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Left ventricular ejection fraction (LVEF) constitutes an important physiological parameter for the assessment of cardiac function,
particularly in the settings of coronary artery disease and heart failure. This study explores the use of routinely and easily acquired
variables in the intensive care unit (ICU) to predict severely depressed LVEF following ICU admission. A retrospective study was
conducted.We extracted clinical physiological variables derived from ICUmonitoring and available within theMIMIC II database
and developed a fuzzy model using sequential feature selection and compared it with the conventional logistic regression (LR)
model. Maximum predictive performance was observed using easily acquired ICU variables within 6 hours after admission and
satisfactory predictive performance was achieved using variables acquired as early as one hour after admission. The fuzzy model is
able to predict LVEF ≤ 25% with an AUC of 0.71 ± 0.07, outperforming the LR model, with an AUC of 0.67 ± 0.07. To the best of
the authors’ knowledge, this is the first study predicting severely impaired LVEF using multivariate analysis of routinely collected
data in the ICU. We recommend inclusion of these findings into triaged management plans that balance urgency with resources
and clinical status, particularly for reducing the time of echocardiographic examination.

1. Introduction

The measurement of LVEF is a well-established clinical
parameter that has essential diagnostic, therapeutic, and
prognostic implications, particularly in the settings of coro-
nary artery disease and heart failure [1–3]. Several studies
have addressed clinical outcomes relating to LVEF mea-
surements [4–10]. These have demonstrated a general LVEF
threshold level of 45%, below which there is a generally linear
relationship betweenLVEFdecrease and increase inmortality
and cardiac events, although recent studies have indicated

that a preserved ejection fraction does not necessarily mean
freedom from risk [6, 11–14].

Patients with LVEF ≤ 25% constitute a particularly sick
heart failure population [6] and extreme caution has to be
exercised in treating these patients [4, 5, 7–10]. Cardiac dys-
function as evidenced by reduced ejection fraction is present
in most patients with severe sepsis and septic shock [15].
Fluid resuscitation therapy may be lifesaving in these cases,
especially in the early phases of treatment. However, patients
with a very low ejection fraction may be asymptomatic
due to processes such as remodeling, which can precede
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the development of symptoms [12]. Early detection to guide
fluid resuscitation in the intensive care unit (ICU) is crucial.

Noninvasive technologies such as echocardiography,
computed tomography, magnetic resonance imaging, gated
single photon emission computed tomography, and multi-
gated acquisition scanning are used to assess LVEF [16]. Each
of these techniques is resource intensive requiring special
equipment and specialized technicians, which might delay
the procedure in situations such as examining at night or at
the weekend. They also have varying degrees of patient inva-
siveness and consequent risk of complications, progressing
from the least invasive echocardiography to themost invasive
catheter placement [17]. Transthoracic echocardiography is
the most feasible, safest, and cheapest method to assess LVEF
and has been used routinely for this purpose for decades [16].
The popularity of this technique and its attendant costs have
led to growing concern about potential overuse of this impor-
tant technology. Studies on the trends in echocardiography
utilization in the Veterans AdministrationHealthcare System
show that while utilization on a per-patient basis remained
relatively stable, increasing only by 2.7% between 2000 and
2007, the actual number of echocardiograms between 2000
and 2007 increased by 112.2% [18]. Limited transthoracic
echocardiogram (LTTE) represents an attractive alternative
to the typical transthoracic echocardiogram (TTE) since it
can be performed with minimal training and significantly
reduces the examination time from the usual 45–60 minutes
to less than 5 minutes [19].

The aim of this study is to use variables easily acquired in
the intensive care unit (ICU) to develop a predictive model
for assessing severely depressed LVEF as early as possible
following ICU admission. We envision that the integration
of the predictive model in a healthcare’s decision support
system will allow typical TTE to be substituted by LTTE for
confirmation of the predicted results.

2. Methods

This retrospective study made use of the MIMIC II (Multi-
parameter Intelligent Monitoring in Intensive Care) database
[20].MIMIC II contains deidentified patients’ data [21] and is
publicly available on the PhysioNet website (http://www.phy-
sionet.org/). It encompasses a diverse and very large popula-
tion of ICU patients from the Beth Israel Deaconess Medical
Center, in Boston, dating from 2001.The temporal resolution
of the data, including administrative data, laboratory results,
clinical notes, bedsidemonitor trends, andwaveforms, allows
a diverse range of analytic studies spanning epidemiology,
clinical decision analysis, and decision support development
[20]. Newer versions of the database are released as more
patient records are archived. The downloadable files of
MIMIC II Clinical Database version 2.5 used in this work
contain data for 26,655 subjects.

2.1. Data Extraction. Weextracted a total of 17 features, which
are presented in the list below, including demographics and
physiological variables, using a standard variable selection
process that seeks tomaximize the amount of data within any

given variable versus maintaining robust numbers and statis-
tical power (the rule of thumb is that the number of patients
should be about 10 times higher than the number of variables)
[22]. Opinion of physicians and existing literature mandated
the inclusion of heart rate and blood pressure, acknowledging
the tight relationwith cardiac functionmonitoring. Including
the next most acquired variable would result in a significant
drop in the amount of patients with data available for all
variables considered.

