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A family of derivative-free methods of seventh-order convergence for solving nonlinear equations
is suggested. In the proposed methods, several linear combinations of divided differences are used
in order to get a good estimation of the derivative of the given function at the different steps of the
iteration. The efficiency indices of the members of this family are equal to 1.6266. Also, numerical
examples are used to show the performance of the presented methods, on smooth and nonsmooth
equations, and to compare with other derivative-free methods, including some optimal fourth-
order ones, in the sense of Kung-Traub’s conjecture.

1. Introduction

Finding iterative methods for solving nonlinear equations is an important area of research
in numerical analysis, and it has interesting applications in various branches of Science and
Engineering. In this study, we describe new iterative methods to find a simple root α of a
nonlinear equation f(x) = 0, where f : I ⊂ R → R is a scalar function on an open interval I.
The known Newton’s method for finding α uses the iterative expression

xk+1 = xk −
f(xk)
f ′(xk)

, k = 0, 1, . . ., (1.1)
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which converges quadratically in some neighborhood of α. If the derivative f ′(xk) is replaced
by the forward-difference approximation

f ′(xk) ≈
f
(
xk + f(xk)

) − f(xk)
f(xk)

, (1.2)

the Newton’s method becomes

xk+1 = xk −
(
f(xk)

)2

f
(
xk + f(xk)

) − f(xk)
, (1.3)

which is the known Steffensen’s method (SM), (see [1]). Newton and Steffensen’s methods
are of second order, both require two functional evaluations per step, but in contrast to
Newton’s method, Steffensen’s method is derivative-free.

The procedure of removing the derivatives usually increases the number of functional
evaluations per iteration. Commonly in the literature the efficiency of an iterative method
is measured by the efficiency index defined as I = p1/d (see [2]), where p is the order of
convergence and d is the total number of functional evaluations per step. Kung and Traub
conjectured in [3] that the order of convergence of any multipoint method cannot exceed
the bound 2d−1, (called the optimal order). Thus, the optimal order for methods with 3 or 4
functional evaluations per step would be 4 or 8, respectively.

To improve the convergence properties, many variants of Steffensen’s method have
been proposed in the last years. Some of these methods use forward or central divided
differences for approximating the derivatives. For example, by composing Steffensen and
Newton’s methods and using a particular approximation of the first derivative, Liu et al.
derive in [4] an optimal fourth-order method, that we denote (LZM), with three functional
evaluations per step. The iterative expression is

xk+1 = yk −
f
[
xk, yk

] − f
[
yk, zk

]
+ f[xk, zk]

f
[
xk, yk

]2 f
(
yk

)
, k = 0, 1, . . . , (1.4)

where yk is the approximation of the Steffensen’s method, zk = xk + f(xk) and f[x, y] =
(f(x) − f(y))/(x − y) is the divided difference of order one.

Dehghan and Hajarian [5] proposed a variant of Steffensen’s method (DHM), which
is written as

xk+1 = xk −
2f(xk)

[
f(zk+1) − f(xk)

]

f
(
xk + f(xk)

) − f
(
xk − f(xk)

) , (1.5)

where zk+1 = xk + 2(f(xk))
2/(f(xk + f(xk)) − f(xk − f(xk))). The method is obtained

by replacing the forward-difference approximation in Steffensen’s method by the central-
difference approximation. However, it is still a method of third order and requires four
functional evaluations per iteration.
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The authors have also presented in [6] a one-parameter family of optimal fourth-order
derivative-free methods, denoted by (CTM), which will be used in this paper as a base in
order to achieve higher orders of convergence. The iterative expression of this family is

yk = xk −
f(xk)2

f(zk) − f(xk)
,

xk+1 = yk −
f
(
yk

)

(
f
(
yk

) − βf(zk)
)
/
(
yk − zk

)
+
(
f
(
yk

) − δf(xk)
)
/
(
yk − xk

) ,

(1.6)

where parameters β and δ must verify β + δ = 1. In the numerical section, we will work with
the element of this family obtained by taking β = 1 and δ = 0.

