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Abstract: A recent theorem of S. Alesker, S. Artstein-Avidan and V. Milman char-

acterises the Fourier transform on Rn as essentially the only transform on the space

of tempered distributions which interchanges convolutions and pointwise products.
In this note we study the image of the Schwartz space on the Heisenberg group under

the Fourier transform and obtain a similar characterisation for the Fourier transform
on the Heisenberg group.
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1. Introduction

Let Hn = Cn × R denote the Heisenberg group equipped with the
group law

(z, t)(w, s) =

(
z + w, t+ s+

1

2
=(z · w)

)
.

The group Fourier transform on Hn is defined in terms of the Schrödinger
representations πλ(z, t). Recall that πλ(z, t) are irreducible unitary rep-
resentations of Hn realised on the same Hilbert space, namely L2(Rn);
their action is explicitly given by

πλ(z, t)ϕ(ξ) = eiλteiλ(x·ξ+
1
2x·y)ϕ(ξ + y),

for ϕ ∈ L2(Rn). In the above λ ∈ R∗ = R \ {0} and according to a theo-
rem of Stone and von Neumann any irreducible unitary representation ρ
of Hn such that ρ(0, t) = eiλtI is unitarily equivalent to πλ.

The group Fourier transform of a function f on Hn, say f ∈ L1(Hn),
is defined to be the operator valued function

πλ(f) =

∫
Hn

f(z, t)πλ(z, t) dz dt.
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Note that πλ(f) is a bounded operator on L2(Rn) and ‖πλ(f)‖op ≤ ‖f‖1.
It is well known that when f ∈ L1 ∩L2(Hn), πλ(f) is a Hilbert-Schmidt
operator and we have the Plancherel theorem

∞∫
−∞

‖πλ(f)‖2HS dµ(λ) =

∫
Hn

|f(z, t)|2 dz dt,

where dµ(λ) = cn|λ|n dλ is the Plancherel measure. Let S2 stand for the
space of Hilbert-Schmidt operators on L2(Rn) and define L2(R∗,S2, dµ)
to be the space of all functions on R∗ taking values in S2, and square
integrable with respect to dµ(λ). Then the Plancherel theorem can be
restated as: the Fourier transform is a unitary operator from L2(Hn)
onto L2(R∗,S2, dµ). Properties of the group Fourier transform have been
studied by several authors starting from the classic work of D. Geller [4].

Apart from the Schrödinger representations πλ, which are all irre-
ducible, we also have certain one dimensional representations on Hn. For

each ζ ∈ Cn, these are given by the character χζ(z, t) = ei<z·ζ . As we
have noted above, the representations χζ do not occur in the Plancherel
theorem as they form a set of zero Plancherel measure. However, we can
consider both πλ and χζ together and consider the representations

πλ,ζ(z, t) = χζ(z, t)πλ(z, t)

parametrised by (λ, ζ) ∈ R∗×Cn. Consequently, we can define the group
Fourier transform of a function f on Hn by

f̂(λ, ζ) =

∫
Hn

f(z, t)πλ,ζ(z, t) dz dt.

A simple calculation shows that

πλ,ζ(z, t) = πλ(−iλ−1ζ, 0)πλ(z, t)πλ(iλ−1ζ, 0)

and hence

f̂(λ, ζ) = πλ(−iλ−1ζ, 0)πλ(f)πλ(iλ−1ζ, 0).

This operator valued function ζ 7→ f̂(λ, ζ) has been introduced in [9]
in connection with a Paley-Wiener theorem for the Heisenberg group.
In this paper we will use the above modified Fourier transform, which
we call the Fourier-Weyl transform to characterise the image of the
Schwartz space under the Fourier transform. Analogous to this, for
S ∈ L2(R∗,S2, dµ), we let

S(λ, ζ) = πλ(−iλ−1ζ, 0)S(λ)πλ(iλ−1ζ, 0).
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As is well known πλ(f ∗ g) = πλ(f)πλ(g), for any f, g ∈ L1(Hn). In
the Euclidean set up we know that F(f ∗ g)(ξ) = (2π)

n
2 Ff(ξ)Fg(ξ) and

also F(fg)(ξ) = (2π)−
n
2 Ff ∗ Fg(ξ) for f, g ∈ L1(Rn). Here F stands

for the Euclidean Fourier transform. Moreover, F takes the Schwartz
space S(Rn) onto itself; also it takes S ′(Rn), the space of tempered
distributions onto itself. It has been shown by S. Alesker, S. Artstein-
Avidan and V. Milman that these properties completely characterise the
Euclidean Fourier transform.