List of Demographic Information and Physiological Variables
Extracted from the Database

Heart rate (beats per minute).
Diastolic noninvasive blood pressure: diastolic NBP
(mmHg).
Systolic noninvasive blood pressure: systolic NBP
(mmHg).
Respiratory rate (breaths per minute).
Oxygen saturation in the blood (%).
Temperature (∘C).
Blood urea nitrogen: BUN (mg/dL).
Carbon dioxide concentration in blood (mmol/L).
Glucose (mg/dL).
Hemoglobin (mmol/L).
Platelets (×109 cells/L).
Potassium (mmol/L).
Sodium (mmol/L).
White blood cells (×103 cells/𝜇L).
Age (years).
Weight on admission (kg).
Gender.

In MIMIC II, LVEF assessments are reported in clinical
notes, either in textual (e.g., “normal LVEF”) or numeric
forms. Text mining techniques were used to retrieve the
numeric values such that whenever a numeric interval was
reported, the mean value was computed. The values were
validated by the authors for abnormal occurrences, regarding
misspelling and values that fell outside the possible physio-
logic range. Inclusion criteria included adult patients report-
ing a numeric LVEF value and data for each of the 17 features
(Figure 1). Textual information was not considered for this
study.

2.2. Preprocessing. A summary of the data processing steps
is as follows: (1) LVEF was separated into two classes using
25% as the reference value [6]; (2) outliers were addressed
using expert knowledge; (3) mean values were computed to
obtain input data; (4) data were normalized using the min-
max procedure.

Figure 2 illustrates the several domains of LVEF described
in the literature [23–25].
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Patients in MIMIC II database version 2.6 (n = 26,655)

Patients with LVEF reported (text or numeric) (n = 8,202)

Adult patients (age ≥ 16) with numeric value reported for LVEF (n = 3,352)

Patients with data for all 17 variables extracted (n = 936)

Figure 1: Flow chart of inclusion criteria and number of patients used to define the cohort. LVEF indicates left ventricular ejection fraction;
ICU indicates intensive care unit.
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Figure 2: Domains of left ventricular ejection fraction associated
with clinical risk.

The approach followed in this study consists of a dichoto-
mous classification problem. Patients with LVEF ≤ 25% were
regarded as the “severely depressed LVEF” class and the
remaining as the “non-severely depressed LVEF” class. Sev-
eral groups have shown consistency in observations using
a 25% LVEF cut-off value for defining severely depressed
groups [4, 5, 7–10]. Using this criterion, we included 115
patients in the positive class (12.3% of the extracted dataset).

After retrieving the cohort, data was filtered for outliers.
Methods that process the data based only on its statistical
properties (e.g., quartile distribution, standard deviation, or
confidence intervals) aim to determine outliers with no prior
knowledge of the data [26]. In this case, filtering was made
using medical knowledge, and measurements that exceeded
possible physiological boundaries for each variable were
eliminated. The fuzzy modeling strategy used subsequently
is able to weight each nondeleted observation according
to the overall distribution [27]; that is, the membership
functions inherent to the modeling strategy reflect whether
an observation is frequent or not, decreasing the impact of
preprocessing outliers.

Data normalization consisted in the attribution of the
value 0 to the minimum value observed and the value 1 to
the maximum value observed. All values were then rescaled
accordingly.

For purposes of determining whether two groups are
significantly different from each other, we assumed the data
follows normal distributions. The family distribution of each
input variable was assessed through the Pearson System to
confirm our assumption [28]. Two-sample 𝑡-test was used to
test the null hypothesis that data in the two groups are inde-
pendent random samples from normal distributions with
equal means but unknown variances, against the alternative
that the means are not equal.

2.3.Modeling. Fuzzymodeling is a tool that allows an approx-
imation of nonlinear systems when there is little or no
previous knowledge of the system to be modeled, providing
linguistic interpretation in the form of rules. This interpreta-
tion is particularly appealing in clinical related scenarios as
it allows unraveling the most striking rules in order to seek
expert understanding [29–31]. In this work, we used first
order Takagi-Sugeno (TS) fuzzy models [14] to perform clas-
sification. A TS fuzzy model is a fuzzy rule-based model
where the rule consequents are functions of the model input.
Each rule 𝑘 has a different function yielding a different value
𝑦
𝑘 for the output. The simplest consequent function is the

linear affine form:

𝑅
𝑘

: If x is 𝐴𝑘 then 𝑦𝑘 = (a𝑘)
𝑇

x + 𝑏𝑘, (1)

where𝑅𝑘 denotes the 𝑘th rule, x the vector of antecedent vari-
ables, 𝐴𝑘 the (multidimensional) antecedent fuzzy sets, 𝑦𝑘

the one-dimensional consequent variable of the 𝑘th rule, a𝑘
a vector of parameters, and 𝑏𝑘 a scalar offset that relates the
antecedent fuzzy sets with the consequents.

