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18 Aerodynamic Methods for Estimating
Turbulent Fluxes

JOHN H. PRUEGER
USDA Agricultural Research Service
National Soil Tilth Laboratory
Ames Iowa

WILLIAM P. KUSTAS
USDA Agricultural Research Service
Hydrology Laboratory
Beltsville, Maryland

FLUX GRADIENT APPROACHES

The exchange of energy and mass between a surface and the lowest region
of the troposphere is a complex process that governs many hydrological, agri-
cultural, and atmospheric processes. The layer of air directly affected by sur-
face–atmosphere exchanges is strongly influenced by turbulent processes at the
surface–atmosphere boundary and extends upward into the atmosphere to a
height of approximately 1 km. This region is commonly referred to as the atmos-
pheric boundary layer (ABL) that is uniquely characterized by turbulence result-
ing from mechanical (wind shear) and buoyancy (thermal) forces at or near the
surface. Methods have been developed to evaluate energy/mass (heat, water
vapor, trace gases, and pollutants) exchanges between the ABL and the underly-
ing surface. In this chapter, we describe the flux gradient approach for estimating
mass and energy fluxes under the rubric of aerodynamic methods. We provide
some historical perspective, present fundamental equations in the context of
Monin-Obukhov similarity theory and introduce recent developments of an alter-
native method to compute heat and water vapor fluxes using turbulence variance
statistics.

The aerodynamic method necessitates the existence of a relationship
between a flux density (mass/energy per unit area per unit time) of an atmos-
pheric constituent and its mass or scalar gradient above a surface and is recog-
nized in the literature as the flux-gradient technique. The early basis for this
approach originated from a German physician, Adolph Fick, who in 1855 at the
age of 26 proposed a mathematical concept for molecular diffusion using
Fourier’s theory of heat equilibrium. The resulting statement put forth the physi-
cally sound and logical idea that diffusion is proportional to a concentration gra-
dient. It would be 25 years later before the first experimental proof of this idea
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was provided. This concept today is well known as Fick’s Law of Diffusion
(Fick, 1855). Simply stated, the flux for one-dimensional molecular diffusion can
be expressed as

[1]

where $c/$x represents a concentration gradient (M L–3) of a constituent c across
a horizontal plane x, D is the molecular diffusivity (L2 T–1), and the flux J is the
quantity of a constituent diffusing through a unit area per unit time (M L–2 T–1)
where M, L, and T are the appropriate Système International (SI) units of mass,
length, and time, respectively. The molecular diffusivity term D, is assumed to
contain all of the information pertaining to the random motion of individual mol-
ecules as a function of volume, temperature and concentration gradient. Equation
[1] is used to describe the molecular mass flow (usually along a horizontal direc-
tion) across a unit area in a predefined plane that is proportional to a concentra-
tion differential across that plane.

An analogous assumption was made for turbulence that simply applied the
concept of Fick’s Law from a molecular diffusion case to a turbulent diffusion
case involving mass and energy from a surface to an overlying atmosphere. The
distinction is based on the vertical turbulent (as opposed to molecular) diffusion
of mass or energy that is proportional to a mean concentration gradient and a
height dependent turbulent (eddy) diffusivity term. Boussinesq (1877) introduced
the concept of an eddy diffusivity by assuming that turbulent stresses in the aver-
aged momentum equations are equal to the product of an eddy diffusivity and a
mean strain rate. G.I. Taylor (1915) conducted a pioneering investigation in the
transport of a scalar (temperature) and proposed an equation of turbulent trans-
port as (in its original form)

[2]

where # is air temperature, t is time, B is the velocity scale in the vertical, d is dis-
tance in the horizontal that represents a length from the point of origin to the
measured location, and z is the vertical spatial coordinate. By direct analogy to 

Fourier’s heat equation for a solid, can be related to the density of air (�), the 

specific heat of air (Cp) and an eddy diffusivity term (k) as k = �Cp wd/2. Schmidt
(1917) expanded this concept to include other scalar admixtures (Brutsaert,
1982) that subsequently led to the present day generalized flux-gradient form of

[3]

where F is the energy (or mass) flux in the vertical, $Ac/$z is a height dependent
concentration gradient for any atmospheric constituent and ki is the eddy diffusiv-
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ity assumed to contain all of the transport processes pertaining to the transport of
Ac across a vertical plane z.

Specifically, present day flux-gradient theory has been used to represent the
transport of momentum, heat, and water vapor in response to a gradient and eddy
diffusivity in the following forms;

[4]

[5]

[6]

where , is the surface shear stress (kg m–1 s–2), H is the sensible heat flux (W m–2),
E is the water vapor flux (kg m–2 s–1), �a is air density (kg m–3), Cp is specific heat
of air (J kg–1 K–1), km, kh, and kq are eddy diffusivities for momentum, heat, and
water vapor, respectively (m2 s–1). Mass and scalar gradients for momentum, heat,
and specific humidity are expressed as $u/$z, $#/$z, and $q/$z, respectively. The
ki (where i = m, h, or q) term has been identified by various names: eddy viscos-
ity, eddy diffusivity, eddy-transfer coefficient, turbulent-transfer coefficient, and
gradient-transfer coefficient (Stull, 1988). The eddy viscosity is not a fluid prop-
erty as is molecular viscosity, but rather a flow property that is related to the state
of turbulence. Collectively, Eq. [4–6] represent first order closure or “k-theory”
(Richardson, 1920 cites G.I Taylor as the originator of the k-notation) as the
product of a scalar concentration gradient and a turbulent diffusivity (k).

All of the complexities and uncertainties of turbulent transport for momen-
tum, heat, and water vapor are embedded in the k term. This greatly simplifies a
complicated and nonlinear process. For the case where transport is dominated by
small eddies over a uniform surface with sufficient fetch and steady state condi-
tions (in particular neutral) this approach has been successful. Where surface het-
erogeneity, advection and non-steady state conditions prevail, the approach
becomes less valid, and is problematic to implement.