In this paper, the technique used to improve the local order of convergence consists of
the composition of two iterative methods of order p and q, respectively, to obtain a method
of order pq (see [1]). Specifically, we compose Newton’s method and the CTM family (1.6).
In addition, some particular approximations of the derivative will be made in order to obtain
a Steffensen-type method. As we will show, the obtained family of methods is of seventh-
order of convergence and requires four evaluations of the function f(x); therefore, this class
of methods has efficiency index 71/4 ≈ 1.6266, which is higher than 21/2 ≈ 1.4142 of the
Steffensen’s method, 31/4 ≈ 1.3161 of the DHM method (1.5), 41/3 ≈ 1.5874 of the LZM (1.4)
and CTM (1.6) methods. Therefore, although the methods of the new family are not optimal
in the sense of Kung-Traub’s conjecture, they are competitive from the point of view of the
efficiency index.

Recently, some seventh-order methods have appeared in the literature: for example,
Hu and Fang in [7] design a Jarratt-type scheme of order of convergence seven. Its iterative
expression is

zk = yk −
2f ′(xk) − f ′(yk

)

f ′(xk)
f
(
yk

)

f ′(xk)
,

xk+1 = zk +
f ′(xk) + f ′(yk

)

f ′(xk) − 3f ′(yk

)
f(zk)
f ′(xk)

,

(1.7)

where yk is the Newton’s iteration. We will denote this scheme by HFM. Let us note that this
method is not derivative-free, and it uses five functional evaluations. So, its efficiency index
is 71/5 ≈ 1.4758.

Noor et al. in [8, Algorithm 2.5] show an iterative method free from second derivative
of order seven, with five functional evaluations. Its efficiency index is 71/5 ≈ 1.4758 and its
iterative expression is

zk = yk −
2f
(
yk

)
f ′(yk

)

2
(
f ′(yk

))2 − f
(
yk

)
Pf

(
xk, yk

) ,

xk+1 = zk −
f ′(xk) + 3f ′(yk

)

6f ′(yk

) − 2f ′(xk)
f(zk)
f ′(xk)

,

(1.8)

where Pf(xk, yk) = (2/(yk−xk))(2f ′(yk)+f ′(xk)−3f[yk, xk]). We denote this scheme by NM.
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Soleymani and Khattri in [9] (Theorem 1), design a derivative-free seventh-order
method with four functional evaluations. Its iterative expression is

yk = xk −
f(xk)

f[xk,wk]
,

zk = yk −
f
(
yk

)

f[xk,wk]

(

1 +
f
(
yk

)

f(xk)
+
f
(
yk

)

f(wk)

)

,

xk+1 = zk −
f(zk)

f[xk,wk]

⎛

⎝1 +
(
2 − f[xk,wk]

)f
(
yk

)

f(wk)
+
(

1
1 − f[xk,wk]

)(
f
(
yk

)

f(xk)

)2

+
f(zk)
f
(
yk

)

⎞

⎠,

(1.9)

where wk = xk − f(xk). We denote this method by SKM. Its efficiency index is 71/4 ≈ 1.6266.
The rest of the paper is organized as follows: in Section 2, we describe our family

of methods and analyze its convergence order for smooth equations. In Section 3, different
numerical tests confirm the theoretical results and allow us to compare this family with
other known methods mentioned in this section. We also analyze in this numerical section
the behavior of the new family on nonsmooth equations.

2. The Methods and Analysis of Convergence

By direct composition of the CTM family (1.6) and Newton’s method, it is easy to see that the
scheme

yk = xk −
f(xk)2

f(zk) − f(xk)
,

uk = yk −
f
(
yk

)

(
f
(
yk

) − βf(zk)
)
/
(
yk − zk

)
+
(
f
(
yk

) − δf(xk)
)
/
(
yk − xk

) ,

xk+1 = uk −
f(uk)
f ′(uk)

,

(2.1)

where zk = xk + f(xk), is of eighth-order convergence. In order to avoid the evaluation of the
first derivative in the last step, we extend the estimation used in (1.6), by replacing f ′(uk) by
a linear combination of several divided differences:

f ′(uk) ≈ D(xk) =
b1f(uk) − b2f(zk)

uk − zk
+
b3f(uk) − b4f(xk)

uk − xk
+
b5f(uk) − b6f

(
yk

)

uk − yk

+
b7f
(
yk

) − b8f(zk)
yk − zk

+
b9f
(
yk

) − b10f(xk)
yk − xk

+
b11f(zk) − b12f(xk)

zk − xk
,

(2.2)
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where b1, b2, . . . , b12 ∈ R are parameters. So, we are going to prove that for some values of the
parameters the family of methods described by

yk = xk −
f(xk)

(
f(zk) − f(xk)

)
/f(xk)

,

uk = yk −
f
(
yk

)

(
f
(
yk

) − βf(zk)
)
/
(
yk − zk

)
+
(
f
(
yk

) − δf(xk)
)
/
(
yk − xk

) ,

xk+1 = uk −
f(uk)
D(xk)

,

(2.3)

is of seventh-order of convergence.