Fuzzy clustering allows one piece of data to belong to
two or more clusters with different degrees. The approach
used in this paper builds a TS inference model based on
the Gustafson-Kessel fuzzy clustering algorithm [37]. This
algorithm extends the traditional fuzzy c-means (FCM) [38]
by introducing an augmented form of the Euclidean distance
that allows the detection of clusters of different geometrical
shapes and orientation. Each cluster is used to create one
rule and upon evaluation of the model all rules created are
activated, each according to the membership degree of the
sample to the cluster. A continuous real output is returned
based on the weighted sum of the outputs of each rule:

Output =
∑
𝑅

𝑖=1 𝛽𝑖𝑦𝑖

∑
𝑅

𝑖=1 𝛽𝑖
, (2)

where 𝛽
𝑖
is the degree of activation of each rule and 𝑅 is the

number of rules.
Logistic regression (LR) is a conventional statistical

method, within the medical field, to model the probability of
binary events (e.g., treatment response). It computes a linear
classifier to predict the probability, (𝑌 = 1 | x) = 𝜋(x), of an
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event that depends on 𝑝 independent variables, using a logit
function [37]. The logistic regression model is given by

𝜋 (x) = 𝑒
𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋅⋅⋅+𝛽𝑝𝑥𝑝

1 + 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋅⋅⋅+𝛽𝑝𝑥𝑝
, (3)

where x = 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑝
represents the whole set of variables

and 𝛽 = 𝛽
0

, 𝛽
1
, . . . , 𝛽

𝑝
are the regression coefficients. The

logit function is defined as follows:

𝑔 (x) = 𝛽0 +𝛽1𝑥1 +𝛽2𝑥2 + ⋅ ⋅ ⋅ + 𝛽𝑝𝑥𝑝. (4)

Dichotomous classification is obtained by applying a
threshold to the output of each model. This threshold bal-
ances accuracy (correct classification rate), sensitivity (true
positive classification rate), and specificity (true negative clas-
sification rate).The performance of themodels was evaluated
in terms of area under the receiver operating characteristic
curve (AUC), accuracy, sensitivity, and specificity.

2.4. Study Design. The dataset was initially divided into two
subsets of the same size: one for feature selection (FS) and
the other for model assessment (MA). In the FS subset,
a combination of feature selection with fuzzy modeling or
logistic regression was performed to find the subset of
features that produces the best AUC. Models for performing
feature selection were iteratively built and evaluated using 5-
fold cross validation, repeated for 500 random configurations
of the folds. The set of features more often selected in the
500 repetitions was chosen as the best set. The validity
and robustness of the model was also assessed using 5-fold
cross validation, repeated for 50 random configurations of
the folds, in the MA dataset, using the best set of features
identified. Results were averaged over the rounds.

The whole datasets corresponding to each time interval
in the ICU were used to perform exploratory tests, using 5-
fold cross validation repeated for 2 random configurations
of the folds. Results showed that using a number of clusters
between 2 and 10 does not change the performance of the
models. Thus, in order to facilitate the clustering of patients
and consequent interpretation of the models, 2 clusters were
used.

2.5. Assessment of the Best Predicting Interval following ICU
Admission. In order to assess the most suitable time interval
following ICU admission to predict severely depressed LVEF,
we used an exploratory set to develop fuzzy classification
models.This set comprises the 5 physiological variables most
regularly acquired within the ICU stay and 2 demographic
constants consistently acquired in each admission to the
ICU. These variables are heart rate, noninvasive diastolic
and systolic blood pressure, respiratory rate, and oxygen
saturation, coupled with age and weight. This approach aims
to obtain equal amount of samples in all variables across all
time intervals considered for comparison, since some of the
variables are only acquired once a day.

We compared the AUC of different, nonoverlapping, 6-
hour intervals during the first 30 hours of admission. The
number and type of variables increased as the time intervals

increased up to 6 hours, starting at ICU admission, and
remained stable thereafter. Therefore, we used as input for
the models the mean value of each 6-hour measurement in
each variable. Modeling based on observations during the
first hour of admission was also performed at this stage.

2.6. Sequential Forward Selection. To fine-tune performance,
we aimed to evaluate different combinations of variables from
the preprocessed dataset containing data for all extracted
variables. Using the data contained in the best interval, we
explored the use of all the extracted physiological variables.
The sequential forward selection (SFS) method with criteria
based on the AUC was used. The SFS method sequentially
adds features to the best set previously evaluated until a
stopping criterion is achieved (e.g., no improvement in
performance).

2.7. Interpretation of Rules. After selection and validation of
the best set of variables, we built an inference model based
on the observations within the best time interval in the ICU.
By assessing the parameters from the inference model, along
with the membership functions depicted, it is possible to
extract the numeric expressions (rules) that are computed in
order to obtain the classification.

