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1. Introduction

Let Γg be the fundamental group of a compact oriented surface S

of genus g ≥ 2, and ρ : Γg → PSL(2,R) be a Fuchsian representation,
namely a faithful and discrete one. A marked surface of genus g is the

data of a simply connected cover S̃ of S together with a free discontinu-
ous action of Γg. A CP

1-structure (sometimes referred to as a projective
structure) with holonomy ρ on the marked surface is a local diffeomor-

phism D : S̃ → CP
1 called developing map which is ρ-equivariant. We

denote by P (ρ) the set of equivalence classes of marked CP
1-structures

on a surface of genus g with holonomy ρ, where two projective structures

(S̃i, Di), i = 1, 2 are equivalent if there exists a Γg-equivariant diffeomor-

phism Φ: S̃1 → S̃2 such that D1 = D2 ◦ Φ. This definition of projective
structure coincides with the classical one because there is no ambiguity
in the choice of developing map when the holonomy representation is
non-elementary, see [2, Lemma 12.10].

This article deals with the study of a surgery operation called grafting
that produces, given an element in P (ρ), new elements in the same set.

Grafting consists in cutting a surface equipped with a CP
1-structure

along a particular type of simple closed curve called graftable curve,
and gluing a Hopf annulus, namely the quotient of a simply connected
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domain of the Riemann sphere invariant by the (loxodromic) holonomy
of the graftable curve. This operation produces a new element of P (ρ).

Grafting was used by Hejhal [5, Theorem 4] and Thurston (unpub-
lished) to produce examples of projective structures with holonomy ρ

that are different from the uniformizing structure σu = ρ(Γg)\H
2. Such

structures are called exotic. The importance of grafting comes from the
fact that it allows to define coordinates on P(ρ) when ρ is a Fuchsian rep-
resentation: Goldman proved that any CP

1-structure with holonomy ρ

is obtained from the uniformizing one by grafting a collection of disjoint
graftable simple closed curves (see [4]). Such an operation will be called
a multi-grafting.

The goal of this note is to improve Goldman’s result in the following
way.

Theorem 1.1. Let σ1 and σ2 be two exotic projective structures sharing
the same Fuchsian holonomy. Then σ2 can be obtained from σ1 by a
sequence of two multi-graftings.

A consequence of this result is that there exist positive cycles of graft-
ings, namely finite sequences of marked CP

1-structures σ0, . . . , σr = σ0

such that for each i = 1, . . . , r, σi is a grafting of σi−1. The integer r is
then called the period of the cycle. Observe that an immediate corollary
of the theorem is that any couple of exotic CP1-structures are contained
in such a positive cycle of period bounded by 4. We will see (Corol-
lary 4.2) that indeed there are such cycles of period 2.

Let MG(ρ) be the oriented graph whose vertices are elements of P(ρ)
and two vertices σ1, σ2 are joined by an oriented edge from σ1 to σ2 if σ2 is
obtained from σ1 by a multi-grafting. Theorem 1.1 can be restated
by saying that the oriented graph of multi-graftings MG(ρ) \ σu is a
connected graph of radius 2. As a consequence we also get that the
fundamental group of MG(ρ) is not finitely generated.

To prove the results we will use some surgery operations on multi-
curves introduced by Luo [7] and later developed by Ito [6]. Our results
and methods are closely related to Thompson’s, see [8], but he consid-
ers the case of Schottky representations instead of Fuchsian ones. We
observe that our argument extends stricto sensu to the case of quasi-
Fuchsian representations.

2. Graftable curves

In this section we introduce the action of grafting on P(ρ) and define
the graph of multi-graftings.
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2.1. Definition. Recall that a multi-curve on a surface S is a finite
disjoint union of simple closed curves none of which is homotopically
trivial. Let σ be a marked projective structure on a compact orientable
surface S. A multi-curve is said to be graftable (in σ) if all of its com-
ponents have loxodromic holonomy and the developing map is injective

when restricted to a lift of any of those components in S̃. The condition
is independent of the choice of representative in the class [σ] ∈ P(ρ).