FUNDAMENTAL STRUCTURE OF THE ATMOSPHERE

Consider the structure of the atmosphere that is affected by conditions at or
near the surface. Prandtl (1904) first set forth a concept (for momentum transfer)
for the region near a solid wall. Under this concept, horizontal gradients are neg-
ligible when compared with vertical gradients. In like fashion, the earth’s surface
(land or water) can be considered a solid wall thus affecting the lower boundary
layer of the atmosphere. The depth of this layer can vary from a few 10s of
meters during early morning and nocturnal periods increasing to a kilometer or
more during the afternoon periods as a result of strong surface heating. A concise
and detailed description of the sub-layers with approximate magnitudes of the
thickness of the layers that collectively comprise the lower boundary layer of the
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atmosphere is provided by Brutsaert (1982) and is summarized below. It is
important to keep in mind that the depth of the ABL changes with the diurnal
cycle and thus depths of the sub-layers of the ABL are approximations and can
vary according to local variations of surfaces and microclimate.

Beginning at the surface of the earth and moving vertically into the
atmosphere is a layer approximately 1.5–3.5ho (where ho is a typical or average
height (m) of the surface elements, i.e., vegetation or obstacles) in depth com-
monly referred to as the roughness sub-layer (Fig. 18–1). It also is identified in
the literature as the interfacial, viscous, or canopy sub-layer with roughness
sub-layer the more recognized term. Extending above the roughness sub-layer
1 to 10 m is the dynamic sub-layer where under neutral conditions, wind speed
profiles can be expected to be generally logarithmic. Above the roughness sub-
layer, is the surface sub-layer or inner region that extends up to 50 to 100 m
where wind speed profiles can also be logarithmic. In general, the depth over
where Monin-Obukhov Similarity Theory (MOST, discussed later) is applica-
ble is typically 0.1 ZABL where ZABL is the height (m) of the atmospheric bound-
ary layer. Over complex terrain Brutsaert and Sugita (1992) report the upper
limit of MOST to be approximately 100 (z – do)/zom where do and zom are rough-
ness parameters described later in the chapter. Beyond the surface sub-layer for
a range between 100 and 1000 m is the outer region or defect sub-layer and
finally the “free atmosphere” where the term free refers to that part of the
atmosphere that is not influenced directly by surface forcings such as mechani-
cal or buoyancy forces related to turbulence and surface heating generated at
the surface.

The region of focus for this topic will be the surface sub-layer that is fully
turbulent and begins above the roughness sub-layer (nominally three times the
height of surface obstacles or vegetation canopy) and is directly affected by
mechanical and buoyancy forcings generated at the surface. It is assumed that in
this layer the fluxes are nearly constant with height, and that at a given height
reflects a process that is in equilibrium with the upwind surface or “footprint.” In
this layer, stability effects on wind speed, temperature, and humidity profiles
need to be accounted for when using a flux gradient profile technique to estimate
fluxes of momentum, heat, and water vapor. In addition, local surface and
micrometeorological conditions that contribute to the production of mechanical
(wind shear) and buoyancy forces (heat and water vapor) affecting the stability of
the surface layer need to be accounted for as well. In general this can be accom-
plished by computing non-dimensional stability parameters that relate the contri-
bution of buoyancy to those of mechanical forces from the same measurements
used to compute turbulent fluxes of momentum, heat, and water vapor.

NON-DIMENSIONAL STABILITY PARAMETERS

In micrometeorology two forms of non-dimensional stability parameters
have been developed to characterize diabatic forcings (non-neutral conditions)
near the surface. The first was proposed by Richardson (1920) in the form of a
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ratio that accounts for the effects of buoyancy and mechanical forcings and is
expressed as

[7]

where g is the acceleration due to gravity (m s–2), $#/$z and $u/$z are potential
temperature and wind speed gradients (°K and m s–1) respectively and Ta is the
mean absolute temperature (°K). This expression is well known as the gradient
Richardson number, (Ri) and can be interpreted to represent a ratio of the contri-
bution of buoyancy (thermal effects) to mechanical (wind shear) forces. Relative
magnitudes of Ri provide a sense of the strength of the stability/instability. Nega-
tive values of Ri indicate conditions of instability where surface heating enhances
buoyancy effects. These conditions are often associated with warm sunny days.
Positive values of Ri indicate a stable condition where temperatures near the sur-
face are cooler than away from the surface, a condition that essentially dampens
buoyancy forces and ultimately turbulence. Stable conditions are generally asso-
ciated with early morning, evening–night periods and overcast days. Richardson
numbers approaching zero indicates neutral stability generally associated with
early morning and/or evening periods on cloudy days with strong winds. Unsta-
ble and stable conditions typically will dominate a diurnal cycle with neutral con-
ditions representing a minor fraction of a day.

Monin and Obukhov (1954) proposed a more rigorous theoretical indicator
of stability as

[8]

where z is height above a surface (m), do is a displacement height (m) associated
with vegetated canopies. The stability length scale L (m) is a function of momen-
tum and heat fluxes (Obukhov, 1946) and is expressed in original form as

[9]

later modified to include the contribution of buoyancy from evaporation effects
(Businger & Yaglom, 1971) to be

[10]

where g, �, Ta, and Cp have been previously defined, u* is friction velocity (m s–1)
where qualitatively it can be considered proportional to the tangential rate of
rotation of frictionally driven eddies in a flow, k is a constant assumed to be
~0.40, (von Kármán’s = u* {z $u/$z}–1) H is sensible heat flux (W m–2), and E is
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the water vapor or evaporative flux (kg m–2 s–1). Because L represents all of the
parameters (except height) related to mechanical and buoyancy forces, it is con-
sidered a more absolute indicator of stability. Similar to the Ri number, negative
values of D indicate unstable and positive values represent stable conditions.

It has been assumed in some past investigations that under unstable condi-
tions and very near the surface (~2 m) that Ri � D. Comparing and evaluating
results from recent studies by Dyer and Bradley (1982), Webb (1982), Högström,
(1988), and Kader and Yaglom, (1990), Högström, (1996) concluded that the
relationship between Ri and D was better represented by Ri � 1.5D. In practice, the
Ri number is easier to calculate, since it is computed directly from measurements
of temperature and wind speed in a vertical profile configuration above a surface.
In contrast, the Monin-Obukhov stability length, while more theoretically robust,
requires either more complicated measurements of u*, H, and E or an iterative
scheme using profiles of wind, temperature, and humidity (Brutsaert, 1982);
however, D does include the buoyancy effects from temperature and humidity (it
is embedded in H and E) and thus it is on a practical and theoretical level gener-
ally preferred over Ri.