The higher the amount of patients from one class that
presents higher membership degree to only one of the
clusters, the higher the certainty that a patient belonging to
that cluster belongs to that class. Therefore, we can conclude
that if the membership degree is higher in all the input var-
iables used to develop themodel, then the class most possibly
observed will be the class predominant in that cluster.

3. Results

Table 1 represents the baseline characteristics of the final set
of patients regarding the considered classes, including the
Simplified Acute Physiology Score (SAPS) and the Sequential
Organ Failure Assessment (SOFA) score.

Figure 3 presents the distribution of the number of LVEF
values reported within the first 3 days of ICU stay. The data
shows that 90% of the LVEF assessments are performed
within 24 hours after ICU admission and 95% are performed
within the ICU stay.

3.1. Assessment of the Best Predicting Interval following
ICU Admission Using Fuzzy Modeling. Comparing different,
nonoverlapping, 6-hour intervals during the first 30 hours of
admission (Figure 4 and Table 2), we observe a decrease in
AUC from the first 6-hour interval to the 6–12 hours’ post-
ICU admission interval (𝑃 value = 0.089). The AUC in the
0–6 hours’ interval is 0.72 ± 0.05, decreasing to 0.67 ± 0.05 in
the 6–12 hours’ interval. Though not significant, this is most
likely due to initiation of therapy. The performances of the
time intervals 12–18 and 18–24 hours are still inferior to that of
the first 6 hours after ICU admission (AUC are 0.69±0.06 and
0.70±0.05 and 𝑃 values of the two-sample 𝑡-test are 0.105 and
0.599, resp.). The 𝑃 value of the two-sample 𝑡-test comparing
the 24–30 hours’ period and the first 6 hours of admission is
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Table 1: Baseline demographic and clinical characteristics within the first 6 hours of ICU admission in the cohort regarding patients with
LVEF ≤ 25% and LVEF > 25%.

Variables LVEF ≤ 25% LVEF > 25%
𝑃 values

115 patients 821 patients
Braden score 14.4 ± 2.6 14.8 ± 2.6 0.121
Total Glasgow coma score 12.1 ± 3.9 12.5 ± 3.6 0.345
Heart rate (beats/minute) 88.6 ± 17.8 84.2 ± 19.2 0.021
Diastolic NBP (mmHg) 59.2 ± 12.0 60.8 ± 13.6 0.249
Systolic NBP (mmHg) 110.2 ± 16.9 120.1 ± 20.2 <0.001
Respiratory rate (breaths/minute) 21.0 ± 4.8 19.2 ± 4.6 <0.001
Oxygen saturation (%) 96.8 ± 3.9 97.2 ± 2.9 0.278
Temperature (∘C) 36.6 ± 0.8 36.7 ± 0.8 0.474
Blood urea nitrogen (mg/dL) 37.6 ± 26.4 28.9 ± 22.3 <0.001
Carbon dioxide (mmol/L) 22.9 ± 5.0 23.4 ± 5.0 0.266
Glucose (mg/dL) 172.2 ± 78.1 151.9 ± 65.7 0.003
Hemoglobin (mmol/L) 11.9 ± 2.4 11.4 ± 2.0 0.032
Platelets (×103 cells/𝜇L) 244.2 ± 112.5 235.2 ± 108.3 0.408
Potassium (mmol/L) 4.3 ± 0.6 4.2 ± 0.7 0.050
Sodium (mmol/L) 137.8 ± 5.2 138.5 ± 4.7 0.139
White blood cells (×103 cells/𝜇L) 12.7 ± 5.6 12.8 ± 8.3 0.971
Age (years) 70.6 ± 15.1 67.3 ± 16.4 0.045
Weight on admission (kg) 77.1 ± 18.6 83.0 ± 25.7 0.018
SAPS I score on admission 13.9 ± 5.9 13.4 ± 5.5 0.428
SOFA score on admission 6.3 ± 4.2 5.4 ± 4.3 0.036
Males (%) 74 (64.4) 432 (52.6) 0.018
Data are presented as mean ± standard deviation, except for males where data is presented as number of patients (% of the total dataset).
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Figure 3: Distribution of the valid numerical values reported for
LVEF during the first 3 days of stay in the ICU, referring to the time
of ICU admission (0 hours).

0.339; that is, the performance of the model past 24 hours in
the ICU is not statistically different. The AUC 24 hours after
ICU admission is 0.67 ± 0.10. The AUC obtained using only 1
hour of measurements is 0.68±0.04, which is lower than that
of the first 6 hours after ICU admission (𝑃 value = 0.195).

We can conclude that the time frame comprising the
first 6 hours following ICU admission is the best both to
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Figure 4: Variation of AUCusing different, nonoverlapping, 6-hour
intervals during the first 30 hours after ICU admission.

predict severely depressed LVEF and to provide the earliest
assessment of LVEF in the ICU. This interval was therefore
used in the next steps to fine-tune the model.