Theorem 1.1 (S. Alesker, S. Artstein-Avidan and V. Milman [1]). As-
sume we are given a transform T : S(Rn)→ S(Rn) that admits a bijective
extension T ′ : S ′(Rn)→ S ′(Rn) such that

(i) for every f ∈ S(Rn) and ϕ ∈ S ′(Rn), T ′(f ∗ ϕ) = T (f)T ′(ϕ),

(ii) for every f ∈ S(Rn) and ϕ ∈ S ′(Rn), we have T ′(fϕ) = T (f) ∗
T ′(ϕ).

Then, T is essentially the Fourier transform F : that is, for some B ∈
GLn(R) with |detB| = 1, we have either Tf = F(f ◦ B) or Tf =

F(f ◦B), for all f in S(Rn).

In an earlier paper [7], we obtained some characterisations of the Weyl
transform and the Heisenberg group Fourier transform assuming the map
to be a continuous linear operator satisfying certain conditions. In this
paper, we obtain another characterisation, analogous to Theorem 1.1,
for the Heisenberg group Fourier transform where we do not assume the
map to be linear or continuous, but we only assume it to be a bijection.

Let S(Hn) stand for the Schwartz space on Hn. Denote by Ŝ(Hn)
the image of S(Hn) under the group Fourier transform f → πλ(f). It
is well known that the Fourier transform is an isometry from L2(Hn)

onto L2(R∗,S2, dµ). In view of this Ŝ(Hn) is a subspace of L2(R∗,S2, dµ).

In Section 2, we give a characterisation of Ŝ(Hn).
For functions f, g ∈ L1(Hn) their convolution defined by

(f ∗ g)(z, t) =

∫
Hn

f((z, t)(−w,−s))g(w, s) dw ds

is also integrable on Hn and satisfies

(1.1) πλ(f ∗ g) = πλ(f)πλ(g).
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Given f and g from L1(Hn) we denote by f ∗3 g the convolution in the
central variable; thus

f ∗3 g(z, t) =

∞∫
−∞

f(z, t− s)g(z, s) ds.

We will show below that the Fourier-Weyl transform satisfies

(1.2) (f ∗3 g)̂(λ, ζ) = 2π

∫
Cn

F−1f(w − ζ, λ)ĝ(λ,w) dw,

where F−1 is the inverse Euclidean Fourier transform on Cn × R. We
consider the above as the analogue of

F(fg)(ξ) = (2π)−
n
2 (Ff ∗ Fg)(ξ)

for the Euclidean Fourier transform. If we denote by R(z,t), the right
translation on Hn, which gives rise to a translation on functions on Hn
given by (R(z,t)f)(w, s) = f((w, s)(z, t)), then the Fourier transform
satisfies

(1.3) πλ(R(z,t)f) = πλ(f)πλ(z, t)∗.

We show that the properties (1.1), (1.2) and (1.3) characterise the Fourier
transform on Hn. The Heisenberg group is equipped with the non-iso-
tropic dilation δr(z, t) = (rz, r2t) with respect to which we have

πλ(δrf) = r−(2n+2) dr ◦ π λ
r2

(f) ◦ d−1r ,

where drϕ(ξ) = ϕ(rξ) is the standard dilation. In the next theorem we
let Tg(λ,w) stand for πλ(−iλ−1w, 0)Tg(λ)πλ(iλ−1w, 0).

Theorem 1.2. Let T : S(Hn)→ Ŝ(Hn) be a bijection which satisfies

(i) T (f ∗ g) = Tf Tg, and

(ii) T (f ∗3 g)(λ) = 2π
∫
Cn
F−1f(w, λ)Tg(λ,w) dw.

Then there exists a map ζ : R∗ → Cn such that Tf(λ) = f̂(λ, ζ(λ)).

Remark 1.1. The above theorem is the analogue of Theorem 1.1 for the
group Fourier transform on Hn. A similar result for the Weyl transform
was proved in [6]. Note that we do not assume anything on the action
of the transform on the space of tempered distributions. The proof of
the above theorem indicates that similar assumptions on the space of
tempered distributions are not necessary in the characterisation of the
Weyl transform obtained in [6].
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Corollary 1.3. In addition to the hypotheses of Theorem 1.2, if the
map T satisfies

(1.4) T (R(z,0)f)(λ) = Tf(λ)πλ(z)∗,

then Tf(λ) = πλ(f).