MONIN-OBUKHOV SIMILARITY THEORY

At this point, we introduce the theory of surface layer similarity proposed
by Monin and Obukhov (1954). Simply stated, this theory relates surface fluxes
of momentum, sensible heat, and water vapor with profiles of wind speed, poten-
tial temperature, and humidity in a horizontally homogeneous atmospheric sur-
face layer. For several decades, Monin-Obukhov similarity theory (MOST) has
been the approach relating mean profiles of scalars and wind speed to turbulent
fluxes of heat, water vapor, and momentum (Brutsaert, 1982; Stull, 1988). Early
MOST research efforts were focused on relatively flat, uniform and often well
watered vegetated surfaces (agricultural fields) to evaluate turbulent fluxes. In
recent years, MOST has been extended to include a class of scalars often referred
to as trace gases (CO2, CH4, NH3, and NO2). Further research progression
extended the use of MOST from homogeneous to heterogeneous (sparse or
patchy) vegetated surfaces, irregular or sloping terrain. The results of such efforts
have been mixed.

Under neutral atmospheric conditions in the lower atmosphere, there exists
a relationship between u* (which is proportional to momentum flux) and the ver-
tical gradient of mean horizontal wind flow. This relationship is expressed as

[11]

where all terms have been previously defined. In a shallow layer above the sur-
face, turbulent fluxes of momentum, heat, water vapor, etc. are approximately
constant with height and thus u* is assumed to be constant with height, although
in reality this is not strictly true. Practically, if the change in u* varies by <10%
with height then u* is considered constant with height. Integrating Eq. [11] from a
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height near a surface where u approaches 0 to any height z above a surface results
in the expression for the logarithmic wind profile

[12]

This expression relates the flux of momentum to a wind speed gradient where zom

is a scaling parameter (m) that represents the aerodynamic roughness of the sur-
face over which the wind speed profile is measured. The displacement height do

is referred to as the zero-plane displacement and is considered to represent the
mean level at which momentum is absorbed by individual elements of a plant or
surface community. Specifically, it is the conceptual level of the effective sink for
momentum (Thom, 1971, 1975).

Empirical correlations have suggested that do and zom can be reasonably
approximated by simple expressions (Allen et al., 1989)

do = 0.67hvs [13]

zom = 0.12hvs [14]

where hvs is the height of a vegetated surface.
Similar relationships also can be derived for sensible heat and water vapor as

[15]

[16]

where T* and q* are scaling parameters defined as

[17]

[18]

Equations [11], [15], and [16] are only valid for the neutral stability case, a con-
dition in the natural environment that is not often encountered. Under non-neutral
conditions, (strong surface heating or temperature inversions, much more often
the case) buoyancy forces will distort the structure and intensity of turbulence
and thus the shape of the profiles for momentum, heat, water vapor, etc. In short,
unstable conditions enhance upward turbulence motion, distorting the logarith-
mic profiles and thus affecting the relationships between fluxes and mean gradi-
ents, Thom (1975). Stable conditions act to suppress turbulence motion. For the
neutral case, only mechanical or friction derived turbulence exists; however, in
non-neutral cases, profile distortions need to be accounted for and can be accom-
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plished by using empirically derived non-dimensional functions of either Ri or D .
Largely on the basis of a dimensional argument Monin and Obukhov (1954)
established flux-profile generalizations to account for non-neutral conditions
when computing turbulent fluxes.

Combining Eq. [11], [15], and [16], with Eq. [8] and rearranging with a
functional dimensionless expression to account for non-neutral conditions results
in the following expressions for momentum, heat, and water vapor;

[19]

[20]

[21]

where �m, �h, and �q represent “universal” non-dimensional wind, temperature,
and water vapor profile functions of D (or Ri). Equations [19], [20], and [21] are
the fundamental expressions in differential form for MOST to relate surface
fluxes of momentum, heat, and water vapor to profile gradients.

SURFACE-LAYER STABILITY CORRECTIONS

Equations [19], [20], and [21] contain non-dimensional stability corrections or
� functions that are assumed to be “universal.” Quotations are used to alert the reader
that this is a relative term and is limited to cases where MOST is applicable. Much
of the theoretical development and experimental research of the � functions has been
focused on the transport of momentum and heat, �m and �h, respectively. The num-
ber of studies specific to water vapor transport (�q) is small compared with momen-
tum and heat transport (�m and �h). Limited reliable measurements of humidity or
water vapor profiles may have contributed to this. For the present we adopt the
assumption found in the literature (e.g., Dyer, 1967) of �h � �q. Simply stated, stabil-
ity (mechanical and buoyancy) induced transport affects heat, water vapor, and other
atmospheric constituents in largely the same way (Crawford, 1965; Dyer, 1967). It is
noted, however, that theoretical and experimental work by Warhaft (1976) and
Verma et al. (1978), respectively, and comments by Brost (1979) and Hicks and
Everett (1979) suggest caution in adhering to the assumption of �h � �q.

E FUNCTION: EARLY SEMI-EMPIRICAL FORMULATIONS

The influence of stability (stable or unstable atmospheric conditions) on the
turbulent transport of scalars and momentum near a surface has been a focus of
study dating back to the 1940s (Holzman, 1943; Deacon, 1949). Early efforts
were directed toward understanding and developing theoretical as well as func-
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tional relationships of a non-linear physical process relating the transport of
momentum and energy to gradients of wind speed and scalars (temperature and
water vapor) Lettau (1949), Deacon (1955), Monin and Obukhov (1954), Kazan-
ski and Monin (1956), Ellison (1957), Swinbank (1960), Panofsky et al. (1960),
Panofsky (1961a,b), Sellers (1962).

Various forms of � functions used to account for stability effects began
appearing in the early 1960s from several investigators independently. The earli-
est form was an interpolation function for the known behavior of Eq. [11] under
free and forced convection conditions. This expression was derived in different
ways independently by Kazanski and Monin (1956), Ellison (1957), Yamamoto
(1959), Panofsky (1961a), and Sellers (1962) and was expressed as

�4 + � �3D [22]

where � is a constant, � = (kz/u*)/($u/$z), and D is defined in Eq. [8]. Equation
[22] is in algebraic form expressing a relationship between wind shear (�) and the
stability length D (z/L) and is recognized as the KEYPS function after the names
of its originators (Kazanski & Monin, 1956; Ellison, 1957; Yamamoto, 1959;
Panofsky, 1961a; Sellers, 1962). As an interesting note, Businger and Yaglom
(1971) point out that Obukhov (1946) proposed the same functional interpolation
formula that embraced the entire range of stabilities and thus suggest that a more
appropriate name for Eq. [22] perhaps should be O’KEYPS since Obukhov
(1946) predates the others by nearly a decade.