3.2. Sequential Forward Selection. The set selected by SFS
in combination with fuzzy modeling is composed of seven
variables: systolic noninvasive blood pressure, 𝑥

1
, respiratory

rate, 𝑥
2
, blood urea nitrogen levels, 𝑥

3
, hemoglobin, 𝑥

4
,

sodium, 𝑥
5
, white blood cells, 𝑥

6
, and weight on admission,
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Table 2: Performance of the fuzzy model using different, nonoverlapping, 6-hour intervals during the first 30 hours after ICU admission.

1st hour 0–6 hours 6–12 hours 12–18 hours 18–24 hours 24–30 hours
AUC 0.68 ± 0.04 0.72 ± 0.05 0.67 ± 0.05 0.69 ± 0.06 0.70 ± 0.05 0.67 ± 0.10
Accuracy 0.64 ± 0.02 0.65 ± 0.03 0.63 ± 0.04 0.64 ± 0.06 0.66 ± 0.03 0.65 ± 0.04
Sensitivity 0.65 ± 0.03 0.65 ± 0.04 0.64 ± 0.04 0.64 ± 0.07 0.66 ± 0.04 0.65 ± 0.04
Specificity 0.57 ± 0.08 0.64 ± 0.12 0.59 ± 0.05 0.64 ± 0.08 0.66 ± 0.14 0.60 ± 0.19

Table 3: Performance of the fuzzy and LR models within the first
6 hours after ICU admission using the best set of variables selected
through sequential forward selection.

Fuzzy model
Best SFS set

Logistic regression
model

Best SFS set
AUC 0.71 ± 0.07 0.67 ± 0.07
Accuracy 0.68 ± 0.05 0.66 ± 0.05
Sensitivity 0.63 ± 0.14 0.62 ± 0.14
Specificity 0.68 ± 0.06 0.66 ± 0.06

𝑥
7
. The set selected by SFS combined with LR is composed of

six variables: noninvasive blood pressure (diastolic and sys-
tolic), respiratory rate, blood urea nitrogen levels, potassium,
and age on admission.

The performance results are shown in Table 3. From this
table, it follows that, for the FS subset, the best combination of
variables was obtained through the combination of SFS with
fuzzy modeling, which resulted in an AUC of 0.71 ± 0.07.
The traditional LR method performed only moderately in
identifying patients with severely depressed LVEF with an
AUC of 0.67 ± 0.07. Models are statistically different (𝑃 <
0.001).

3.3. Interpretation of Rules. The membership functions
obtained for each variable are depicted in Figure 5.Themem-
bership functions depicted by the continuous line correspond
to Rule 1. The dash-lined membership functions correspond
to Rule 2. The normal physiological range values for each
physiological variable are depicted in Table 4 to support
further linguistic interpretation of the rules.

The model created consists of nonlinear combinations
and therefore we cannot investigate any of the variables
separately from the others. We were able to extract two
distinct rules that can constitute a first assessment of severely
depressed LVEF in the ICU. The rules are as follows.

Rule 1. If 𝑥1 is 𝐴1,1 and 𝑥2 is 𝐴2,1 and 𝑥3 is 𝐴3,1 and 𝑥4 is 𝐴4,1
and 𝑥5 is 𝐴

5,1 and 𝑥6 is 𝐴
6,1 and 𝑥7 is 𝐴

7,1, then

𝑦1 = − 0.0093 ⋅ 𝑥1 + 0.0670 ⋅ 𝑥2 + 0.2700 ⋅ 𝑥3 + 0.5000

⋅ 𝑥4 − 1.200 ⋅ 𝑥5 + 0.4000 ⋅ 𝑥6 + 0.0540 ⋅ 𝑥7

+ 0.5000.

(5)

Table 4: Normal range of values for each physiological variable.

Variables Normal range
Systolic NBP (mmHg) 90 to 119 [26]
Respiratory rate
(breaths/minute) 12 to 24 [32]

Blood urea nitrogen
(mg/dL) 7 to 21 [33]

Hemoglobin (mmol/L) 8.56 to 11.17 (7.51 to 9.37 for
women) [34]

White blood cells
(×103 cells/𝜇L) 3.5 to 9 [35]

Sodium (mmol/L) 135 and 145 [36]

Rule 2. If 𝑥1 is𝐴1,2 and 𝑥2 is𝐴2,2 and 𝑥3 is𝐴3,2 and 𝑥4 is𝐴4,2
and 𝑥5 is 𝐴

5,2 and 𝑥6 is 𝐴
6,2 and 𝑥7 is 𝐴

7,1, then

𝑦2 = − 0.4300 ⋅ 𝑥1 + 0.3100 ⋅ 𝑥2 + 0.5000 ⋅ 𝑥3 + 0.2400

⋅ 𝑥4 − 0.0280 ⋅ 𝑥5 − 0.1500 ⋅ 𝑥6 − 0.3600 ⋅ 𝑥7

+ 0.1400.

