:

(i) s = 2, and hence νf = n− 2.
(ii) s = 1, in which case f admits an extension F : Nn+1 → RN such

that νF = n (hence Nn+1 is flat) and NF
1 is nonparallel of rank

one.

The submanifolds in case (i) have been studied in [2] and [3], where
a parametric classification has been obtained in most cases.
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Example 5. The case p = 3. Then one of the following holds:

(i) s = 3 and f satisfies νf ≥ n− 3.

(ii) s = 1 and f has an extension F : Nn+2 → RN such that νF = n+1
(Nn+2 is flat) and NF

1 is nonparallel of rank one.

(iii) s = 2 and either f is (n − 2)-rules and S is constant along the
rulings or f has an extension F : Nn+1 → RN such that νF = n−1
and NF

1 has rank two.

Observe that F in (ii) of Example 4 and Example 5 is as f in Ex-
ample 3. Also, the extension F in (iv) of Example 5 is as f in (i) of
Example 4.

2. A class of ruled extensions

In this section of independent interest, we find sufficient conditions for
an Euclidean submanifold to admit a ruled extension carrying a normal
subbundle that is constant in the ambient space along the rulings. We
point out that a special case was already considered in [5].

Let f : Mn → RN be an isometric immersion satisfying the following
conditions:

(i) Its normal bundle splits orthogonally and smoothly into two vector
subbundles

NfM = L⊕ P
such that the rank ` of L satisfies 0 < ` < N − n.

(ii) The subspaces

D(x) = N (αP (x)) ⊂ TxM

have constant dimension d > 0 on Mn (thus form a tangent sub-
bundle D ⊂ TM).

(iii) The subbundle P is parallel along D in the normal connection, thus
in RN . Hence, also L is parallel along D in the normal connection.

Let γ : E ⊕ P → E ⊕ L be the tensor given by

(2) γ(Y, µ) = (∇̃Y µ)E⊕L = −AµY + (∇⊥Y µ)L,

where the subbundle E ⊂ TM of rank n−d is defined by the orthogonal
splitting TM = D ⊕ E and ∇̃ denotes the connection in RN .

At x ∈Mn, let Γ(x) ⊂ E(x)⊕ L(x) be the subspace defined by

(3) Γ(x) = span{γ(Y, µ) : Y ∈ E and µ ∈ P}.
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Since E is spanned by the vectors AµY for µ ∈ P and Y ∈ E, it follows
from (2) that

(4) n− d ≤ dim Γ(x) ≤ n− d+ `.

Assume further that

(iv) dim Γ(x) = k is constant on Mn.

Let π : Λ → Mn be the affine vector bundle of rank r = n − d + ` − k
that is defined by the orthogonal splitting

Γk ⊕ Λr = En−d ⊕ L`.
Lemma 6. The distribution D is integrable and Λ ∩ TM = {0} holds.

Proof: Take µ ∈ P and Z, Y ∈ D. Since P is parallel along D in RN ,
we have from

(5) 0 = R̃(Y, Z)µ = ∇̃Y ∇̃Zµ− ∇̃Z∇̃Y µ− ∇̃[Y,Z]µ

that ∇̃[Y,Z]µ ∈ P . Hence Aµ[Y,Z] = 0, and thus D is integrable.
Take Z ∈ Λ ∩ TM . Then Z ∈ E and

0 = 〈Z, ∇̃Xµ〉 = −〈AµZ,X〉
for any µ ∈ P and X ∈ TM . Thus Z ∈ D and hence Z = 0.

The affine subspaces ∆(x) defined by

∆(x) = D(x)⊕ Λ(x)

form an affine bundle over Mn of rank d+ r = n+ `− k.

Lemma 7. The bundle ∆ is parallel in RN along the leaves of D.

Proof: It suffices to show that the orthogonal complement Γ ⊕ P of ∆
in RN is parallel in RN along the leaves of D. First observe that

Γ⊕ P = span{∇̃Xµ : X ∈ TM and µ ∈ P}.
Then, we have from (5) that

∇̃Y ∇̃Xµ = ∇̃X∇̃Y µ+ ∇̃[Y,X]µ ∈ Γ⊕ P
for any µ ∈ P , Y ∈ D and X ∈ TM , and the assertion follows.