Equation [22] is a semi-empirical function that had wide use during the six-
ties (Lumley & Panofsky, 1964). The derivation was fully justified at that time
since there were no direct data to determine the experimental form of the rela-
tionships. In 1960, Webb (1960) proposed a two-part function for � with continu-
ous first, second, and third derivatives at the junction for the stable and unstable
cases. For the stable condition this was expressed as

[23]

and for the unstable condition

[24]

Equations [23] and [24] are functional approximations to Eq. [22], which is in
fact a differential equation when appropriate substitutions are made. These
expressions were valid for the range of –D 2 0.0317 for the stable case and –D >
0.0317 for the unstable condition. Equations [23] and [24] represent early exam-
ples of the empirical functional forms of surface-layer stability corrections for
wind profile measurements (Panofsky, 1963).

Since then, numerous forms of � corrections have been derived and/or
modified from various studies. Literature citations will be limited to several
review articles dealing with this topic (Dyer, 1974; Yamamoto, 1975; Yaglom,
1977; Foken & Skeib, 1983; Högström, 1988; Högström, 1996). Tables 18–1 and
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18–2, however, will contain examples of stability corrections from many other
investigators for both stable and unstable cases across a variety of surfaces. This
list will enable the reader to quickly review important contributions to this topic
spanning the last 30 years.

UNSTABLE CASE

Dyer and Hicks (1970) provide one of the more recognized and used forms
of the universal functions for the unstable case for momentum and heat transport

�m = (1 – 16D)–1/4 [25]

�h = (1 – 16D)–1/2 [26]

where, subscripts m and h refer to momentum and sensible heat fluxes, respec-
tively. These forms were derived on the assumption that von Kármán’s constant is
equal to 0.41. The range of D is –1 2 D 2 0, where negative D represents unstable
conditions associated with daytime surface heating. It is noted again that near the
surface (approximately 2 to 3 m above) the gradient Richardson number (Ri) has
been used in place of D. Businger (1987) provides supporting data on the appro-
priateness of this assumption. The following year Businger et al. (1971) reported
similar � functions for the unstable case as

�m = (1 – 15D)–1/4 [27]

�h = 0.74(1 – 9D)–1/2 [28]

where D includes the range –2 2 D 2 1. Equations [25], [26], [27], and [28] have
been widely used and are found in most textbooks related to micrometeorology.
It has been suggested that the difference in the value of the von Kármán’s con-
stant (0.41 for Dyer and Hicks, 1970, compared with 0.35 for Businger et al.,
1971) may have contributed to the differences. Literature values for the von Kár-
mán constant range from 0.35 to 0.43 and remains somewhat an unresolved issue,
however, most studies use k = 0.40. Note that for the momentum case, Eq. [25]
and [27] are nearly identical differing only slightly in the value of the constant
(15 compared with 16).

For sensible heat, in addition to the incorporation of Prandtl’s number
(0.74), a considerable difference between the constants for Eq. [24] and [26] is
observed. The range for D is greater for the Businger et al. (1971) corrections than
for Dyer and Hicks (1970) by a factor of nearly two suggesting applicability
across a wider range of atmospheric surface conditions. Pruitt et al. (1973)
reported � corrections for momentum and water vapor profiles over turf grass
(Poaceae sp.) as

�m = (1 – 16Ri)–1/3 [29]

�q = [0.885(1 – 22Ri)]–2/5 [30]
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In that study, measurements of evaporation and momentum were made using a
precision weighing lysimeter (for evaporation) and a floating drag-plate lysimeter
(for momentum). This study was unique since water vapor was considered. Note
the use of Ri in place of D (Ri 6 D). The results represented an even wider range of
stabilities (–3.5 2 Ri 2 0) than those of Businger et al. (1971).

Equations [25], [26], [27], [28], [29], and [30] represent important contri-
butions from a period (1970–1973) in which theoretical flux-gradient relation-
ships were fitted with results from field experiments for the unstable case.
Profile estimates were compared with measurements of evaporation and sensi-
ble heat fluxes from eddy covariance or lysimeters. As a result, eddy fluxes and
vertical profiles were independently determined and then related within the
Monin-Obukhov framework. Prior to the work of Dyer and Hicks (1970) and
Businger et al. (1971), there were few direct data permitting one to determine
the experimental form of these relationships with Swinbank (1964, 1968) being
the exception.

STABLE CASE

Considering now the stable case, Webb (1970), Businger et al. (1971), and
Pruitt et al. (1973) provide early expressions that are frequently cited in which
under stable conditions the effects on momentum, heat, and water vapor transport
are assumed to be more or less equivalent.

From Webb (1970) the correction is simply expressed as,

�m = �h = �q = 1 + 5.2D [31]

while Businger et al. (1971) expressed momentum and heat flux corrections as

�m = 1 + 4.7D [32]

�h = 0.74 + 4.7D [33]

and from Pruitt et al. (1973) for momentum and water vapor,

�m = (1 + 16Ri)1/3 [34]

�q = 0.885(1 + 34Ri)2/5 [35]

The variability among the � expressions for the stable case is striking (see Tables
18–1 and 18–2) suggesting difficulties in the MOST approach that have yet to be
resolved and raising questions about the limitations and under what conditions
MOST becomes tenuous. It has been suggested that perhaps this may be related
to sources of errors arising from instrument calibration–measurement technique
(Yaglom, 1977). While this always remains a possibility with past, present and
future studies, it may not necessarily have anything to do with instrumentation. It
is important to recognize the random statistical variability of atmospheric behav-
ior. The assumption of surface layer atmospheric stationarity can often be vio-
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lated by meso-scale events intermittently imposed on any given study site. These
can include wind speed, radiation and wind direction that can in turn cause sur-
face fluxes of momentum, sensible, and latent heat to be highly variable so that
ultimately a given flux-gradient averaging period will be affected.