(6)

The output is computed by calculating the weighted sum
of the results of the activation of both rules and the class
is obtained by applying a cut-off value to the output. Class
1 corresponds to “severely depressed LVEF” and class 0 to
“non-severely depressed LVEF.”

4. Discussion

Several works have addressed the characteristics of popula-
tions with severely depressed LVEF versus other LVEF values
regarding comorbidities and past medical interventions [8–
10]. However, to the best of our knowledge, this is the first
study predicting severely impaired LVEF using routinely
collected data in the ICU. Individual characteristics identified
in this work (Table 1) agree with past publications [6, 11, 13].
Patients in the severely impaired LVEF group tend to bemales
and to present higher heart rate, lower systolic blood pressure,
and higher blood urea nitrogen levels.

Variables obtained during the first 6 hours of ICU admis-
sion can best predict the presence of severely depressed
LVEF. Additionally, satisfactory predictive performance can
be achieved using variables obtained within the first hour
post-ICU admission and depending on the urgency of treat-
ment, physicians might act upon this time interval in critical
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Figure 5:Membership functions obtained for assessing severely depressed LVEF. Lower and upper bounds accepted for normal values ranges
are also depicted (grey zone). The solid-lined cluster corresponds to the antecedents of Rule 1 (𝐴𝑖,1) and the dash-lined cluster corresponds
to those of Rule 2 (𝐴𝑖,2).

situations. The developed fuzzy model constitutes a prelimi-
nary assessment to perform a limited protocol examination.

The first hours are crucial for treatment outcome, partic-
ularly regarding assessment of tissue perfusion in order to
direct fluid resuscitation therapy. In patients with sepsis, for
example, early interventionwith aggressive fluid resuscitation
has repeatedly been associated with improved outcome [39].
Knowledge of an ejection fraction and susceptibility to
respiratory failure may improve patient outcomes by guiding
fluid management. For this fact, it is expected that within a
short time frame following ICU admission most of the data
necessary for accurate prediction of poor LVEF is already
acquired, as observed in the study.

One of the benefits of using fuzzy logic is the creation
or rules that can then be informative for potential clinical
guidelines. However, the certainty around these rules can
only be assumed as far as the data used allows. Generalization
of the models must take into account each of the issues
addressed in the steps conducted in this study, such as
characteristics of the dataset, or the established protocols in

the ICU that influence the amount and frequency of data
acquired.

5. Conclusions

This work is focused on building a predictive model for
application in the ICU for rapid identification of patients
with severely depressed LVEF. It is expected that the use of
readily available clinical parameters for an early assessment
of severely depressed LVEF will improve the outcomes
associated with the administration andmanagement of fluids
in the ICU. The fuzzy model implemented in this work is
able to predict an LVEF ≤ 25% with an AUC of 0.71 ±
0.07, outperforming the traditional logistic regression model
(AUC 0.67 ± 0.07).

Further efforts must be made to validate the results in
other databases and in real clinical scenarios. This would
include prospective work to determine how accurate the
predictions are in different specific environments and impact
studies to see whether such prediction will influence clinician
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decision-making and/or improve hospital and treatments
cost efficiency.

Also, it would be useful to investigate the performance
of predictive models using baseline variables collected at the
time of ICU admission.

Disclosure

No influence was exerted by the funding institution in pro-
ducing and submitting this paper.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Authors’ Contribution

Leo A. Celi and Stan N. Finkelstein should be considered co-
senior authors.

Acknowledgments

The authors would like to acknowledge the Division of Clin-
ical Informatics of the Beth Israel Deaconess Medical Center
and the Engineering Systems Division of the Massachusetts
Institute of Technology, Boston, USA, for help and space
provided and technical resources, critical for the develop-
ment of this work. This work is funded by Portuguese
Funds through the Foundation for Science and Technology
(FCT) under Project LAETA 2015-2020, Reference UID/
EMS/50022/2013, and by the MIT-Portugal Program and
FCTGrants SFRH/BD/51028/2010, from thePortugueseMin-
istry of Education and Science. The project was partially
supported by the FCT research project IC4U-Decision Sup-
port System for Preventing ICU Readmissions (PTDC/EMS-
SIS/3220/2012). Susana M. Vieira acknowledges the support
by Program Investigador FCT (IF/00833/2014) from FCT,
cofunded by the European Social Fund (ESF) through
the Operational Program Human Potential (POPH). Leo
Anthony Celi is funded by the National Institute of Health
through NIBIB Grant R01 EB017205-01A1.

References

[1] L. J. Shaw, E. D. Peterson, K. Kesler, V. Hasselblad, and R. M.
Califf, “A meta-analysis of pre-discharge risk stratification after
acute myocardial infarction with stress electrocardiographic,
myocardial perfusion, and ventricular function imaging,” The
American Journal of Cardiology, vol. 78, no. 12, pp. 1327–1337,
1996.