Theorem 2.1. Let α ∈ I be a simple zero of a sufficiently differentiable function f : I ⊆ R → R in an
open interval I. If x0 is sufficiently close to α, then the iterative method defined by (2.3) has seventh-
order of convergence for β = 1 − δ, b2 = 1 − b8 − b4 − b10 − b6, b11 = b12 = 0, b7 = b8 + b4 + b10,
b6 = 1 − b9 − b4, b5 = 1, and b8 = −1 + b9 + b4 − b10 and satisfies the error equation

xk+1 − α = −(1 + f ′(α)
)3
c22

(
c22 − c3

)[(−1 + b1 + b3 + f ′(α)(b3 − b4)
)
c22

−(−2 + b1 + b3 + f ′(α)(b3 − 1)
)
c3
]
e7k +O

(
e8k

)
,

(2.4)

where ek = xk − α and ck = (1/k!)(f (k)(α)/f ′(α)), k = 2, 3, . . . and δ, β, b1, b2, . . . , b12 ∈ R.

Proof. By using Taylor’s expansion around x = α, it is easy to observe (see [6]) that if β+δ = 1
then,

uk − α =
(
1 + f ′(α)

)2
c2
(
c22 − c3

)
e4k

− (1 + f ′(α)
)(

2
(
2 + 2f ′(α) + f ′(α)2

)
c42

− 2
(
4 + 5f ′(α) + 2f ′(α)2

)
c22c3

+
(
2 + 3f ′(α) + f ′(α)2

)
c23 +

(
2 + 3f ′(α) + f ′(α)2

)
c2c4
)
e5k +O

(
e6k

)

(2.5)

and then,

f(uk) = f ′(α)
(
1 + f ′(α)

)2
c2
(
c22 − c3

)
e4k

− f ′(α)
(
1 + f ′(α)

)(
2
(
2 + 2f ′(α) + f ′(α)2

)
c42

− 2
(
4 + 5f ′(α) + 2f ′(α)2

)
c22c3 +

(
2 + 3f ′(α) + f ′(α)2

)
c23

+
(
2 + 3f ′(α) + f ′(α)2

)
c2c4
)
e5k +O

(
e6k

)
.

(2.6)
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Now, the approximation of f ′(uk), D(xk), can be written as

D(xk) =
[
b11
(
1 + f ′(α)

) − b12 + (b2 + b8 + b4 + b10 + b6)

+f ′(α)
(
b4 − b7 +

(
1 + f ′(α)

)
(b2 − b9) +

(
2 + f ′(α)

)
(b10 + b8 + b11)

)]
c2ek

+ f ′(α)
[(
b7 + b9 + f ′(α)(b2 + b7 + b8 + b10 + b11) −

(
1 + f ′(α)

)
(2b6 − b5)

)
c22

+
(
b2 + b4 + b5 − b6 − 2b7 + 3b8 + 2b9 + f ′(α)(2b2 + b5 − b6 − b7 + 3b8 − 3b9)

+f ′(α)2(b2 + b8 − b9) +
(
3 + 3f ′(α) + f ′(α)2

)
(b10 + b11)

)
c3
]
e2k +O

(
e3k

)
,

(2.7)

and calculating the last step of the iterative process (2.3), we have

xk+1 − α =
(
1 + f ′(α)

)2
c2
(
c22 − c3

)

×
(

1 − f ′(α)
b11
(
1 + f ′(α)

)
+ f ′(α)(b2 + b8 + b4 + b10 + b6) − b12

)

e4k +O
(
e5k

)
.

(2.8)

It is necessary to assign the following values to the parameters in order to assure the
sixth-order of convergence: b2 = 1 − b8 − b4 − b10 − b6, b11 = b12 = 0, b7 = b8 + b4 + b10, and b6 =
1 − b9 − b4. So, the error equation can be expressed as

xk+1 − α =
(
1 + f ′(α)

)3
c2
(
c22 − c3

)(
(2 − b4 − b5 + b8 − b9 + b10)c22

+(−1 + b5)c3
)
e6k +O

(
e7k

)
.