2.2. Grafting along graftable curves. If α = {αi}i∈I is a graftable
multi-curve, one can produce another marked projective structure, called
the grafting along α, and denoted Gr(σ, α). We recall the construction

here. We cut the surface S̃ along the lifts α̃i’s of the curves αi’s, and

glue to each of them a copy of CP1 \D(α̃i) using the developing map for

the gluing. We then obtain a new surface denoted by S̃′, together with

a new map D′ : S̃′ → CP
1 which is defined by D on S̃ \ π−1(

⋃
i αi) and

by the identity on the spherical domains CP
1 \ D(α̃i). The Γg-action

on S̃ induces a Γg-action on S̃′ which is free and discontinuous, and the
map D′ is obviously ρ-equivariant. Hence, this defines a new marked
projective structure Gr(σ, α) with holonomy ρ: the grafting of σ over
the graftable multi-curve α.

As αi has loxodromic holonomy, it acts freely and properly discon-
tiuosly on CP

1 \ D(α̃i), and its quotient is a cylinder equipped with a
projective structure. Therefore, the grafting can be viewed as a cut-and-
paste procedure directly in S, which cuts S along each αi and glues back

the cylinder 〈αi〉\(CP
1 \D(α̃i)).

2.3. Isotopy class of graftable curves. It is an easy fact to verify
that if α and α′ belong to the same connected component of the set of
graftable multi-curves (for the compact open topology), then the result-
ing projective structures Gr(σ, α) and Gr(σ, α′) are equivalent. However,
we will see that it can happen that α and α′ are two graftable multi-
curves that are isotopic as multi-curves by an isotopy that leaves the
space of graftable multi-curves, and such that their corresponding graft-
ings are not equivalent (see Remark 3.4).

2.4. The graph of multi-graftings. Let ρ be a representation from Γg

to PSL(2,C). Let us define the graph of multi-graftings MG(ρ) in
the following way. The vertices are the elements of P(ρ) and two of
them (S1, σ1) and (S2, σ2) are the connected by a positive segment
from σ1 to σ2 if there exists a graftable multi-curves α in S1 such that
Gr(σ1, α) = σ2.



34 G. Calsamiglia, B. Deroin, S. Francaviglia

3. Fuchsian case: construction of graftable curves

Recall that a representation ρ : Γg → PSL(2,R) is Fuchsian if it is
discrete and faithful. In the sequel ρ will always be assumed to be
Fuchsian.

3.1. Goldman’s parametrization of MG(ρ). We will denote by σu

the uniformizing structure on the surface Su := ρ(Γg)\H
2, which is ob-

tained by taking the quotient of H2 by the ρ-action of Γg on H2. For
this structure, the developing map is just the identity when identifying
the universal cover of Su with H2, and in particular is injective. Hence,
any simple closed curve on Su is a graftable curve. Hence in this case
the space of graftable multi-curves and the space of multi-curves are the
same. By the discussion in §2.3 the grafting Gr(σu, α) depends only on
the isotopy class of α as a multi-curve.

Goldman proved in [4] that every marked projective structure σ with
holonomy ρ is obtained by grafting the structure σu along a multi-
curve α = {αi}i. Moreover, this family is unique, and can be re-
constructed from σ in the following way. For a Fuchsian projective
structure σ, denote by SR (resp. S±) the quotient of D−1(RP1) (resp.
D−1(H±)) by the covering group Γg. Since ρ is Fuchsian, it preserves

the decomposition CP
1 = H+∪RP1∪H−, and thus SR is an analytic real

submanifold of S separating S in domains which are either positive or
negative according they belong to S+ or S−. Goldman proved that the
components of S− are necessarily annuli. The set of annuli is homotopic
to a unique multi-loop α satisfying σ = Gr(σu, α). To abridge notations
we define Grα := Gr(σu, α).