Corollary 1.4. If T is as in Theorem 1.2 and T satisfies

(1.5) T (δrf)(λ) = r−(2n+2) dr ◦ Tf
(
λ

r2

)
◦ d−1r

then we get

Tf(λ) =

{
f̂(λ,

√
λζ0), λ > 0;

f̂(λ,
√
|λ|ζ1), λ < 0,

for some ζ0, ζ1 ∈ Cn.

As mentioned above we obtain a characterisation of Ŝ(Hn). As the
results are technical we do not state them here. In the last section we
consider the subspace of L2(Hn) consisting of functions of the form f∗3qs
where qs is the heat kernel on Hn associated to the sublaplacian.

By slightly changing the notation we write the Fourier-Weyl transform
of a function g as

g̃(λ, x, u) = ĝ(λ, x+ iu), x, u ∈ Rn.
With this notation we address the question of characterising functions of
the form g = f ∗3 qs for a fixed s > 0 under the Fourier-Weyl transform.
We prove the following result. For λ ∈ R∗ and s > 0 we let

ωs,λ(y, v) = cnλ
−n(sinh 2λs)ne−

2
λ (tanhλs)(|y|

2+|v|2),

where y, v ∈ Rn.

Theorem 1.5. A function g ∈ L2(Hn) can be written as g = f ∗3 qs for
some f ∈ L2(Hn) if and only if for each λ, g̃(λ, x, u) extends to Cn×Cn
as an operator valued entire function g̃(λ, z, w) with z = x + iy and
w = u+ iv which satisfies

∞∫
−∞

∫
C2n

‖g̃(λ, z, w)ϕ‖22ωs,λ(y, v) dz dw dλ

= cn,s

∫
Hn

|f(z, t)|2 dz dt
∫
Rn

|ϕ(ξ)|2 dξ

for every ϕ ∈ L2(Rn).

We prove this theorem in Section 4.
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2. Properties of the Fourier transform

In this section we recall some properties of the group Fourier transform
on Hn most of which are well known. We also establish the property (1.2)
for the Fourier transform. Let Hn be the (2n+1)-dimensional Heisenberg
group with the underlying manifold Cn×R, and the group law given by

(z, t)(w, s) =

(
z + w, t+ s+

1

2
=(z · w)

)
, (z, t), (w, s) ∈ Hn.

The Haar measure on Hn is the Lebesgue measure dz dt on Cn×R. The
Stone-von Neumann theorem states that all the infinite-dimensional irre-
ducible unitary representations of Hn, acting on L2(Rn), are parametrised
by λ ∈ R∗, and are given by

πλ(z, t)ϕ(ξ) = eiλteiλ(x·ξ+
1
2x·y)ϕ(ξ + y),

for ϕ ∈ L2(Rn), ξ ∈ Rn and (z, t) = (x, y, t) ∈ Hn. We write πλ(z) =
πλ(z, 0) so that πλ(z, t) = eiλtπλ(z).

For λ ∈ R∗ and g ∈ L1(Cn), consider the operator

Wλ(g) =

∫
Cn

g(z)πλ(z) dz.

When λ = 1, we call this the Weyl transform of g. For functions f, g ∈
L1(Cn), their λ-twisted convolution is defined as

f ∗λ g(z) =

∫
Cn

f(z − w)g(w)ei
λ
2=(z·w) dw.

The operatorsWλ are continuous, linear and map L1(Cn) into B(L2(Rn)).
Moreover, Wλ(f ∗λ g) = Wλ(f)Wλ(g), f, g ∈ L1(Cn).

For an integrable function f on Hn, its Fourier transform is the
operator-valued function defined by

πλ(f)ϕ =

∫
Hn

f(z, t)πλ(z, t)ϕdz dt, ϕ ∈ L2(Rn), λ ∈ R∗.

The Fourier transform is a bounded operator on L2(Rn) and it satisfies
‖πλ(f)‖op ≤ ‖f‖1. In particular, when f is also in L2(Hn), πλ(f) is a
Hilbert-Schmidt operator.
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The convolution of functions f, g ∈ L1(Hn) is defined as

f ∗ g(z, t) =

∫
Hn

f((z, t)(−w,−s))g(w, s) dw ds.