(2.9)

Finally, if b5 = 1 and b8 = −1 + b9 + b4 − b10, we have

xk+1 − α = −(1 + f ′(α)
)3
c22

(
c22 − c3

)[(−1 + b1 + b3 + f ′(α)(b3 − b4)
)
c22

−(−2 + b1 + b3 + f ′(α)(b3 − 1)
)
c3
]
e7k +O

(
e8k

)
.

(2.10)

In terms of computational cost, the methods of this family require only four functional
evaluations per step. So, they have efficiency indices 71/4 = 1.6266. If we denote by M7 any
element of this family, we can establish

IM7 = ISKM > ICTM = ILZM > INM = IHFM > ISM > IDHM. (2.11)
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In the next section, we use the element of family (2.3) obtained by choosing (for
simplicity) δ = b1 = b3 = b4 = b9 = b10 = b11 = b12 = 0 and, therefore, β = 1, b2 = b6 = 1, and
b7 = b8 = −1. So, the resulting iterative expression of the method is

yk = xk −
f(xk)2

f(zk) − f(xk)
,

uk = yk −
f
(
yk

)

(
f
(
yk

) − f(zk)
)
/
(
yk − zk

)
+ f
(
yk

)
/
(
yk − xk

) ,

xk+1 = uk −
f(uk)
D(xk)

,

(2.12)

where D(xk) = (f(uk) − f(yk))/(uk − yk) − f(zk)/(uk − zk) − (f(yk) − f(zk))/(yk − zk) and
zk = xk + f(xk).

It is well known that if α is a multiple zero of f(x), then α is a simple zero of
f(x)/f ′(x). In a similar way, for Steffensen-type methods, it is easy to prove that if we use
f0(x) = (f(x))2/(f(x + f(x)) − f(x)), we transform the problem of solving multiple roots
of f(x) = 0 into a simple roots one, f0(x) = 0. Theoretically, this idea improves the order of
convergence but in practice, results are not satisfactory.

As we have seen, the method (2.12) has seventh-order convergence for smooth
equations but, what is its behavior for nonsmooth equations? As we will see in the
next section, for this class of equations our method, in general, loses the seventh-order
convergence and stability problems appear. For nonsmooth functions, Amat and Busquier in
[10] presented an strategy to control the approximation of the derivative and the stability of
the iteration. They applied this idea to Steffensen’s method, obtaining a new scheme (STM):

xk+1 = xk −
f(xk)

[
f
(
xk + αk

∣∣f(xk)
∣∣f(xk)

) − f(xk)
]
/αk

∣∣f(xk)
∣∣f(xk)

, (2.13)

where the parameters αk ∈ R allow to control the approximation of the derivative. This
procedure can be applied to any other derivative-free scheme. The authors showed the
second-order convergence of (2.13) for nonsmooth functions and mentioned that, in order
to control the stability in practice, the parameters αk should verify

tolc � |αk|f(xk)
∣∣f(xk)

∣∣ ≤ tolu, (2.14)

where tolc is related to the computer precision and tolu is a free parameter.
In the following section, we will apply this strategy to our proposed method, M7,

obtaining a modified scheme that will be denoted as M7mod. Then, we will analyze how this
new scheme improves in nonsmooth cases, although the order of convergence at singular
points decreases to four.
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3. Numerical Results

This numerical section is divided into two parts: one devoted to compare the different
methods on smooth equations and other in which we analyze the behavior of our method
on nonsmooth test functions.

In the first part of this section, we use some test functions in order to check
the effectiveness of the new high-order method (2.12), we compare it with the classical
Steffensen’s method, SM, the method DHM, and the optimal fourth-order methods, LZM
and CTM with β = 1 and δ = 0. These methods are employed to find the zeros of some
nonlinear functions, specifically,

(i) f1(x) = sin2x − x2 + 1, α ≈ 1.404492,

(ii) f2(x) = x2 − ex − 3x + 2, α ≈ 0.257530,

(iii) f3(x) = cosx − x, α ≈ 0.739085,

(iv) f4(x) = (x − 1)3 − 1, α = 2,

(v) f5(x) = x3 − 10, α ≈ 2.154435,

(vi) f6(x) = cos(x) − xex + x2, α ≈ 0.639154,

(vii) f7(x) = ex − 1.5 − arctan(x), α ≈ 0.767653,

(viii) f8(x) = x3 + 4x2 − 10, α ≈ 1.365230,

(ix) f9(x) = 8x − cos(x) − 2x2, α ≈ 0.128077,

(x) f10(x) = arctan(x), α = 0.