3.2. Homotopically transverse multi-curves. Let α = {αi}i∈I and
β = {βj}j∈J be two multi-curves. They are homotopically transverse if
the following conditions hold:

• for each i ∈ I and j ∈ J , the curves αi and βj are not homotopic,
• they are transverse in the usual sense, and
• the complement of (

⋃
αi) ∪ (

⋃
βj) in S has no bi-gon component.

3.3. Construction of graftable multi-curves. Given a multi-curve
α = {αi}i∈I , a set of turning directions for α is an assignment to each
curve αi of a turning direction Ti ∈ {R,L} (“Right” or “Left”) in such
a way that any two parallel curves have the same turning direction.

In this paragraph we provide a construction that, given two homo-
topically transverse multi-curves α = {αi}i∈I and β = {βj}j∈J , and
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a set T = {Ti} of turning directions for α, produces a multi-curve βT

which is graftable in Grα and isotopic to β.
We begin by assuming that there are no parallel curves in the fami-

lies α and β. In this case we can assume that the components of α and β

are simple closed geodesics in the uniformizing structure σu.
Recall that Grα is obtained by gluing Su\α with some grafting annuli.

We will explain the construction of βT in each piece of this decomposition
separately, beginning with the intersection of βT with Su \ α, and then
construct the intersection of βT with the grafting annuli glued to Su \ α
to obtain Grα.

The boundary of Su \ α consists of two copies α′
i and α′′

i of each
curve αi, and for each component C of Su \ α, its boundary is a union
of such components. We fix a small positive number ε, and for each
p ∈ αi ∩ β ∈ ∂C, we consider the point pT ∈ ∂C lying at distance ε

from p to the side of p indicated by Ti with respect to the orientation
induced on αi by C. If we do this for all components of Su \ α, we get
for each point p ∈ αi ∩ β a couple of distinct points p′ ∈ α′

i and p′′ ∈ α′′
i

lying at distance ε from p (as seen as a point in αi or α′′
i under the

natural identifications αi ≃ α′
i ≃ α′′

i ).
Now, β∩C is a union of geodesic segments [p, q] joining points of ∂C.

We define βT in Su \ α ⊂ S to be the union of the segments [pT , qT ]
with pT and qT constructed as above. Observe that if we move the
points p, q a little bit, then the segments [pT , qT ] are disjoint in the
component C, but also in the whole surface S.

Then, one has to define the curve βT in the grafting annuli in a
graftable way. The continuation should start from the point p′ above
and end at p′′. (In Figure 1 we depicted the case Ti = L.)

•p
•

p
•

p′

•

p′′
β

ββT

βT

βT

P
PP

Two copies of αi bounding a grafting annulus

C1 C2

P
PP

Figure 1. The curve βT in the surface Su. Here αi

appears in the boundary of two components C1 and C2.
In the picture, we used Ti = L.

To be sure that βT is graftable and in the isotopy class of β, we
need some care. First, we suppose that β intersects αi once. Figure 2
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provides a sketch of the construction in the universal cover (we used the
convention that H2 = H+ is the upper half-plane).
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D(βT ) D(βT )

η

ηη

η

η η

αi
αi

ε
εε

ε

p pp p

ξ ξ

ξ ξ

Case Ti = L Case Ti = R

•
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Figure 2. The portion of βT in the universal cover of
the grafting annulus.

When the path βT enters in the grafting, it means that any lift β̃T

enters in the subset CP
1 \ α̃i that we have glued to S̃u to obtain G̃rα.

It enters at the point p̃′ and needs to get out at the point p̃′′ by a
path in CP

1 \ α̃i. For this it has to turn around the segment α̃i in
the sphere. Since we want a graftable curve we need to avoid creating

self-intersection points of the developed image of β̃T . An example of
such a curve can be constructed as follows. Consider two semi-infinite
geodesics η̃′ and η̃′′ starting from p̃′ and p̃′′ and forming and angle ε

with α̃i as in Figure 2. Such geodesics meet the real line (i.e. the bound-

ary of H+) at two points ξ̃′, ξ̃′′.