The Fourier transform satisfies πλ(f ∗ g) = πλ(f)πλ(g), f, g ∈ L1(Hn).
Let S2 denote the space of Hilbert-Schmidt operators on L2(Rn).

Then S2 is a Hilbert space with the inner product (T, S) = tr(TS∗).
Let ‖S‖HS denote the Hilbert-Schmidt norm of an operator S ∈ S2.
Let dµ(λ) = (2π)−n−1|λ|n dλ and let L2(R∗,S2, dµ) denote the space of
functions on R∗ taking values in S2 and square integrable with respect
to the measure dµ.

The following well-known result summarises an important property
of the Fourier transform, see [10].

Theorem 2.1. The group Fourier transform is an isometric isomor-
phism between L2(Hn) and L2(R∗,S2, dµ).

We denote by F−1f(z, λ) the inverse Euclidean Fourier transform of
the function f on Cn × R:

F−1f(z, λ) = (2π)−n−
1
2

∫
Cn×R

ei(<(z·w)+λs)f(w, s) dw ds.

For λ ∈ R, the partial inverse Fourier transform of f in the third variable,
denoted by fλ, is defined as

fλ(w) =

∫
R

f(w, t)eiλt dt.

Let dr be the standard dilation on Rn and δr the non-isotropic dilation
on Hn defined by δr(z, t) = (rz, r2t). We also let (δrf)(z, t) = f(δr(z, t)).
An easy calculation shows that πλ(rz) = d−1r ◦πλr2(z)◦dr. Consequently,

πλ(δrf) =

∫
Hn

f(rz, r2t)πλ(z, t) dz dt

= r−2n−2
∫
Cn

fλ/r
2

(z)πλ/r2(r−1z) dz.

In view of the above formula for πλ(rz) we get

πλ(δrf) = r−2n−2 dr ◦ π λ
r2

(f) ◦ d−1r .

We also have

(2.1) (δrf)̂(λ, ζ) = r−2n−2 dr ◦ f̂
(
λ

r2
, r−1ζ

)
◦ d−1r .
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We can now prove the following theorem for the Fourier-Weyl trans-
form.

Theorem 2.2. For f, g ∈ S(Hn) and ζ ∈ Cn

(f ∗3 g)̂(λ, ζ) = 2π

∫
Cn

F−1f(w − ζ, λ)ĝ(λ,w) dw.

Proof: Let ϕ,ψ ∈ L2(Rn). Then by the definition of ĝ(λ,w) we have

(ĝ(λ, z)ϕ,ψ) =

∫
Cn

gλ(w)e−i<z·w(πλ(w)ϕ,ψ) dw.

Since (f ∗3 g)λ(z) = (2π)
1
2 fλ(z)gλ(z) we have

((f ∗3 g)̂(λ, ζ)ϕ,ψ) = (2π)
1
2

∫
Cn

fλ(w)gλ(w)(πλ(w)ϕ,ψ)e−i<ζ·w dw.

The theorem follows as the Euclidean Fourier transform converts prod-
ucts into convolutions.

In order to study the image of S(Hn) under the Fourier transform we
need to introduce the following operators (see [4]). Let A be a (possibly
unbounded) densely defined operator. Then for any bounded operator S
on L2(Rn) which maps dom(A) into itself we define the derivation

∂AS = [S,A] = SA−AS.

For j = 1, 2, . . . , n, let Qjϕ(ξ) = ξjϕ(ξ) and Pjϕ(ξ) = ∂
∂ξj

ϕ(ξ) for a

function ϕ on Rn. We let ∂Pj and ∂Qj stand for the corresponding
derivations. For j = 1, 2, . . . , n, we also define

MPjS = SPj + PjS, MQjS = SQj +QjS.

On the Heisenberg group we have the following left invariant vector
fields:

Xj =
∂

∂xj
+

1

2
yj
∂

∂t
, Yj =

∂

∂yj
− 1

2
xj
∂

∂t
, j = 1, 2, . . . , n.

We let X̃j and Ỹj stand for the corresponding right invariant vector
fields:

X̃j =
∂

∂xj
− 1

2
yj
∂

∂t
, Ỹj =

∂

∂yj
+

1

2
xj
∂

∂t
, j = 1, 2, . . . , n.