The complexity of the iterative expressions plays an important role in the computa-
tional efficiency of the different methods. So, some authors use another index in order to
compare the iterativemethods, taking also into account the number of products and quotients
involved in each step of the iterative process. The computational efficiency index is defined as
CI = p1/(d+op) , (see [11]), where p is the order of convergence, d is the number of functional
evaluations, and op is the number of products and quotients per iteration. Under the point of
view of this index, the relationship between the schemes that we use in this section is

CICTM
(
41/8
)
= CISM

(
21/4
)
> CIM7

(
71/12

)

= CIHFM > CIDHM

(
31/7
)

> CILZM
(
41/10

)
> CINM

(
71/16

)
> CISKM

(
71/18

)
.

(3.1)

Nowadays, high-order methods are important because numerical applications use
high precision in their computations; for this reason, numerical computations have been
carried out using variable precision arithmetic in Matlab 7.12 (R2011a) with 500 significant
digits. The computer specifications are Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz with
16.00GB of RAM. The stopping criterion used is |xk+1 − xk| < 10−150 or |f(xk)| < 10−150.
The information shown in Tables 1 and 2 is, for every method, the number of iterations
needed to reach the required tolerance (if the method does not converge, it will be denoted
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Table 1: Numerical results from f1 to f10.

SM DHM LZM CTM M7

f1, x0 = 0.9

|xk+1 − xk | 3.9289e − 112 1.7589e − 055 3.7228e − 122 1.5049e−124 1.9456e − 023

|f(xk+1)| 4.4514e − 223 2.8819e − 164 0 0 1.8101e − 159

ACOC 2.0000 3.0000 4.0000 4.0000 6.6629

iter 9 7 5 5 3

e-time 0.1217 0.1891 0.1139 0.1033 0.0927

f2, x0 = 1.2

|xk+1 − xk | 1.4587e − 149 7.6358e − 103 3.4035e − 138 2.6499e − 141 3.1050e − 029

|f(xk+1)| 2.0878e − 298 2.5787e − 306 0 0 1.0495e − 202

ACOC 2.0000 3.0000 4.0000 4.0000 6.8723

iter 9 11 5 5 3

e-time 0.1282 0.2791 0.1161 0.1092 0.1075

f3, x0 = 2.1

|xk+1 − xk | 8.3630e − 085 1.9786e − 059 1.0746e-143 1.4483e-112 5.6495e-024

|f(xk+1)| 1.7410e − 169 1.8682e − 177 0 0 3.7489e − 167

ACOC 2.0000 3.0000 4.0000 4.0000 7.0731

iter 8 6 5 5 3

e-time 0.0746 0.0894 0.0874 0.0867 0.0468

f4, x0 = 2.2

|xk+1 − xk | 1.9109e − 116 1.8976e − 072 3.3922e − 110 1.0118e − 116 3.4709e−027
|f(xk+1)| 4.3820e − 231 1.5033e − 214 0 0 5.1781e − 184

ACOC 2.0000 3.0000 4.0000 4.0000 6.8325

iter 10 6 5 5 3

e-time 0.1176 0.1443 0.1246 0.0914 0.0930

f5, x0 = 2.3

|xk+1 − xk | 7.8747e − 085 1.2204e − 123 9.1432e − 142 8.5347e − 144 1.2638e − 030

|f(xk+1)| 5.9818e − 167 0 0 0 6.8463e − 207

ACOC 2.0000 3.0000 4.0000 4.0000 6.8181

iter 10 7 5 5 3

e-time 0.1168 0.1353 0.0945 0.1059 0.0596

f6, x0 = 2

|xk+1 − xk | 1.4558e − 087 — 2.1767e − 109 5.9067e − 112 5.4741e − 023

|f(xk+1)| 5.7398e − 174 — 0 0 9.2491e − 157

ACOC 2.0000 — 4.0000 4.0000 5.9331

iter 8 nc 5 5 3

e-time 0.1245 — 0.1576 0.1418 0.1226

f7, x0 = 0.5

|xk+1 − xk | 5.1639e − 127 3.2959e − 079 1.5312e − 050 3.3808e − 073 4.7872e − 034

|f(xk+1)| 9.3020e − 253 1.1763e − 235 4.6052e − 199 7.2079e − 290 9.9787e − 234

ACOC 2.0000 3.0000 3.9999 4.0000 6.8055

iter 11 6 5 5 3

e-time 0.1671 0.1696 0.1426 0.1349 0.0732

f8, x0 = 1.5

|xk+1 − xk | 1.0817e − 142 8.4333e − 122 6.9628e − 136 2.1376e − 137 1.1249e − 030

|f(xk+1)| 1.6591e − 282 0 0 0 7.6946e − 207

ACOC 2.0000 3.0000 4.0000 4.0000 6.7788

iter 11 7 5 5 3

e-time 0.1886 0.2356 0.1797 0.1463 0.1170
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Table 1: Continued.