When β̃T meets α̃i at the point p̃′, we continue it by η̃′, then in H−

by the geodesic η̃ between ξ̃′ and ξ̃′′, and finally with η̃′′. (See Figure 2.)

The path η̃′∗ η̃∗ η̃′′ takes values in the set CP1\ α̃i. Such path remains

embedded when quotienting CP
1 \ α̃i by the action of αi and provides

the path βT in the grafting annulus. Moreover, since CP
1 \ α̃i is a disc,

any two paths joining two points in the boundary are homotopic. This
shows that βT is indeed isotopic to β. (See also Figure 7.)

Let us do the construction when β intersects αi in more than one
point. What we need to describe is the part of βT in the grafting annulus.
Again, we work in the universal cover. In Figure 3 we sketched the case
of two points of intersection.
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Figure 3. The case of two intersection points. In the
case Ti=L we depicted two lifts of βT , in the case Ti=R

we depicted only the segments in the grafting region.

Let {pj} be the set of points of intersection between αi and β, and
form the points p′j and p′′j as before (choosing ε small enough). If α̃i

is a lift of αi, we see lifts p̃′j and p̃′′j of such points. We remark that

for j 6= k, the point p̃′j correspond to a lift of β different from that of p̃′k.
This is because α and β are homotopically transverse. It is worth noting
at this point that it happens that the developed images of two such
lifts intersect, but this is not a problem for our construction. Indeed,
for βT to be graftable in Grα, we only need that any single lift of βT is
developed injectively. In Figure 3 we have drawn in red (small dashed
line) and blue (big dashed line) two different lifts of βT entering in the

same grafting region CP
1 \ α̃i. The intersections of the two lifts with

the grafting region are two disjoint segments, and it is clear that such
segments remain disjoint and embedded when projecting to the grafting
annulus. Thus, βT is embedded and homotopic to β also when multiple
intersections arise.

Let us check that any lift of βT develops injectively. We choose a lift
of β and the corresponding lift of βT . Say the red (small dashed) lift.
Since α and β are homotopically transverse, the red lift of β intersects

any lift of any component αi of α at most once. Thus, when the red β̃T

enters the grafting region CP
1 \ α̃i, the situation is exactly that of Fig-

ure 2. By construction, the developed image of the red β̃T stay close
to α̃i and its analytic prolongation to H−. Since the lift α̃i is disjoint
from the other lifts of αi and from the lifts of different components of α,

for ε small enough the developed image of the red β̃T is embedded.
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We now explain the variation of the construction when some αi ap-
pears with multiplicity di. As was said before, it is then very important
that parallel curves have the same turning directions. In this case the
grafting regions are branched coverings of CP1. More precisely, the uni-

versal cover of the surface Grα is obtained by cutting S̃u along the lifts
α̃i and then by gluing back a branched covering of CP1 of degree di,
branched at the endpoints of α̃i, and cut along a pre-image of α̃i.

For any intersection point between αi and β, we consider a sequence
of points p0 = p′, p1, . . . , pdi

= p′′ in α̃i increasing from p′ to p′′, and we
iterate a construction similar to that of the case of multiplicity 1. (See
Figure 4 for the situation in Su and Figure 5 for the situation in the
universal cover.)

p
p

p = p0

p = p2

p1

β

ββT

βT

βT

βT

Three copies of αi bounding two consecutive grafting annuli

C1 C2

•
•

• •
•

Figure 4. The curve βT in the surface Su when αi has
multiplicity 2. Here Ti = L.

β

H
+

H
−

D(βT )

αi

p2 p1 p0

Case Ti = L

• ••

Figure 5. The case where αi has multiplicity two. The
grafting region is a branched covering of degree two, and
βT must complete two laps before exiting the region.

Finally, if some component βj of β comes with multiplicity ej , then
we do the construction above for one copy of βj and then we replace the
result with ej parallel copies of the corresponding component of βT .
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Remark 3.1. Note that in particular, we proved that, if σ is a projective
structure on a marked surface S with Fuchsian holonomy, and β is any
multi-curve without component homotopic to a point, then it is possi-
ble to find a multi-curve which is graftable in σ and isotopic to β. It
would be interesting to find conditions on a multi-curve β that general-
ize the statement for a general projective structure (not necessarily with
Fuchsian holonomy).