The following proposition is implicit in the work of Geller [4].
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Proposition 2.3. For f ∈ S(Hn) and λ ∈ R∗, we have, for j =
1, 2, . . . , n,

(i) πλ(−ixjf) = λ−1∂Pjπλ(f),

(ii) πλ(yjf) = ∂Qjπλ(f),

(iii) πλ(iXjf) = λπλ(f)Qj,

(iv) πλ(−Yjf) = πλ(f)Pj,

(v) πλ(iX̃jf) = λQjπλ(f),

(vi) πλ(−Ỹjf) = Pjπλ(f).

We would also like to express πλ(itf) in terms of πλ(f). Let Λ be the
operator defined by

Λπλ(f) =
∂

∂λ
πλ(f) +

1

λ

n∑
j=1

πλ

(
∂

∂xj
(xjf)

)
,

where x = <z ∈ Rn. Then we have

Proposition 2.4. For f ∈ S(Hn) and λ ∈ R∗,

πλ(itf) = Λπλ(f).

We refer to Geller [4] for a proof. We remark that Propositions 2.3
and 2.4 are easily proved starting with the equation

(πλ(f)ϕ,ψ) =

∫
Cn

fλ(z)(πλ(z)ϕ,ψ) dz.

We leave the details to the reader. For multi-indices α, β, µ, ν ∈ Nn we

define ∂αP , ∂βQ, Mµ
Q and Mν

P in the usual way, e.g. ∂αP = ∂α1

P1
∂α2

P2
. . . ∂αnPn ,

etc. Let S(λ) be an operator valued function on R∗. For each N ∈ N we
define a seminorm

‖S‖2N = sup

∞∫
−∞

‖(λ−1∂P )µ∂νQΛk(λMQ)αMβ
Pλ

jS(λ)‖2HS dµ(λ),

where the supremum is taken over all multi-indices µ, ν, α, β ∈ Nn and
j, k ∈ N such that |µ| + |ν| + |α| + |β| + j + k ≤ N. Let S(R∗,S2)
stand for the set of all operator valued functions S on R∗ for which the
seminorms ‖S‖N are finite for all N ∈ N. We can make S(R∗,S2) into a
topological vector space using these seminorms.

Theorem 2.5. The Fourier transform f → πλ(f) is a topological iso-
morphism from S(Hn) onto S(R∗,S2).
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Proof: Let f ∈ S(Hn) and α, β, µ, ν ∈ Nn, j, k ∈ N. Then the function

fαβµνjk(x, y, t) = (−ix)µyν(it)k(i∂x)α(−∂y)β(−i∂t)jf(x, y, t)

belongs to L2(Hn). As ∂
∂xj

= 1
2 (Xj + X̃j) we note that πλ((i∂x)αf) =

(λMQ)απλ(f). Similarly πλ((−∂y)βf) = Mβ
Pπλ(f). Therefore, in view

of Propositions 2.3 and 2.4,

πλ(fαβµνjk) = (λ−1∂P )µ∂νQΛk(λMQ)αMβ
Pλ

jπλ(f)

is a Hilbert-Schmidt operator and∫
R∗

‖πλ(fαβµνjk)‖2HS dµ(λ) = c

∫
Hn

|fαβµνjk(z, t)|2 dz dt.

Thus the group Fourier transform takes S(Hn) into S(R∗,S2). Also note
that there is a one to one correspondence between seminorms defining
the respective topologies on S(Hn) and S(R∗,S2).

To prove the surjectivity, suppose S ∈ S(R∗,S2). Then we get S(λ) =
πλ(f) for f ∈ L2(Hn). The fact that

∞∫
−∞

‖(λ−1∂P )µ∂νQΛk(λMQ)αMβ
Pλ

jS(λ)‖2HS dµ(λ) <∞

translates into ∫
Hn

|fαβµνjk(z, t)|2 dz dt <∞.

Consequently, we infer that f ∈ S(Hn), which proves the surjectivity.

The above theorem states that Ŝ(Hn) = S(R∗,S2).