f9, x0 = 0.8

|xk+1 − xk | 2.2055e − 129 4.6810e − 128 2.9693e − 139 7.1679e − 140 6.1073e − 028
|f(xk+1)| 9.0498e − 257 0 0 0 1.6582e − 191
ACOC 2.0000 3.0000 4.0000 4.0000 6.7613
iter 15 6 7 8 4

e-time 0.2368 0.1680 0.2684 0.1902 0.1232

f10, x0 = 0.6

|xk+1 − xk | 2.4132e − 081 1.3419e − 130 6.2415e − 141 1.0766e − 031 2.7207e − 019
|f(xk+1)| 2.8106e − 242 0 0 1.9282e − 155 2.1785e − 167
ACOC 3.0000 5.0000 5.0000 4.9922 8.7406
iter 7 5 5 4 3

e-time 0.0955 0.1471 0.0746 0.0733 0.0749

by ”nc”), the last value of |xk+1−xk| and |f(xk+1)|, and the approximated computational order
of convergence (ACOC) ρ, defined by the authors in [12]:

ρ =
ln(|xk+1 − xk|/|xk − xk−1|)
ln(|xk − xk−1|/|xk−1 − xk−2|) . (3.2)

By means of (3.2), a vector is obtained by using the different iterations calculated in the
process. The value of ρ that appears in Tables 1 to 4 is the last coordinate of this vector
when the variation between its components is small. Let us note that when the approximated
convergence order is not stable (if the difference between two consecutive values is bigger
than one unit), we will denote it by ‘—’.

On the other hand, in Tables 1 and 2, the mean elapsed time, calculated by means of
the command ”cputime” of Matlab (e-time), after 100 performances of the program, appears.
It can be observed that, in most cases, the elapsed time taken by M7 to obtain the solution is
lower than the corresponding ones of the other methods involved. In terms of computational
effort, the efficiency of the proposedmethod is not lower than that of the optimal fourth-order
methods. These elapsed times are in concordance with the computational efficiency index of
each method.

Numerical results in Table 1 confirm the theoretical statements developed in this
paper, showing that the estimated order of convergence coincides with the theoretical one,
except in case f10: the second derivative of this nonlinear function at the solution is zero, so
the order of convergence increases: from second to third in SM, from third (and fourth) to
fifth in DHM (and LZM or CTM), and from seventh to ninth in M7. Nevertheless, in this case
the e-time from the new method M7 does not improve the other ones. In fact, in case f10 the
best time is obtained by Steffensen’s method, followed by CTM and DHM. In general, there
can be stated that the new high-order scheme improves the results obtained by other known
methods, even optimal fourth-order methods such as LZM and CTM.

In Table 2, we compare the new method M7 with other known seventh-order schemes
described in the introduction, HFM, SKM, and NM. It can be observed that M7 performs
better than SKM and NM, but HFM is more precise than the rest of methods.

Now, we are going to make some numerical tests in order to check how the methods
SM and M7 behave in nonsmooth cases. Moreover, we apply the αk-procedure to both
methods to avoid some stability problems. In these cases, numerical computations have been
carried out using simple precision arithmetic, so tolc = 10−16, and the stopping criterion used
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Table 2: Numerical results from f1 to f10 and seventh-order schemes.