Remark 3.2. There are other ways of finding graftable curves in the iso-
topy class of β, obtained by fixing a letter to each equivalence class of
parallel curves of the multi-curve β, instead of α. However, this con-
struction of multi-curve will not be discussed here.

3.4. The operation ∗T on homotopically transverse multi-curves.
Given the data (α, β, T ) as in §3.3, we produce a new isotopy class of a
multi-curve γ in the hyperbolic surface Su in the following way: at each
point of intersection p ∈ αi∩βj choose a disc Dp centered at p. After an
isotopy we can suppose that this disc is parametrized by an orientation
preserving map of the unit disc in the plane to Su and the image of αi

corresponds to the horizontal axis and that of βj to the vertical axis.
On Su \

⋃
Dp the multi-curve γ has the same components as α ∪ β.

To get a multi-curve we need to join the endpoints by paths on
⋃
∂Dp

by the rule given by T . As we approach an endpoint of αi ∩ ∂Dp from
outside Dp we choose the segment of ∂Dp lying on the side of αi given
by Ti between the chosen endpoint and the next point of βj ∩ ∂Dp (see
Figure 6 for the two possibilites).

Case Ti = L Case Ti = R

γ

p
αi

Dp

βj

αi

p

βj

Dp

γ

γ γ

Figure 6. Construction of γ around a point of inter-
section between αi and βj .
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This produces a family of disjoint simple closed curves γ in Su. The
transversality condition guarantees that none of its components is homo-
topically trivial in Su and hence γ is a multi-curve (see references [6, 7]).
In the sequel, for any (α, β, T ) we will denote by α ∗T β the resulting
multi-curve: α ∗T β := γ.

3.5. Computation of grafting annuli. Recall that for a graftable
multi-curve α in Su we use the notation Grα = Gr(σu, α).

Proposition 3.3. Given two homotopically transverse multi-curves α

and β, and a set of turning directions T for α, let βT denote the graftable
multi-curve constructed in §3.3, and γ = α ∗T β. Then

Gr(Grα, βT ) = Grγ .

Proof: We have to compute the negative annuli for the structure σ′ =
Gr(Grα, βT ) given by Goldman’s theorem (see §3.1). To this end, we
will construct a curve γj in each negative annulus, and then show that
the collection of the constructed curves

⋃
γj is isotopic to the (graftable)

multi-curve γ. By the discussion on §3.1 we conclude that σ′ = Grγ .
First of all, note that by arguing inductively on the number of com-

ponents of β, we can reduce to the case where β is a simple loop.

To begin with, we orient β, we choose one of its lifts β̃, and we number

the lifts of the components of α that meet β̃ in order of intersection with β̃

as {α̃i : i ∈ Z}. So β̃ meets α̃i, then α̃i+1, and so on.
If (S, σ) denotes the projective surface corresponding to the struc-

ture σ = Grα, S̃ is constructed by gluing to S̃u \
⋃
α̃ the grafting re-

gions CP1 \ α̃ (here α̃ varies among all lifts of all components of α). Such
sets will be referred to as bubbles. See Figure 7.

Note that in case some component of α has multiplicity, then the
corresponding bubbles are adjacent (this case is not depicted in the pic-
ture).

In each bubble, let α̃−

i be the geodesic in H− which is the continuation
of the geodesic α̃i as a round circle of the Riemann sphere (the dotted

lines in Figure 7). The curve β̃T intersects these geodesics successively.

For each n, we denote by r̃n the point of intersection of β̃T and of α̃−
n .