Define F : Nn+r → RN as the restriction of the map

λ ∈ Λ 7→ f(π(λ)) + λ

to a tubular neighborhood Nn+r of the 0-section j : Mn ↪→ Nn+r of Λ
where it is an immersion. Then f = F ◦ j and

(6) Tj(x)N = j∗TxM ⊕ Λ(x)

for any x ∈Mn.
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Lemma 7 yields that F is ruled with ∆(λ) := ∆(π(λ)) as the ruling
through λ ∈ Λ. For λ ∈ Λ, µ ∈ P and X ∈ TM , it follows from

〈∇̃Xλ, µ〉 = −〈λ, ∇̃Xµ〉 = 0

that P ⊂ NFN where P(λ) = P (π(λ)). Moreover, we have that

∆ = N (αFP).

In fact, the inclusion ∆ ⊂ N (αFP) holds because P is constant along ∆.
For the opposite inclusion observe that αFP |TM×TM = αP . We easily
obtain from (6) that equality is satisfied along Mn. To conclude the
proof observe that the dimension of N (αFP) can only decrease along
∆ ⊂ Nn+r from its value on Mn if Nn+r is taken small enough.

We summarize the above facts in the following statement.

Proposition 8. Let f : Mn → RN be an isometric immersion satisfying
(i)–(iv) above. Then f admits a ruled extension F : Nn+r → RN , r =
n− d+ `− k, with the following properties:

(a) The distribution ∆ of rulings of F satisfies Dd(x) = ∆d+r(x) ∩
TxM at any x ∈Mn.

(b) There is an orthogonal splitting NFN = L ⊕ P so that rankL =
`− r, ∆ = N (αFP) and P is constant in RN along ∆.

Moreover, we have:

(c) If r = 0 then f is d-ruled and P is constant in RN along the
rulings.

(d) If r = ` then ∆ is the relative nullity distribution of F .

3. The proof

A key ingredient in the proof of Theorem 1 is a basic property of
regular elements of a bilinear form observed by Moore [6]. It is stated
below as Proposition 9.

Let β : V × U → W be a bilinear form between finite dimensional
real vector spaces. We call Z ∈ V a (left) regular element of β if the
map βZ = β(Z, ·) : U →W satisfies

dimβZ(U) = max{dimβY (U) : Y ∈ V },

and denote by RE (β) the subset of regular elements of β. It is a well-
known fact that the set RE (β) is open and dense in V .
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Proposition 9. If β : V × U → W is a bilinear form and Z ∈ RE (β),
then

β(V, kerβZ) ⊂ βZ(U).

With the notations from Section 1, consider a 1-regular locally sub-
stantial isometric immersion f : Mn → RN such that s(x) has a constant
value 0 < s < n.

Lemma 10. It holds that N (φ) = N (αS).

Proof: Let µ1 ∈ RE (φ) be a globally defined unit vector field and set
φµ1

= φ(µ1, ·). Without loss of generality, we may assume that the
subspaces S1(x) ⊂ S(x) defined by

S1(x) = φµ1
(TxM)

have constant dimension 1 ≤ s1 ≤ s. Hence the tangent subspaces
D1(x) = kerφµ1

(x) satisfy dimD1(x) = n− s1. It suffices to show that

(7) D1 = N (αS1),

i.e., that Y ∈ D1 if and only if A∇⊥Xµ1
Y = 0 for any X ∈ TM . But this

follows from the Codazzi equation

(8) A∇⊥XδY = A∇⊥Y δX

for any δ ∈ (Nf
1 )⊥.

Lemma 11. Suppose that s ≤ 6. Then D = N (φ) satisfies

(9) dimD ≥ n− s.

Proof: Let µ1 be as in the previous lemma. Again, we may assume that
S1(x) has constant dimension 1 ≤ s1 ≤ s on Mn. In view of Lemma 10,
the assertion holds if s1 = s. If s1 < s, consider the orthogonal splitting

S = S1 ⊕ S⊥1
and let ψ : (Nf

1 )⊥ ⊕ TM → S⊥1 denote the bilinear form defined by

ψ(µ,X) = (∇⊥Xµ)S⊥1 .

Take µ2 ∈ RE (φ) ∩ RE (ψ) and set t = dimψ(µ2, TM). Then S2 =
φµ2(TM) satisfies

dim(S1 + S2) = s1 + t and dimS1 ∩ S2 = s1 − t.

It follows using Proposition 9 that

(10) dimD1 ∩D2 ≥ dimD1 − dimS1 ∩ S2 ≥ n− 2s1 + t.
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If t = s1 then S1 ∩ S2 = 0. Thus D1 = D2. In particular (9) holds
if s1 = 1 since this forces t = 1. Therefore, we may assume

(11) s1 ≥ 2.