HFM SKM NM M7

f1, x0 = 0.9

|xk+1 − xk | 9.2403e − 050 7.8995e − 104 1.9456e − 023

|f(xk+1)| 0 0 1.8101e − 159

ACOC — 7.0023 6.6629

iter 6 ≥ 100 4 3

e-time 0.1126 0.1404 0.0927

f2, x0 = 1.2

|xk+1 − xk | 1.1602e − 045 1.0203e − 036 6.3747e − 058 3.1050e − 029

|f(xk+1)| 0 0 0 1.0495e − 202

ACOC 6.7965 7.2403 6.7108 6.8723

iter 3 4 3 3

e-time 0.0604 0.1445 0.1100 0.1075

f3, x0 = 2.1

|xk+1 − xk | 1.8810e − 040 9.8612e − 037 1.4468e − 052 5.6495e − 024

|f(xk+1)| 0 0 0 3.7489e − 167

ACOC 6.3228 6.2401 6.5225 7.0731

iter 3 4 3 3

e-time 0.0315 0.0969 0.0674 0.0468

f4, x0 = 2.2

|xk+1 − xk | 5.1064e − 034 — 9.9985e−042 3.4709e − 027

|f(xk+1)| 0 — 0 5.1781e − 184

ACOC 6.8073 — 6.9177 6.8325

iter 3 n.c. 3 3

e-time 0.0532 — 0.0842 0.0930

f5, x0 = 2.3

|xk+1 − xk | 2.6845e − 053 3.2107e − 025 1.2399e − 062 1.2638e − 030

|f(xk+1)| 3.1147e − 207 9.9146e − 167 3.1147e − 207 6.8463e−207
ACOC 6.9527 7.1651 6.9798 6.8181

iter 3 5 3 3

e-time 0.0406 0.0894 0.0961 0.0596

f6, x0 = 2

|xk+1 − xk | 8.6332e − 124 1.0547e−075 5.4741e − 023

|f(xk+1)| 0 0 9.2491e − 157

ACOC 6.9990 6.9948 5.9331

iter 4 ≥ 100 4 3

e-time 0.0911 0.1409 0.1226

f7, x0 = 0.5

|xk+1 − xk | 8.9879e − 076 6.4335e − 045 1.6607e − 028 4.7872e − 034

|f(xk+1)| 3.8934e − 208 1.9467e − 208 1.1707e − 195 3.8434e − 208

ACOC 7.0115 6.8734 7.2394 6.8055

iter 4 3 3 3

e-time 0.0747 0.0757 0.1214 0.0732

f8, x0 = 1.5

|xk+1 − xk | 2.1424e − 053 8.0693e − 063 1.1249e − 030

|f(xk+1)| 0 0 9.3442e − 207

ACOC 6.9528 6.9783 6.7788

iter 3 ≥ 100 3 3

e-time 0.0730 0.0967 0.1170
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Table 2: Continued.

f9, x0 = 0.8

|xk+1 − xk | 1.6408e − 027 1.3528e − 128 4.3711e − 039 6.1073e − 028
|f(xk+1)| 1.5509e − 190 2.4334e − 208 1.2167e − 208 1.6582e − 191
ACOC 7.3243 6.9999 7.1316 6.7613
iter 3 4 3 4

e-time 0.0552 0.1158 0.1112 0.1232

f10, x0 = 0.6

|xk+1 − xk | 2.0089e − 035 — 1.1046e − 051 2.7207e − 019
|f(xk+1)| 0 — 0 2.1785e − 167
ACOC 10.9352 — 10.9217 8.7406
iter 3 n.c. 3 3

e-time 0.0367 — 0.0922 0.0749

has been |xk+1 − xk| < tolu = 10−11 or |f(xk+1)| < tolu = 10−11. From a sufficiently small α0, we
use the following algorithm to compute the different αk:

αk+1 =

⎧
⎪⎪⎨

⎪⎪⎩

α2
k if

∣∣α2
k

∣∣f(xk)
∣∣f(xk)

∣∣ ≥ tolc,

tolc
‖f(xk)

∣∣f(xk)
∣∣ , elsewhere.

(3.3)

The first test has been made on the function:

f11(x) =

⎧
⎨

⎩

x(x + 1) if x < 0,

−2x(x − 1) if x ≥ 0,
(3.4)

that can be found in [13]. We use three initial estimations in order to approximate the three
different roots of the equation, {0, 1,−1}. In Table 3, we show for each initial estimations and
every method, the exact absolute error at first and last iterations, the absolute difference
between the two last iterations |xk+1 − xk|, the value of f in the last iteration |f(xk+1)|, and
the ACOC. From Table 3 it can be inferred that the order of convergence of M7 method
decreases to five and stability problems appear when it is applied to nonsmooth equations.
Nevertheless, it usually performs better than or equal to Steffensen’s method and its
modifications by the αk procedure. Indeed, when this strategy is applied on the seventh-
order method (M7mod), the stability of the method is improved and it results in more precise
estimations with less iterations. In this example, the ACOC is not stable in some cases.