Recall that γ = α ∗T β and note that by construction γ̃ is equivariantly

homotopic to α̃∗T β̃T . On the other hand α̃i is homotopic to α̃−

i . A local

argument shows that α̃ ∗T β̃T is equivariantly homotopic to α̃− ∗T β̃T .
If we show that this multi-curve is homotopic to a union of curves

⋃
γj

contained in the negative part of σ′, and such that each connected com-
ponent of the negative part contains one of the γj ’s we will be done. Let
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βT

Another lift of βT

Bubble of α0

α−

0

Two
copies
of α0

Bubble of α1

Bubble
of α2

Su \ α

r0 r1 r2• • •

Figure 7. The curve βT in S̃. The bubbles correspond-
ing to three consecutive lifts of components of α are
depicted as “banana” sectors.

us analyze the structure Gr(Grα, βT ) in detail. To obtain it we have to

cut S̃ along β̃T and glue back a copy of CP1 \ D(β̃T ), where D is the

developing map for σ. Once we have cut, we have two copies β̃R
T and β̃L

T

of β̃T : β̃R
T is the boundary component that has the bubble of β̃T on its

right. In other words, β̃L
T is the component which is oriented according

to the orientation of ∂(CP1 \ D(β̃T )) . Let r̃Rn and r̃Ln be the points

corresponding to r̃n lying in β̃R
T and β̃L

T respectively. See these objects
in Figure 8.

rL
0

rR
2

rL
2

rR
1

rL
1

rR
0

βR
T

βL
T•

••

•
•

•

Figure 8. The bubble of β̃T . Here the segments r̃R0 r̃
L
1

and r̃Ri r̃
R
2 correspond to those constructed along the

proof, contained in the negative part in the particular
case T0 = L, T1 = L, T2 = R.
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The union of curves
⋃
γj that we are going to describe in the negative

part of σ′ is a concatenation of two types of geodesic segments with
respect to the hyperbolic metric in the negative part: segments contained
in α−

i and geodesic segments contained in the bubble of βT joining a

point r̃Ln (resp. r̃Rn ) with one of r̃Ln+1, r̃
R
n+1, r̃

L
n−1, r̃

R
n−1. The choice will

be uniquely defined by the sequence of turnings described by T along βT .
Some examples are sketched on Figure 8. These segments are most easily

defined by using the developed image of β̃T by the developing map D

of σ. As the developed image of the points r̃n lie in the lower half plane,
we can consider the geodesic segments joining D(r̃n) with D(r̃n+1) for

all n. Now as we cut CP1 along the oriented curve D(β̃T ) we realize that
the pairs of points corresponding to each D(r̃n) on each side of the cut
are connected by the constructed segments. It is clear that for each n

one of the points in the corresponding pair is joined by a segment to
one of the points in the pair corresponding to D(r̃n+1) and the other to
one of the points corresponding to D(r̃n−1). The actual correspondence
depends on the sequence of turnings. If Tn = R (resp. Tn = L) then it

is r̃Ln (resp. r̃Rn ) that is joined to one of r̃Ln+1, r̃
R
n+1, and this information

is enough to determine which segments appear. Namely, if Tn = Tn+1,
then the segment corresponding to D(r̃n)D(r̃n+1) describes a segment

joining the two different sides of the cut along D(β̃T ). If Tn 6= Tn+1,
the segment joins two points on the same side of the cut. The different

possibilities before cutting D(β̃T ) are sketched in Figure 9.

D(r̃n)

D(r̃n+1)

D(r̃n) D(r̃n) D(r̃n)

D(r̃n+1) D(r̃n+1) D(r̃n+1)

Tn = Tn+1 = R Tn = L, Tn+1 = R Tn = R, Tn+1 = L Tn = Tn+1 = L

Figure 9. The oriented lines represent segments

of D(β̃T ) before cutting. The dashed lines segments of
geodesic in the negative part.