[2] G. J. Taylor, J. O. Humphries, and E. D. Mellits, “Predictors of
clinical course, coronary anatomy and left ventricular function
after recovery from acute myocardial infarction,” Circulation,
vol. 62, no. 5, pp. 960–970, 1980.

[3] H. D. White, R. M. Norris, M. A. Brown, P. W. Brandt, R. M.
Whitlock, and C. J. Wild, “Left ventricular end-systolic vol-
ume as the major determinant of survival after recovery from
myocardial infarction,”Circulation, vol. 76, no. 1, pp. 44–51, 1987.

[4] E. L. Alderman, L. D. Fisher, P. Litwin et al., “Results of coronary
artery surgery in patients with poor left ventricular function
(CASS),” Circulation, vol. 68, no. 4, pp. 785–795, 1983.

[5] F. J. Baumgartner, B. O. Omari, S. Goldberg et al., “Coronary
artery bypass grafting in patients with profound ventricular
dysfunction,” Texas Heart Institute Journal, vol. 25, no. 2, pp.
125–129, 1998.

[6] J. P. Curtis, S. I. Sokol, Y. Wang et al., “The association of left
ventricular ejection fraction, mortality, and cause of death in
stable outpatients with heart failure,” Journal of the American
College of Cardiology, vol. 42, no. 4, pp. 736–742, 2003.

[7] C. A. Milano, W. D. White, L. R. Smith et al., “Coronary artery
bypass in patients with severely depressed ventricular function,”
TheAnnals ofThoracic Surgery, vol. 56, no. 3, pp. 487–493, 1993.

[8] G. L. Sardi, M. A. Gaglia Jr., G. Maluenda et al., “Outcome
of percutaneous coronary intervention utilizing drug-eluting
stents in patientswith reduced left ventricular ejection fraction,”
American Journal of Cardiology, vol. 109, no. 3, pp. 344–351,
2012.

[9] G. D. Trachiotis, W. S. Weintraub, T. S. Johnston, E. L. Jones, R.
A. Guyton, and J. M. Craver, “Coronary artery bypass grafting
in patients with advanced left ventricular dysfunction,” Annals
of Thoracic Surgery, vol. 66, no. 5, pp. 1632–1639, 1998.

[10] A. Unbehaun, M. Pasic, S. Buz et al., “Transapical aortic valve
implantation in patients with severely depressed left ventricular
function,” Journal of Thoracic and Cardiovascular Surgery, vol.
143, no. 6, pp. 1356–1363, 2012.

[11] R. S. Bhatia, J. V. Tu, D. S. Lee et al., “Outcome of heart failure
with preserved ejection fraction in a population-based study,”
The New England Journal of Medicine, vol. 355, no. 3, pp. 260–
269, 2006.

[12] S.A.Hunt,D.W.Baker,M.H.Chin et al., “ACC/AHAguidelines
for the evaluation and management of chronic heart failure in
the adult: executive summary: a report of the American College
of Cardiology/American Heart Association Task Force on
practice guidelines (committee to revise the 1995 guidelines for
the evaluation and management of heart failure),” Circulation,
vol. 104, no. 24, pp. 2996–3007, 2001.

[13] T. E. Owan, D. O. Hodge, R. M. Herges, S. J. Jacobsen, V. L.
Roger, and M. M. Redfield, “Trends in prevalence and outcome
of heart failure with preserved ejection fraction,” The New
England Journal of Medicine, vol. 355, no. 3, pp. 251–259, 2006.

[14] S. Sherazi and W. Zareba, “Diastolic heart failure: predictors of
mortality,” Cardiology Journal, vol. 18, no. 3, pp. 222–232, 2011.

[15] O. Court, A. Kumar, J. E. Parrillo, and A. Kumar, “Clinical
review: myocardial depression in sepsis and septic shock,”
Critical Care, vol. 6, no. 6, pp. 500–508, 2002.

[16] C. Asferg, L. Usinger, T. S. Kristensen, and J. Abdulla, “Accuracy
of multi-slice computed tomography for measurement of left
ventricular ejection fraction compared with cardiac mag-
netic resonance imaging and two-dimensional transthoracic
echocardiography: a systematic review and meta-analysis,”
European Journal of Radiology, vol. 81, no. 5, pp. e757–e762, 2012.

[17] J. A. Rumberger, T. Behrenbeck, M. R. Bell et al., “Determi-
nation of ventricular ejection fraction: a comparison of avail-
able imaging methods. The Cardiovascular Imaging Working
Group,” Mayo Clinic Proceedings, vol. 72, no. 9, pp. 860–870,
1997.

[18] K. Okrah, M. Vaughan-Sarrazin, and P. Cram, “Trends in ech-
ocardiography utilization in the Veterans Administration
Healthcare System,” American Heart Journal, vol. 159, no. 3, pp.
477–483, 2010.