Finally, we consider the nonsmooth function

f12(x) =
∣∣∣x2 − 9

∣∣∣. (3.5)

The numerical experiments made on this function are summarized in Table 4. In this case,
the advantages of the modified methods over original Steffensen’s method and M7 method
are more evident when the initial estimation is far from the zero of the function. When the
initial estimation is good enough, it is clear that the behavior ofM7mod improves lower-order
methods, in terms of precision and number of iterations.
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Table 3: Numerical results for function f11(x).

x0 = 0.1
SM STM (tolu = 10−11) M7 M7mod

iter error iter error iter error iter error

α = 0

1 4.52e − 2 1 1.50e − 2 1 1.50e − 3 1 2.28e − 4
2 4.60e − 3 2 2.32e − 4 2 3.49e-11 2 0
... 3 5.38e − 8 3 0

4 8.32e − 9 4 0
5 0

|xk+1 − xk | 8.32e − 9 5.38e − 8 3.49e − 11 2.28e − 4

|f(xk+1)| 2.08e − 16 5.80e − 15 3.76e − 37 4.08e − 15

ACOC 2.0919 2.0000 4.2042 —

x0 = 3 iter error iter error iter error iter error

α = 1

1 0.29 1 0.80 1 3.45e − 2 1 6.22e − 2
2 0.15 2 0.25 2 6.91e−11 2 2.35e − 9
...

... 3 NaN 3 0

5 7.98e − 8 6 5.36e−12
6 1.0e − 14 7 0

xk+1 − xk | 7.98e − 8 5.36e − 12 NaN 2.35e − 9

|f(xk+1)| 1.27e − 14 0 NaN 0

ACOC 1.9997 2.0000 — 4.9686

x0 = −20 iter error iter error iter error iter error

α = −1

1 18.44 1 9.26 1 7.17 1 2.31
2 17.88 2 4.39 2 2.38 2 8.82e-2
...

...
... 3 2.29e-10

30 5.65e − 5 8 1.98e − 6 4 2.72e − 8 4 0
31 1.80e−13 9 3.93e−12 5 NaN

|xk+1 − xk | 5.65e − 5 1.98e − 6 NaN 2.29e − 8

|f(xk+1)| 1.80e − 13 3.93e − 12 NaN 0

ACOC — 1.9991 — —

4. Conclusions

A new seventh-order family of derivative-free iterative methods for solving nonlinear
equations has been presented. As only four functional evaluations are required per iteration,
the efficiency index of each member of this family is equal to 71/4 = 1.6266. In addition, these
methods use a small amount of products and quotients and are derivative-free, which allow
us to apply them also to nonsmooth equations with positive and promising results.

The generalization of these methods to nonlinear systems F(x) = 0 is similar to the
classical Steffensen’s method (see [1]):

x̃k = xk + αk‖F(xk)‖F(xk),

xk+1 = xk − [xk, x̃k;F]
−1F(xk),

(4.1)
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Table 4: Numerical results for function f12(x).

x0 = 2.8
SM STM (tolu = 10−11) M7 M7mod

iter error iter error iter error iter error

α = 3

1 0.44 1 7.14e − 3 1 0.17 1 7.54e − 5

2 0.89 2 8.39e − 6 2 1.69e−11 2 1.0e − 14
... 3 1.17e−11 3 0

24 6.0e − 10 4 0

25 0

|xk+1 − xk | 6.0e − 10 1.17e − 11 1.69e-8 7.54e − 5

|f(xk+1)| 0 0 0 6.93e − 14

ACOC 2.0009 1.9984 — —

x0 = −2.8 iter error iter error iter error iter error

α = −3

> 104 1 7.14e − 3 1 5.66e − 3 1 7.54e − 5

2 8.39e − 6 2 4.41e − 3 2 1.0e − 14

3 1.17e−11 ...

4 0 4 2.74e−10
5 NaN

|xk+1 − xk | 1.17e − 11 NaN 7.54e − 5

|f(xk+1)| 0 NaN 6.93e − 14

ACOC 1.9984 — —

x0 = −10 iter error iter error iter error iter error

α = −3

> 104 1 2.45 1 0.70 1 7.98e − 2

2 0.55 2 0.73 2 3.2e − 13
...

...

5 2.05e − 8 7 2.23e − 9

6 0 8 NaN

|xk+1 − xk | 2.05e − 8 NaN 7.98e − 2

|f(xk+1)| 0 NaN 1.95e − 12

ACOC 1.9368 — —

where [u, v;F] : R
n → R

n is a linear operator such that [u, v;F](u − v) = F(u) − F(v), which
is called divided difference.
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