SUMMARY OF THE GRADIENT STABILITY FUNCTIONS

It should be emphasized that while the constants for the various � functions
have varied from study to study, some more appreciably than others, the general
form of the equations for unstable and stable conditions remains largely the
same. For the unstable case involving momentum, heat, and water vapor transport
this can be expressed in general form as

�i = (1 – *D)–� [36]

where values of * can range from 0.227 to 28 and � between 0.2 and 0.5 (Table
18–1). Expanding Eq. [36] to represent specific generalized forms as proposed by
Businger, (1966) and Dyer and Hicks, (1970) one arrives at

�m = (1 – �D)–1/4 [37]

�h = (1 – �D)–1/2 [38]

�q = (1 – �D)–1/2 [39]

where � in this case is equal to 16. Additionally Businger (1966) and Pandolfo
(1966) suggested that there is no distinguishable difference between �h and �q in
the unstable case and that each can be well described by the square of �m and sug-
gested a more general expression as

�m
2 = �h = �q = (1 – 16D)–1/2 [40]

The generalized form for the stable condition (Webb, 1970) can be expressed as

�m = �h = �q = 1 + 5D [41]

INTEGRATED FORMS OF THE FLUX-GRADIENT 
AND STABILITY FUNCTIONS

Equations [19], [20], and [21] represent differential functional expressions
for the transfer of momentum, heat, and water vapor. When making profile meas-
urements of wind speed, temperature, and humidity, one is actually measuring
the difference (!u, !T, and !q) between any two or more heights and not the
derivative ($u, $#, and $q). The stability correction functions summarized in
Tables 18–1 and 18–2 are functional forms for the derivative expressions for
momentum heat and water vapor. To appropriately use the stability corrections
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with actual measurements, an integration needs to be performed with respect to z
from z = do + zom, where u = 0 according to Eq. [11] to an appropriate height in
the surface sub-layer.

The relationships between surface fluxes (momentum, sensible heat, and
evaporation) and measured mean wind speed, temperature, and water vapor pro-
files from a profile configuration above the roughness sub-layer can now be
expressed respectively as finite differences. These forms allow for direct imple-
mentation of measured profiles of wind speed, temperature and humidity over a
surface and are expressed as

[42]

[43]

[44]

where all terms have been previously defined. Here, 5m, 5h, and 5q are the inte-
grated forms for the respective stability corrections and subscripts 1 and 2 refer to
arbitrary measurement heights above a surface. Equations [42], [43], and [44]
represent extensions of the logarithmic profiles to non-neutral conditions where
5m, 5h, and 5q are stability functions for momentum, heat, and humidity now
defined in general integral form similar to Panofsky (1963) as

[45]

[46]

[47]

The general � (Eq. [37] [38], and [39]) can now be integrated with Eq. [45], [46],
and [47]. Roughness lengths of zoi (where i represents m, h, and q) for momen-
tum, heat, and humidity, respectively, are generally significantly smaller than L,
and thus in this example the lower limit of the integral is assumed to be zero
(Paulson, 1970) resulting in the following profile functions for the unstable case
(D < 0)
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[49]

[50]

where in this example assuming equality of the � functions for momentum, heat,
nd humidity, express � as (Brutsaert, 1982)

� = (1 – 16D)–1/2 [51]

For the stable case less is known about the flux-profile relationships compared
with the unstable case. Early on there was optimism that the log-linear functions
would have applicability across a range encompassing both stable and unstable
conditions. As can be observed in Tables 18–1 and 18–2 variations in the range of
D by independent investigators suggest limited applicability for different func-
tions. There is, however, general consensus that log linear profiles may be suit-
able for moderately stable conditions (McVeil, 1964; Webb, 1970; Businger et
al., 1971); however, for strongly stable conditions (D > 1) variability of the values
of the parameters continue to persist. For practical flux computation under stable
conditions the exact analytical form of the � functions is not critical. This is
largely due to the fact that under stable conditions turbulent fluxes of mass and
energy tend to be rather small and thus use of Eq. [41] (Webb, 1970) is generally
considered acceptable. Equations [42], [43], and [44 are now in analytical form
to be used with carefully measured wind speed, temperature, and humidity pro-
files to compute fluxes of momentum and heat.

FLUX-GRADIENT-MOST APPROACH 
WITH SURFACE BOUNDARY CONDITIONS

An alternative flux-gradient application involves the use of surface bound-
ary conditions. Assuming surface boundary conditions of u = 0 at z = do + zom and
an observation of surface temperature, #S (typically measured with an infra-red
sensor), only one level (as opposed to two) of u, #, and q measurements are
required so that the equations have the following forms:

uz – us = u*/k{ln[_z – do)/zo] – 5m[(z – do)/L]} [52]

#s – #z = T*/k{ln[z – do)/zoh] – 5h[(z – do)/L]} [53]

qs – qz = q*/k{ln[_z – do)/zoq] – 5q[(z – do)/L]} [54]

where the subscript s denotes measured parameters at the surface. Specifically,
qs = q*(#S) RHS where RHS is surface humidity and q*

S (#S) is the saturated specific
humidity at a surface temperature #S. Equations [52], [53], and [54] also have
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been called bulk-transfer formulations (Brutsaert, 1982). These equations require
estimates of surface roughness for momentum, (zom) heat, (zoh) and water vapor
(zov) as well as an estimate of RHS, which is not easily measured thus limiting the
practical use of Eq. [54].

In the context of Monin-Obukhov surface layer similarity theory, both the-
ory and field observations indicate that transfer of momentum is more efficient
than for heat (Brutsaert, 1982). This transfer process is characterized by parame-
terizing different roughness lengths for momentum, heat, and water vapor. Physi-
cally this means that over rough surfaces, transfer mechanisms for momentum
are a function of shear forces created by the interaction of momentum with the
individual roughness elements. Depending on size, density, and distribution of
the roughness elements, local pressure gradients also may be generated as a result
of interactions of momentum with individual roughness elements creating an
effective form drag at the surface. In contrast to scalar admixtures (e.g., tempera-
ture, water vapor, trace gases), the transfer processes are primarily controlled by
molecular diffusion. Thus a large range in the magnitude for the different rough-
ness lengths can be expected. All, however, represent a length scale that can be
generally interpreted to represent the relative transport efficiency of scalars and
momentum as it relates to surface roughness and degree of heterogeneity.

For homogeneous surfaces the ratio of roughness lengths for momentum,
zom, and heat, zoh, is essentially a constant, usually expressed as the natural loga-
rithm ln (zom/zoh) = kB–1 where kB–1 � 2. A distinction is made between surfaces
considered bluff-rough (e.g., hilly terrain, urban centers) and permeable-rough
(e.g., vegetation) surfaces. For bluff-rough surfaces, the value of kB–1 varies from
~1 to ~20 as a function of the momentum scalar roughness Re* (= u * zom/H)
where u* is the friction velocity and H is the kinematic molecular viscosity (Brut-
saert, 1982).