We first analyze the case t = 1. In this case, we have that H =
kerψ(µ2, ·) is a hyperplane in TM . From (8) we obtain

A∇⊥Zµ2
X = A∇⊥Xµ2

Z = 0

for any Z ∈ D1 and X ∈ H. This implies that dimφµ2
(D1) ≤ 1. Oth-

erwise, there would exist a two-dimensional plane in S1 such that the
corresponding shape operators would have the same kernel of codimen-

sion one. But then a vector in this plane would belong to (Nf
1 )⊥, and

this is a contradiction. It follows that dimD1 ∩D2 ≥ n− s1 − 1.
If S = S1 + S2 then (9) holds since s = s1 + 1 and D = D1 ∩D2. If

otherwise, we just repeat the process and obtain subspaces S1, . . . , Sm
and D1, . . . , Dm, m = s − s1 + 1, such that S = S1 + · · · + Sm and
dimD1 ∩ · · · ∩Dm ≥ n− s1 −m+ 1− s. Then D = D1 ∩ · · · ∩Dm, and
(9) follows.

By the above, we may assume that t ≥ 2. We argue for the case s = 6,
the other cases being similar and easier. If t = s1 then s1 = 2, 3. In these
cases we have seen that D1 = D2, and thus (9) holds. Hence, in view
of (11) and t ≥ 2 we may assume that s1 > t ≥ 2. Thus, it remains to
consider the cases (s1, t) = (3, 2) and (s1, t) = (4, 2). In the latter case,
we have that S = S1 + S2, and (9) follows from (10). In the first case,
we have dim(S1 + S2) = 5, dimS1 ∩ S2 = 1 and dimD1 ∩D2 ≥ n − 4.
We now repeat the process and obtain S3 such that S = S1 + S2 + S3

and dimSi ∩ Sj = 1 if i 6= j. In this case, it is now clear that dimD ≥
n− 5.

Remark 12. Our proof does not work for s = 7. In fact, in this case we
may have s1 = 5 and t = 2. Thus S = S1 + S2 and (10) only yields
dimD ≥ n− 8.

Now consider the global smooth orthogonal splitting Nf
1 = Lp−s⊕Ss.

Then, we have the global orthogonal splitting

(12) NfM = Lp−s ⊕ P,

where P = Ss ⊕ (Nf
1 )⊥.

Lemma 13. The subbundle P is parallel along D in the normal connec-
tion.
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Proof: By the Ricci equation, we have

∇⊥Y∇⊥Xµ1 −∇⊥X∇⊥Y µ1 −∇⊥[Y,X]µ1 = 0.

Take Y ∈ D1 and X ∈ TM . Then,

∇⊥Y (∇⊥Xµ1)S1
+∇⊥Y (∇⊥Xµ1)(Nf

1 )⊥ = ∇⊥X∇⊥Y µ1 +∇⊥[Y,X]µ1 ∈ P.

By Proposition 9, the second term on the left-hand-side belongs to P .
It follows that ∇⊥Y δ ∈ P for any Y ∈ D1 and δ ∈ S1.

Proof of Theorem 1: Assume first that s = p, that is, that S = Nf
1 .

Then, Lemma 10 and Lemma 11 imply that νf ≥ n− p.
Suppose now that s < p. For each positive integer d, let Ud denote

the interior of the subset of all x ∈Mn such that the subspace D(x) has
dimension d. It follows from Lemma 11 that d ≥ n − s. By the lower
semi-continuity of the dimension, we have that ∪dUd is (open and) dense
in Mn. Now let Uk,d be the interior of the subset of all x ∈ Ud such that
the subspace Γ(x) given by (3), with respect to the splitting (12), has
dimension k. Then (4) with ` = p − s gives n − d ≤ k ≤ q. Again by
the lower semi-continuity of the dimension, we have that ∪kUk,d is (open
and) dense in Ud.

In view of Lemma 10 and Lemma 13, we can apply Proposition 8
for f |Uk,d

. If k = q, we obtain from Proposition 8(c) that f |Uq,d
is

d-ruled and P (hence S) is constant in RN along the rulings.
If k < q, it follows from Proposition 8 that f admits a ruled ex-

tension F : Nn+r → RN , r = n − d + ` − k = q − k, with rulings of
dimension n + ` − k = n + p − k − s. Moreover, there is an orthogo-
nal splitting NFN = L ⊕ P, where P is the parallel extension (in RN )
of P along the rulings, such that rankL = p − s − r. In particular,
rankNF

1 = p− r = p+ k − q.
Finally, if k = n − d then the rulings of F coincide with its relative

nullity distribution by Proposition 8(d).
The global assertion in (ii) for the case 1 = s < p is due to the fact

that s = 1 implies d = 1, and also k = 1, as follows from (2). It is also
a consequence of (2) that k ≤ 4 if s = 2, hence in this case Uk,d = ∅
for k ≥ 5.