3. A characterisation of the Fourier transform

In this section we prove Theorem 1.2 stated in the introduction. If

f ∈ S(Hn), then Tf ∈ Ŝ(Hn) and hence we can find g ∈ S(Hn) so that
Tf(λ) = πλ(g). Defining Uf = g, where g is as above, we get a bijection
of S(Hn) onto itself such that Tf(λ) = πλ(Uf) for all f ∈ S(Hn). For
f, g ∈ S(Hn), the assumption (i) of Theorem 1.2 gives

πλ(U(f ∗g))=T (f ∗g)(λ)=Tf(λ)Tg(λ)=πλ(Uf)πλ(Ug)=πλ(Uf ∗Ug).

This implies that

U(f ∗ g) = Uf ∗ Ug, f, g ∈ S(Hn).
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By the assumption (ii),

T (f ∗3 g)(λ) = 2π

∫
Cn

F−1f(w, λ)Tg(λ,w) dw

= 2π

∫
Cn

F−1f(w, λ)(Ug)̂(λ,w) dw,

which, combined with Theorem 2.2, gives

πλ(U(f ∗3 g)) = πλ(f ∗3 Ug).

As f ∗3 g = g ∗3 f we obtain

U(f ∗3 g) = f ∗3 Ug = g ∗3 Uf,
and consequently

fλ(z)(Ug)λ(z) = gλ(z)(Uf)λ(z)

for every λ ∈ R∗.
For a given λ ∈ R∗ let f ∈ S(Hn) be such that fλ(z) vanishes nowhere

on Cn. Then for any g ∈ S(Hn)

(Ug)λ(z) =
(Uf)λ(z)

fλ(z)
gλ(z) = ϕλ(z)gλ(z).

The function ϕλ(z) is continuous by definition. For g, h ∈ S(Hn)

ϕλ(z)(g ∗ h)λ(z) = (U(g ∗ h))λ(z) = (Ug ∗ Uh)λ(z)

= (ϕλg
λ) ∗λ (ϕλh

λ)(z).

Therefore∫
Cn

(
ϕλ(z)− ϕλ(z − w)ϕλ(w)

)
gλ(z − w)hλ(w)ei

λ
2=(z·w) dw = 0.

By taking h(w, s) = e−
1
2 (s

2+t|w|2) and g ∈ S(Hn) for which gλ is com-
pactly supported and letting t→ 0 we get∫

Cn

(
ϕλ(z)− ϕλ(z − w)ϕλ(w)

)
gλ(z − w)ei

λ
2=(z·w) dw = 0.

As this is true for all such g we get

ϕλ(z) = ϕλ(z − w)ϕλ(w)

for a.e. w ∈ Cn. The equation holds true for all w ∈ Cn as ϕλ is
continuous. Thus we get

ϕλ(z + w) = ϕλ(z)ϕλ(w).
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Consequently, ϕλ(0) = ϕλ(0)2 which means ϕλ(0) = 0 or ϕλ(0) = 1.
The case ϕλ(0) = 0 is ruled out as it leads to ϕλ(z) = 0 for all z and
hence (Ug)λ(z) = ϕλ(z)gλ(z) = 0 so that U = 0. With ϕλ(0) = 1 and

the fact that U takes S(Hn) onto S(Hn) we obtain ϕλ(z) = e−i<(z·ζ(λ))

for some ζ(λ) ∈ Cn. Therefore,

Tf(λ) = πλ(Uf) =

∫
Cn

e−i<(z·ζ(λ))fλ(z)πλ(z) dz.

Thus Tf(λ) = f̂(λ, ζ(λ)), f ∈ S(Hn).

Proof of Corollary 1.3: By (1.4) we have T (R(z,0)f)(λ) = Tf(λ)πλ(z)∗.

Since Tf(λ) = f̂(λ, ζ(λ)) this gives

Tf(λ)πλ(z)∗ = (R(z,0)f)̂(λ, ζ(λ))

i.e., f̂(λ, ζ(λ))πλ(z)∗ = πλ(−iλ−1ζ(λ))πλ(f)πλ(z)∗πλ(iλ−1ζ(λ))

for any z ∈ Cn and f ∈ S(Hn). This implies

πλ(iλ−1ζ(λ))πλ(z)∗ = πλ(z)∗πλ(iλ−1ζ(λ)),

i.e., ei<(z·ζ(λ))πλ(z)∗ = πλ(z)∗, for all z ∈ Cn.

This forces ζ(λ) = 0 and hence Tf(λ) = πλ(f) as desired.

We are left with deducing Corollary 1.4.