Many studies, particularly over partial canopy surfaces, report values of
kB–1 significantly >2 with the range generally between permeable-rough,
kB–1 � 2, and bluff-rough, kB–1 � 10, (Verhoef et al., 1997). Contributing factors
include effects of the soil–substrate on remotely sensed surface temperature
observations (#S), canopy architecture, amount and type of vegetation
(McNaughton & Van den Hurk, 1995). Unfortunately, this is a diagnostic tool
and is not useful for quantifying evaporation since approaches using radiometric
temperature with a single roughness parameter zoh to describe the surface (i.e.,
single-source approach) are in general unreliable (Verhoef et al., 1997). In fact, in
some cases where the soil–substrate is cooler than the canopy, unrealistic nega-
tive values of kB–1 can be obtained (Sun & Mahrt, 1995). In general, determining
appropriate values of roughness parameters for specific surface types remains
challenging because no general solution exists for determining zoh and zov.

More reliable “two-source” approaches are being developed that explicitly
compute soil and vegetation heat flux exchanges with the overlying atmosphere
and account for component temperature contributions to composite surface tem-
perature observations (Norman et al., 1995). A recent version of the two-source
modeling approach has been developed and tested that can be used with continu-
ous #S observations for estimating sensible heat fluxes. Minimal inputs of wind
speed, air temperature, and solar radiation measurements are required in addition
to canopy height, leaf width, and fractional cover (Norman et al., 2000).
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It was previously mentioned that application of Eq. [53] is tenuous for most
surfaces, in particular for heterogeneous surfaces since zoh has little physical
meaning when used with #S observations. There has been more progress in relat-
ing zom to physical properties of the surface (e.g., Brutsaert, 1982). A unifying
approach proposed by Raupach (1992, 1994, 1995) is based on the analytical
treatment of drag and drag partitioning for estimating zom requiring appropriate
obstacle height and density estimates. When applying Eq. [52] to heterogeneous
surfaces, the height of uz becomes critical since zom reflects the upwind roughness
characteristic as a length scale (100 z)where z represents mean obstacle height in
m. Tower data have shown that for heterogeneous surfaces, a different zom is
required depending on the level(s) of uz (e.g., Beljaars, 1982). This led to the
development of a blending height concept (Wieringa, 1986) and theories for esti-
mating effective roughness; however, recent work indicates existing approaches
are not yet satisfactory (Schmid & Bunzli, 1995). Therefore, unless the surface
has relatively uniform obstacle height and density at length scales applicable to
MOST, the roughness parameters remain ill defined.

LIMITATIONS OF THE FLUX-GRADIENT APPROACH 
USING MOST

Basic Assumptions

An important point to be considered involves a basic assumption associated
with MOST. All measured parameters are in terms of mean values or (appropriate
time averages). A critical assumption is that the measurements are conducted
under steady state conditions of wind speed and direction. In other words enough
eddies in full equilibrium with the underlying surface must advect past the instru-
ments to provide an ensemble average that is representative of the source or foot-
print. The measurements must be made in the fully adjusted layer and above the
roughness sub-layer. This requires sufficiently large homogeneous areas for an
adequately equilibrated layer of air to develop and maintain equilibrium during
the measurement period. Note that this is an idealized situation not easily accom-
plished. More typical are cases where the fully adjusted layer may have intermit-
tently superimposed events of instability originating outside the local footprint of
the measured profiles. Under this condition, information outside the intended
footprint of the measured parameters may be received from elsewhere in the form
of large (low frequency) intermittent eddies. This can significantly distort the
measured profiles and thus consequently affect computed surface fluxes. Flux-
gradient relationships are subject to limitations of any approach that contains a
great deal of empiricism.

Stability Correction Functions

When observing the various forms of stability corrections presented in
Tables 18–1 and 18–2 it is apparent that the variability of the constants has impli-
cations regarding the “universal” application of these forms of stability correc-
tions. More recently, Brutsaert (1992) derived new functional forms for Im and
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Ih based on similarity relationships from Kader and Yaglom (1990). Differences
with the classical Businger-Dyer formulations (Dyer, 1974; Businger, 1987) are
minor for Ih and thus conceivably for Iq, however, experimental data suggest
that under highly unstable conditions (i.e., (z – do)/L or D < –100) the minor dif-
ferences in the Businger-Dyer and Kader-Yaglom formulations for Ih can result
in significant differences for computed H (Sugita et al., 1995; Kondo & Ishida,
1997). For Im, the new function of D reaches a maximum value on the order of 2
for D ~ –10 instead of a monotonically increasing Im with D reaching a maximum
on the order of 5 for D ~ –100. Moreover, the data scatter observed in many of
these studies has not been appreciably reduced during the last three decades
despite improved instrumentation and data acquisition systems now readily and
economically available.

Early in the development of stability correction functions, Yaglom (1977)
suggested several sources of errors contributing to the discrepancies in the func-
tional forms of the stability functions. The first obvious reason may be related to
instrument error. Too often, it appears that the role of instrument error is underesti-
mated in the literature as it rarely is even mentioned much less discussed. Often it is
assumed that random instrument errors are already accounted for. Intercomparison
of instruments needs to be conducted to assess the level of bias of each anemome-
ter, psychrometer, and when possible eddy covariance instrumentation. Quantifying
measurement error should be as important as the actual field experiment measure-
ments. Yaglom (1977) provides several examples of what can happen when instru-
ment errors are not appropriately taken into account. Another issue deals with the
accuracy of mean temperature, wind and humidity measurements. Although sen-
sors can be matched by inter-calibration before deployment in the field, there are
also errors associated with whether or not the temperature–humidity sensors are
aspirated and wind sensors (cup anemometers) starting thresholds are similar and
how uniformly non-horizontal winds affect the anemometers with height. These
issues were recently addressed by Brotzge and Crawford (2000) who attempted to
use temperature and wind speed observations at two levels (2 and 10 m AGL) from
the Oklahoma Mesonet network to compute sensible heat fluxes via Eq. [6] and [7].
Comparisons with eddy covariance measurements indicated that discrepancies on
the order of 100 W m–2 during the mid-day period were likely for the 2 m height
with wind speeds <4 m s–1 while at higher wind speeds the discrepancies were
reduced to a range of 50 to 100 W m–2. This was primarily due to a reduction of
radiation-induced errors for the non-aspirated temperature sensors. With mid-day
H estimates of 200 to 300 W m–2, the magnitudes of the uncertainties may become
unacceptable.