4. Examples

In this section we give examples of Euclidean submanifolds satisfying
the conditions in part (iii)(a) of Theorem 1. More precisely, we construct
ruled submanifolds M2m in R2m+6 with four dimensional first normal
bundle such that S has rank two and is constant along the codimensional
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two rulings. These examples show that the result cannot be improved
since the rulings are not in the relative nullity distribution and their
dimension achieve the minimum possible value given by the estimate.

Let g : L2 → R2(m+3), m ≥ 2, be a substantial elliptic surface in
the sense of [2], i.e., there exists a (unique up to sign) almost complex
structure J on L2 such that

αg(Z,Z) + αg(JZ, JZ) = 0

for any Z ∈ TL. For instance, the surface can be minimal, which is
equivalent to J being orthogonal. Then, it turns out that the normal
bundle of g splits orthogonally as

NgL = Ng
1 ⊕ · · · ⊕N

g
m+2,

where each plane bundle Ng
k , 1 ≤ k ≤ m + 2, is its kth-normal bundle;

see [2] for details. Recall that the kth-normal space Nh
k , k ≥ 2, of an

isometric immersion h : Mn → RN at x ∈Mn is defined as

Nh
k (x) = span{αk+1

h (X1, . . . , Xk+1) : X1, . . . , Xk+1 ∈ TxM},

where α`h : TM × · · · × TM → NhM , ` ≥ 3, is the `th-fundamental form
given by

α`h(X1, . . . , X`) = π`−1(∇⊥X`
· · · ∇⊥X3

α(X2, X1)).

Here π` is the orthogonal projection onto (Nh
1 ⊕ · · · ⊕Nh

`−1)⊥ ∩NhM .

Define f : M2m → R2(m+3) as the restriction of the map

ξ ∈ Ng
1 ⊕ · · · ⊕N

g
m−1 7→ g(π(ξ)) + ξ

to a tubular neighborhood of the 0-section L2 of π : Ng
1⊕· · ·⊕N

g
m−1 → L2

where it is an immersion. Given ξ ∈M2m \ L2, we claim that

f∗TξM ⊕Nf
1 (ξ) = g∗TxL⊕Ng

1 (x)⊕ · · · ⊕Ng
m+1(x), x = π(ξ).

Let ξ̃ be a local section of Ng
1 ⊕· · ·⊕N

g
m−1 on a neighborhood U of x

such that ξ̃(U) ⊂M2m and ξ̃(x) = ξ. Then

(13) f∗ξ̃∗X = g∗X + ∇̃X ξ̃

for any X ∈ TxL. On the other hand, for a vertical vector V ∈ TξM we
have

f∗V = V.

Hence Ng
1 (x)⊕· · ·⊕Ng

m−1(x) ⊂ f∗TξM and f∗TξM ⊂ g∗TxL⊕Ng
1 (x)⊕

· · · ⊕ Ng
m(x). Regarding the local section ξ̃ as a vertical vector field
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of M2m, we obtain

(14) ∇̃X ξ̃ = ∇̃ξ̃∗Xf∗ξ̃ ∈ f∗TξM ⊕N
f
1 (ξ).

Thus Ng
m(x) ⊂ f∗TξM ⊕ Nf

1 (ξ), hence also g∗TxL ⊂ f∗TξM ⊕ Nf
1 (ξ)

by (13). Differentiating (13) yields

∇̃ξ̃∗Y f∗ξ̃∗X̃ = ∇̃Y g∗X̃ + ∇̃Y ∇̃X ξ̃

for all X,Y ∈ TxL, where X̃ is any vector field on a neighborhood

of x with X̃(x) = X. Thus Nf
1 (ξ) ⊂ g∗TxL ⊕ Ng

m(x) ⊕ Ng
m+1(x) and

Ng
m+1(x) ⊂ Nf

1 (ξ), and the claim follows.
Note also that the rulings of f are not in its relative nullity distribu-

tion. In fact, it follows from (14) that

(15) span{αf (Z, V ) : Z, V ∈ TξM and V vertical}

= (g∗TxL⊕Ng
m(x)) ∩Nf

1 (ξ).

We have from the claim that NfM = Nf
1 ⊕N

g
m+2. Thus, the immer-

sion f is ruled by Ng
1 ⊕ · · · ⊕N

g
m−1 and S = Ng

m+1 has rank two and is
constant in the ambient space along the rulings. Moreover, by (15) the
rulings are not in the relative nullity distribution and their dimension
satisfy the equality in the estimate given in part (iii)(a) of Theorem 1.
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