Proof of Corollary 1.4: On the one hand by (2.1),

T (δrf)(λ) = (δrf)̂(λ, ζ(λ)) = r−(2n+2) dr ◦ f̂
(
λ

r2
, r−1ζ(λ)

)
◦ d−1r .

On the other hand by (1.5),

T (δrf)(λ)=r−(2n+2)dr◦Tf
(
λ

r2

)
◦d−1r =r−(2n+2)dr◦f̂

(
λ

r2
, ζ

(
λ

r2

))
◦d−1r .

Therefore, we get r−1ζ(λr2) = ζ(λ) for all r > 0. This leads to ζ(λ) =√
|λ|ζ( λ

|λ| ). Letting ζ0 = ζ(1) and ζ1 = ζ(−1), we get ζ(λ) =
√
λζ0 for

λ > 0 and ζ(λ) =
√
−λζ1 for λ < 0.

4. On the image of very rapidly decreasing functions
under the Fourier-Weyl transform

In this section we prove Theorem 1.5 stated in the introduction. First
we recall the Euclidean result and state it for the sake of convenience.
Let

pt(x) = (4πt)−
n
2 e−

1
4t |x|

2

, x ∈ Rn
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be the heat kernel associated to the standard Laplacian on Rn. The
Segal-Bargmann or the heat kernel transform is the one which takes
f ∈ L2(Rn) into the entire function

f ∗ pt(z) =

∫
Rn

f(u)pt(z − u) du, z ∈ Cn.

Then it is well known from the work of Segal and Bargmann [2] that the
image is a weighted Bergman space. More precisely, the above transfor-
mation takes L2(Rn) isometrically onto the space of entire functions F
on Cn for which ∫

Cn

|F (z)|2pt/2(y) dx dy <∞.

In particular∫
Cn

|f ∗ pt(x+ iy)|2pt/2(y) dx dy = cn,t

∫
Rn

|f(x)|2 dx.

We rephrase this result in the following form.
Consider functions of the form g(x) = f(x)pt(x) where f ∈ L2(Rn),

for a fixed t > 0. Then

ĝ(ξ) = (fpt)̂(ξ) = f̂ ∗ p̂t(ξ).

Since p̂t(ξ) = e−t|ξ|
2

= cn,tp 1
4t

(ξ) we see that ĝ(ξ) = cn,tf̂ ∗ p 1
4t

(ξ) and

consequently ĝ can be extended to Cn as an entire function. Moreover,∫
Cn

|ĝ(ξ + iη)|2p 1
8t

(η) dξ dη = cn,t

∫
Rn

|f̂(ξ)|2 dξ.

Thus we have

Theorem 4.1. Let t > 0 be fixed. Then a function g ∈ L2(Rn) can be
factored as g = fpt, f ∈ L2(Rn) if and only if ĝ is entire and satisfies∫

Cn

|ĝ(ξ + iη)|2p 1
8t

(η) dξ dη <∞.

Theorem 1.5 stated in the introduction is the analogue of this result
for functions on the Heisenberg group. We consider functions of the
form g = f ∗3 qs so that gλ(z) = fλ(z)qλs (z). Note that Theorem 1.5
is a characterisation of the image of functions g for which gλ(z) has a
Gaussian decay under the Fourier-Weyl transform.
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Coming to the proof we make use of the fact that

qλs (z) = cn

(
λ

sinhλs

)n
e−

1
4λ(cothλs)|z|

2

(see [11] for a proof). In terms of the Euclidean heat kernel we can write

qλs (z) = cn(coshλs)−npsλ(z),

where sλ = λ−1(tanhλs). Recalling the definition of the Fourier-Weyl
transform we see that

((f ∗3 qs)˜(λ, x, u)ϕ,ψ)

=

∫
R2n

e−i(x·ξ+u·η)fλ(ξ + iη)qλs (ξ + iη)(πλ(ξ + iη)ϕ,ψ) dξ dη

for any ϕ,ψ ∈ L2(Rn). In view of the above expression for qλs in
terms of psλ , we can appeal to Theorem 4.1 to conclude that ((f ∗3
qs)˜(λ, x, u)ϕ,ψ) extends to Cn × Cn as an entire function and that

∫
C2n

|((f ∗3 qs)˜(λ, z, w)ϕ,ψ)|2p 1
8sλ

(y, v) dz dw

= cn,sλ(cosh sλ)−2n
∫

R2n

|fλ(ξ + iη)|2|(πλ(ξ + iη)ϕ,ψ)|2 dξ dη,

where z = x + iy, w = u + iv. Letting ψ run through an orthonormal
basis for L2(Rn) we obtain

∫
C2n

‖(f ∗3 qs)˜(λ, z, w)ϕ‖22p 1
8sλ

(y, v) dz dw

= cn,sλ(cosh sλ)−2n
∫

R2n

|fλ(ξ + iη)|2 dξ dη
∫
Rn

|ϕ(x)|2 dx.