Continual modification of stability functions suggests caution in assuming
the “universality” of any stability function when applying gradient type
approaches for estimating fluxes. Large Eddy Simulation (LES) model analysis
of MOST suggests that boundary layer depth has an indirect influence on MOST
scaling for wind (Khanna & Brasseur, 1997). Williams and Hacker (1993) ana-
lyzed turbulence measurements from an aircraft and showed that mixed-layer
convective processes influence MOST and support the refinements made by
Kader and Yaglom (1990). Tsvang et al. (1998) suggested that small-scale inho-
mogeneities of the land surface could cause stability functions to depart signifi-
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cantly from predicted values. Clearly considerable uncertainties remain as sur-
face heterogeneity and mixed-layer convective processes can affect “idealized”
MOST profiles.

Roughness Sub-Layer Effects

Assuming measurement issues are adequately addressed, there exists the
potential problem of roughness sub-layer effects (e.g., Garratt, 1978, 1980) when
applying MOST “near” (<3 hvs) a canopy surface. The primary effect of the
roughness sub-layer is the production of smaller gradients necessitating larger
eddy diffusivities. The depth of the roughness sub-layer, zR, has been related to
surface properties that include momentum roughness length, zom, (Tennekes,
1973), obstacle or vegetation height, hvs, spacing, Dvs, (Garratt, 1980) and rough-
ness element lateral dimension (Raupach et al., 1980). Approaches thus far to
“correct” flux-profile relationships for roughness sub-layer effects have been
semi-empirical, and tend to be surface specific (Garratt, 1980; Raupach et al.,
1980; Cellier & Brunet, 1992).

Complicating the roughness sub-layer effect on MOST is that scalar eddy
diffusivity enhancement is larger than that for momentum (Thom, 1975; Rau-
pach, 1979; Chen & Schwerdtfeger, 1989). Moreover, Chen and Schwerdtfeger
(1989) found that the enhancement was stability dependent and that variations
were not monotonic with height. Their review of previous studies on roughness
sub-layer effects suggests that zR – do ~ 4 Dvs. Use of obstacle spacing appears to
give more consistent results with a nearly constant coefficient of proportionality.
Relating zR to other surface parameters leads to larger variations in the coefficient
such as zom where, zR – do ~ 50 – 100 zom as suggested by Tennekes (1973) or in
terms of hvs in which case zR – do ~ 2 – 10 hvs. This is due to the effects of obstacle
density, height, and structure on turbulent momentum transport (Raupach et al.,
1991). Raupach (1994) proposed a relatively simple approach based on rough-
ness density which yields zR ~ 2 (hvs – do). This later expression, however, does
not reproduce the larger values of 5 to 10 hvs observed by Garratt (1980) and
Chen and Schwerdtfeger (1989). In addition, the results from Chen and
Schwerdtfeger (1989) suggest that a simple expression for estimating zR for
scalars is not yet available. Chen and Schwerdtfeger (1989), Raupach et al.
(1991), and Cellier and Brunet (1992) provide an interesting review on mecha-
nisms that enhance eddy diffusivities. Chen (1990a,b) evaluated instantaneous
wind and temperature profiles with eddy covariance measurements and found
that over brush land, mechanisms for momentum and heat transport are distinct
and that large intermittent turbulent structures in the boundary layer can penetrate
and modify the fully adjusted layer resulting in significantly distorted profile
shapes.

Variance Approach

With the inherent limitations described above in using the flux-gradient-
MOST approach as a micrometeorological technique for flux estimation, others
have explored the application of MOST with 2nd order turbulent statistics or
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variance for wind, temperature, and humidity measurements. Similar to mean
profiles of wind, temperature, and specific humidity, the standard deviation of
vertical velocity, �W, temperature �q, and specific humidity �q have been related
to fluxes via MOST (Panofsky & Dutton, 1984). For unstable conditions,

�w /u* = c1[1 – c2(z – do)/L]1/3 [55]

�#/T* = c3[c4 – (z – do)/L]–1/3 [56]

�q /Q* = c5[c6 – (z – do)/L]–1/3 [57]

where the coefficients (cn, n = 1,2...6) in Eq. [55], [56], and [57] are empirically
determined. Strictly speaking, MOST would imply that for scalars, c3 � c5 and
c4 � c6. A simplified relationship for �#/T* derived by Wyngaard et al. (1971) is
supported by observations (e.g., Kader & Yaglom, 1990) and expressed as

�#/T* = c3[(z – do)/L]–1/3 [58]

Substitution of Eq. [9] for L (neglecting the buoyancy effect of water vapor) into
Eq. [58] yields an expression that is no longer a function of u* resulting in H
related only to �#,

[59]

Similarly LE is related to �q and �#,

[60]

The magnitudes of the coefficients in Eq. [55], [56], [57], [58], [59], and [60] are on
the order of c1 ~ 1.25, c2 ~ 3, c3 ~ 0.95, c4 ~ 0.05, Katul et al. (1995, 1996). Studies
over non-uniform surfaces suggest that for water vapor Eq. [57] may not be valid or
at the very least the coefficients in Eq. [57] c5 and c6 are not equal to c3 and c4 and
moreover are not constant (see e.g., Katul et al., 1995, 1996). Indications are that
for water vapor, several factors may be contributing to Eq. [57], [58], [59], and [60]
that result in significant deviation from MOST (Katul et al., 1995): (i) temperature
is not a passive scalar but has an active role in enhancing turbulence in the surface
layer, (ii) for partially vegetated surfaces the sources and sinks of latent and sensi-
ble heat are from significantly different heights–locations, and (iii) the spatial vari-
ability of water vapor sources appears to have a more significant impact on MOST
relationships than variability of sensible heat sources. Recently, Katul and Hsieh
(1999) show analytically through second-order closure principles applied to the
flux-budget equations for heat and water vapor that the coefficients c5 and c6 are not
equal to c3 and c4, respectively, even when flux-profile similarity functions for heat
and water vapor profile are nearly equal, namely �H � �E.
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Flux-Gradient versus Variance Approach

Examples comparing two aerodynamic methods, flux-gradient–profile and
variance technique, applied to measurements made over a heterogeneous desert
environment are illustrated in Fig. 18–2 to 18–4. A 10-m tower with wind and
temperature profile measurements at 3, 4, 5, 6, 8, and 10 m, along with eddy
covariance measurements, which include temperature variance, at 5 m were used
in the two approaches (Kustas et al., 1998). These measurements were made over
a coppice mesquite dune site at the Jornada Experimental Range near Las Cruces,
NM, as part of the JORNEX (JORNada Experiment) project (Havstad et al.,
2000).