After cutting CP
1 along D(β̃T ) we get a disc bounded by the two

sides of the cut, that we identify with β̃L
T and β̃R

T . Apart from that we
have produced a union of disjoint segments in the disc each having one

endpoint in {r̃Ln , r̃
R
n } and the other in {r̃Ln+1, r̃

R
n+1} (see Figure 8 for an
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example of the segments obtained after the cut). The constructed seg-

ments produce by concatenation with those of α̃−
n a union of curve

⋃
γj

contained in the negative part. To construct a homotopy with α− ∗T β̃T ,

for each n we choose aLn and aRn points on α−
n lying close to r̃Ln and

r̃Rn respectively. Remark that a segment in γj joining two consecutive
points of the an’s has the property that either it cuts a single side of
the cut (if the R,L-labels of r̃n and r̃n+1 are different) or it cuts both
sides. If it intersects only one side of the cut, we can homotope it with
fixed endpoints to a segment that does not intersect the cut. Otherwise,
we are obliged to intersect it. In fact this property characterizes the
homotopy type with fixed endpoints of the segment. On the other hand
γ has the property that a segment between two consecutive an’s either
cuts β once (if Tn = Tn+1) or it is homotopic to a segment that does
not intersect β (if Tn 6= Tn+1). Therefore the segments between two
consecutive points among the an’s of

⋃
γj and γ are homotopic with

fixed endpoints. On the other parts of γj they are equal. Therefore we

can construct a homotopy between
⋃
γj and α̃− ∗T β̃T and the result

follows.

Remark 3.4. Note that a corollary of Proposition 3.3 is that there exist
graftable curves that are isotopic as curves but that produce different
structures when grafted. Indeed, let α and β two simple geodesics in the
uniformizing structure such that they intersect only in one point. Then,
βR and βL are isotopic curves (both are isotopic to β) and both graftable
in Grα. By Proposition 3.3 we have that Gr(Grα, βR) = Grα∗Rβ and
Gr(Grα, βL) = Grα∗Lβ, which are different exotic structures because α∗R
β and α ∗L β are not isotopic (they are positive and negative Dehn twist
of β along α). As the referee of this paper observed, this phenomenon
was already present in Ito’s work (see [6, Theorem 1.3]).

4. Positive connectedness

In this section we prove Theorem 1.1. We begin by the following
lemma, which shows that the operation ∗T is invertible.

Lemma 4.1. Let α and γ be two multi-curves in S intersecting transver-
sally in the sense of §3.3. Suppose that every component of α intersects γ
and vice versa. Let T be a set of turning directions for α. Then there
exists a multi-curve β intersecting α transversally in the sense of §3.3
and such that the multi-curve α ∗T β is isotopic to γ.
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Proof: The proof is done by first constructing a multi-curve γ′ isotopic
to the multi-curve γ which almost self-intersects in a suitable way. More
precisely, for each component αi of α, deform γ in a small annular neigh-
borhood of αi as indicated in Figure 10, depending on the specified turn-
ing direction. Then define the multi-curve β as indicated in Figure 10.
It has the required properties.

γ γ

γ

γ
γ γ

γ′

γ′

γ′

γ′

γ′

β

β

β
β

β

β

α

α

Constructing β from γ and α

when turning right (R)

Constructing β from γ and α

when turning left (L)

Figure 10. Constructing β.

Corollary 4.2. There exists a cycle of length 2 in the graph of multi-
graftings.

Proof: Two symmetric applications of Lemma 4.1 produces curves β1

and β2 so that Grγ = Gr(Grα, β1) and Grα = Gr(Grγ , β2), proving the
existence of oriented cylces of length two.

We are now in a position to prove Theorem 1.1. Let (Si, σi), i =
1, 2, be projective structures with holonomy ρ, both different from the
uniformizing structure σu. We denote by α1 and α2 the two multi-
curves coding the negative annuli of σ1 and σ2 (that we think as a
multi-geodesic with multiplicities) so that σi = Grαi

. Consider a simple
closed geodesic γ cutting all components of α1 and all components of α2,
and denote (S3, σ3) = Grγ . By two applications of Proposition 3.3 and

Lemma 4.1, there exist a multi-curve β̂1 ⊂ S1 and a multi-curve β̂2 ⊂
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S3 such that Gr(σ1, β̂1) = σ3 and Gr(σ3, β̂2) = σ2. This proves the
theorem.
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