A calculation shows that

(cosh sλ)2np 1
8sλ

(y, v) = cnλ
−n(sinh 2λs)ne−

2
λ (tanhλs)(|y|

2+|v|2),
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and hence by integrating with respect to λ we get

∞∫
−∞

∫
C2n

‖(f ∗3 qs)˜(λ, z, w)ϕ‖22ωs,λ(y, v) dz dw dλ

= cn

∫
Hn

|f(z, t)|2 dz dt
∫
Rn

|ϕ(x)|2 dx,

where

ωs,λ(y, v) = cnλ
−n(sinh 2λs)ne−

2
λ (tanhλs)(|y|

2+|v|2).

This proves the first half of the theorem.
Conversely suppose that g̃(λ, x, u) extends to Cn×Cn as an operator

valued entire function which satisfies

∞∫
−∞

∫
C2n

‖g̃(λ, z, w)ϕ‖22ωs,λ(y, v) dz dw dλ <∞ for all ϕ ∈ L2(Rn).

Then
∫

C2n

‖g̃(λ, z, w)ϕ‖22ωs,λ(y, v) dz dw <∞ for almost every λ ∈ R. By

the definition of g̃(λ, z, w) we have

∫
C2n

‖g̃(λ, z, w)ϕ‖22ωs,λ(y, v) dz dw

=

∫
C2n

∫
Rn

∣∣∣∣∣∣
∫

R2n

e−i(x·ξ+u·η)ey·ξ+v·ηgλ(ξ + iη)[πλ(ξ + iη)ϕ](ζ) dξ dη

∣∣∣∣∣∣
2

× ωs,λ(y, v) dζ dz dw.

Applying Plancherel theorem in the (x, u)-variable this becomes

∫
R2n

∫
Rn

∫
R2n

e2(y·ξ+v·η)|gλ(ξ+iη)|2|[πλ(ξ+iη)ϕ](ζ)|2ωs,λ(y, v) dξ dη dζ dy dv

= ‖ϕ‖22
∫

R2n

∫
R2n

e2(y·ξ+v·η)|gλ(ξ + iη)|2ωs,λ(y, v) dξ dη dy dv.
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By the definition of ωs,λ(y, v) the above expression becomes

‖ϕ‖22λ−n(sinh 2λs)n
∫

R2n

∫
R2n

e−i(y·2iξ+v·2iη)e−
2
λ tanhλs(|y|2+|v|2)

× |gλ(ξ + iη)|2 dy dv dξ dη

= ‖ϕ‖22λ−n(sinh 2λs)n
∫

R2n

e
1
2λ cothλs(|ξ|2+|η|2)|gλ(ξ + iη)|2 dξ dη

= ‖ϕ‖22λn(coth 2λs)n
∫

R2n

qλs (ξ, η)−2|gλ(ξ + iη)|2 dξ dη <∞

i.e., gλ(qλs )−1 ∈ L2(Cn).
Let fλ = gλ(qλs )−1 and define f by the equation

f(x, y, t) =

∫
R

fλ(x, y)e−iλt dλ.

Then it follows that gλ(x, y) = fλ(x, y)qλs (x, y) = fλ(x, y)qλs (x, y). In
otherwords, gλ(x, y) = (f ∗3 qs)λ(x, y) which means g = f ∗3 qs with
f ∈ L2(Hn).
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Boston, MA, 2004. DOI: 10.1007/978-0-8176-8164-7.

R. Lakshmi Lavanya:

Ramanujan Institute for Advanced Study in Mathematics
University of Madras

Chennai-600 005

India
E-mail address: rlakshmilavanya@gmail.com

S. Thangavelu:
Department of Mathematics
Indian Institute of Science

Bangalore-560 012
India
E-mail address: veluma@math.iisc.ernet.in
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