The Scientific World Journal 9

[19] B. J. Kimura and A. N. DeMaria, “Time requirements of the
standard echocardiogram: implications regarding limited stud-
ies,” Journal of the American Society of Echocardiography, vol. 16,
no. 10, pp. 1015–1018, 2003.

[20] G. D. Clifford, D. J. Scott, and M. Villarroel, “User Guide and
Documentation for the MIMIC II Database,” Rev:29, 2012,
http://mimic.physionet.org/database.html.

[21] M. Douglass, G. D. Clifford, A. Reisner, G. B. Moody, and R.
G.Mark, “Computer-assisted de-identification of free text in the
MIMIC II database,” in Proceedings of the International Confer-
ence Computers in Cardiology, pp. 341–344, September 2004.

[22] J. Hua, Z. Xiong, J. Lowey, E. Suh, and E. R. Dougherty, “Opti-
mal number of features as a function of sample size for various
classification rules,” Bioinformatics, vol. 21, no. 8, pp. 1509–1515,
2005.

[23] V. Kumar, A. K. Abbas, and J. Aster, Robbins and Cotran Path-
ologic Basis of Disease, Saunders Elsevier, St. Louis, Mo, USA,
8th edition, 2009.

[24] G. Mahadevan, R. C. Davis, M. P. Frenneaux et al., “Left ven-
tricular ejection fraction: are the revised cut-off points for defin-
ing systolic dysfunction sufficiently evidence based?”Heart, vol.
94, no. 4, pp. 426–428, 2008.

[25] S. O’Connor, Examination Medicine, Churchill Livingstone,
Edinburgh, Scotland, 2009.

[26] P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier
Detection, John Wiley & Sons, 3rd edition, 1996.

[27] M. Berthold, “Fuzzy models and potential outliers,” in Proceed-
ings of the 18th International Conference of the North American
Fuzzy Information (NAFIPS ’99), pp. 532–535, June 1999.

[28] J. K. Ord, Families of Frequency Distributions, Griffin, London,
UK, 1972.

[29] F. Cismondi, L. A. Celi, A. S. Fialho et al., “Reducing unneces-
sary lab testing in the ICU with artificial intelligence,” Interna-
tional Journal of Medical Informatics, vol. 82, no. 5, pp. 345–358,
2013.

[30] F. Cismondi, A. S. Fialho, S. M. Vieira, S. R. Reti, J. M. C.
Sousa, and S.N. Finkelstein, “Missing data inmedical databases:
impute, delete or classify?” Artificial Intelligence in Medicine,
vol. 58, no. 1, pp. 63–72, 2013.

[31] A. S. Fialho, L. A. Celi, F. Cismondi et al., “Disease-based mod-
eling to predict fluid response in intensive care units,”Methods
of Information in Medicine, vol. 52, no. 6, pp. 494–502, 2013.

[32] G. J. Tortora and N. P. Anagnostakos, Principles of Anatomy and
Physiology, HarperCollins, New York, NY, USA, 6th edition,
1990.

[33] D. Nicoll, S. J. McPhee, and M. Pignone, “Blood urea nitrogen,”
in Pocket Guide to Diagnostic Tests, D. Nicoll, S. J. McPhee, M.
Pignone, andC.M. Lu, Eds.,McGraw-Hill, NewYork,NY,USA,
5th edition, 2008.

[34] H. F. Bunn, “Approach to the anemias,” in Cecil Medicine, L.
Goldman and A. I. Schafer, Eds., chapter 161, Saunders Elsevier,
Philadelphia, Pa, USA, 24th edition, 2011.

[35] Reference range list from Uppsala University Hospital (‘Labo-
rationslista’), Artnr 40284 Sj74a, 2008.

[36] K. D. Pagana and T. J. Pagana, Mosby’s Diagnostic and Labora-
tory Test Reference, Elsevier Mosby, St. Louis, Mo, USA, 10th
edition, 2010.

[37] D. E. Gustafson andW. C. Kessel, “Fuzzy clustering with a fuzzy
covariance matrix,” in Proceedings of the 18th IEEE Conference
on Decision and Control, pp. 761–766, IEEE, San Diego, Calif,
USA, January 1979.

[38] J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: the fuzzy c-means
clustering algorithm,” Computers& Geosciences, vol. 10, no. 2-3,
pp. 191–203, 1984.

[39] L. Durairaj and G. A. Schmidt, “Fluid therapy in resuscitated
sepsis: less is more,” Chest, vol. 133, no. 1, pp. 252–263, 2008.



Submit your manuscripts at
http://www.hindawi.com

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Behavioural 
Neurology

Endocrinology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Disease Markers

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Oncology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oxidative Medicine and 
Cellular Longevity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

PPAR Research

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Immunology Research
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Obesity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and  
Mathematical Methods 
in Medicine

Ophthalmology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Diabetes Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment
AIDS

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gastroenterology 
Research and Practice

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s 
Disease

Evidence-Based 
Complementary and 
Alternative Medicine

Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com