Computing H and LE fluxes using gradients near the surface (at 4 and 5 m)
and over the entire measurement height (3 and 10 m), the comparison with eddy
covariance measurements of sensible heat flux, H, shows significant bias (Fig.
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Fig. 18–2. Comparison of flux-gradient approach applied near the surface (a) (4–5 m gradient) (b)
3–10 m gradient) vs. eddy covariance measurement of sensible heat flux, H, over a coppice dune
site.



18–2a) as well as scatter (Fig. 18–2b). The bias in the application of the flux-gra-
dient method near the surface (Fig. 18–2a) is most likely caused by roughness
sub-layer effects discussed previously. The scatter observed in Fig. 18–2b may be
due to several factors, including roughness sub-layer effects, the uncertainty in
the measurement of the gradients, and the MOST stability functions. In both
applications using MOST with the mean profile measurements, there is generally
poor performance in the estimation of sensible heat flux. The root-mean-square-
error (RMSE) with the H observations is ~110 W m–2 and ~70 W m–2 using
MOST flux-profile approach with 4 to 5 m, and 3 to 10 m gradients. Similar
RMSE values were obtained by implementing flux-gradient methods using the
Oklahoma Mesonet data collected over much more uniform vegetated grassland
areas (Brotzge, 2000, personal communication).
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Fig. 18–3. Comparison of variance technique using (a) Eq. [50] and [51] (full aerodynamic method)
with c3 = 0.94 and (b) using Eq. [54] (free convective limit with a global value for c3 (i.e., c3 = 1)
for estimating sensible heat flux, H, versus eddy covariance measurements over a coppice dune
site.



Using the variance method, the agreement with the sensible heat flux
observations is significantly improved (Fig. 18–3). This is particularly true when
applying the full aerodynamic formulation involving Eq. [50] and [51] with coef-
ficient c3 calibrated for the particular site (Fig. 18–3a); however, even applying
the free convective limit (Eq. [54]) with a “global” value for c3 (i.e., c3 = 1), the
method yields acceptable H estimates (Fig. 18–3b). The RMSE with the H obser-
vations is ~20 W m–2 and ~45 W m–2 using two versions of the variance approach,
namely Eq. [50] and [51] with calibrated c3 and Eq. [54] with a “global” value for
c3 (i.e., c3 =1).

For LE, both techniques using specific humidity did not produce reasonable
results. The flux-gradient method could not be applied to this desert environment
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Fig. 18–4. Comparison of latent heat flux, LE, solved by residual using measurements of Rn, G, and H
(a) estimated by the variance technique (Eq. [50] and [51]) (b) measured by eddy covariance ver-
sus LE from eddy covariance.



since the gradients in specific humidity were small, often resulting in counter-
gradient flux conditions. The variance approach using specific humidity (Eq.
[52]) was unreliable due to the large uncertainty in the magnitude of the “con-
stants” c5 and c6.

An alternative was to solve for LE as a residual in the surface energy bal-
ance equation, with measurements of net radiation, Rn, and soil heat flux, G. This
is likely to result in more significant discrepancies between measured and esti-
mated LE estimates for two reasons. One is that there is an uncertainty in Rn and
G measurements, which is likely to increase the variation in LE solved by resid-
ual. Second is that Rn and G measurements reflect a much smaller flux sampling
area or flux footprint compared with the turbulent fluxes, H and LE. For heteroge-
neous surfaces, such as a desert environment, both factors are found to have a sig-
nificant effect on the measurement of Rn (Kustas et al., 1998) and in providing a
representative soil heat flux for an area encompassing the flux footprint (Kustas
et al., 2000).

With the best estimates of H from the variance method, and measurements
of Rn and G, an example of the comparison with eddy covariance measurements
is shown in Fig. 18–4a. In desert environments LE is generally less than one-half
of H during daytime unstable conditions. For this data set the average daytime H
~170 W m–2 and LE ~ 65 W m–2. The RMSE in Fig. 18–4a is ~40 W m–2, which
when compared with the average measured LE is significant; however, a similar
result (with RMSE ~40 W m–2) also is obtained using measured H from eddy
covariance and solving for LE as a residual (Fig. 18–4b). Clearly, in such extreme
heterogeneous environments, the uncertainty in LE will be more significant than
H in relation to their relative magnitudes.

CONCLUDING REMARKS

The aerodynamic techniques described here, namely flux-gradient and
flux-variance approaches are some of the more common indirect methods for
computing turbulent fluxes. Of the two techniques for micrometeorological flux
estimation, the variance approach appears to provide more reliable flux estima-
tion across a wide variety of surfaces, particularly for sensible heat. The flux-
variance approach is shown to be robust even when measurements are made in
the roughness sub-layer (Katul et al., 1999) and do as well as or better than other
more complicated indirect methods (Katul et al., 1996; Wesson et al., 2001);
however, we presently are unable to resolve the relative influence of all the mech-
anisms involved in turbulent transport and more importantly we have been unable
to develop a unified theory to correct MOST for effects of landscape heterogene-
ity on mean profiles and turbulent statistics (Roth & Oke, 1995).

The nature of the interactions between the atmosphere and the under lying
surface can often be dictated by the uniqueness of different surfaces as well as by
the prevailing local micro–meso-scale meteorological conditions. Difficulties
encountered in making accurate measurements of mean gradients above the sur-
face, fetch limitations, roughness sub-layer effects, uncertainty in stability cor-
rection function formulations, and defining surface roughness parameters impose
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significant challenges to the application of the flux-gradient approach. In addi-
tion, the fact remains that the flux-gradient relationships only exists for certain
conditions; however, in the absence of an alternative approach in land surface
modeling (particularly using surface boundary conditions, e.g., Eq. [47], [48],
and [49]) flux-gradient relationships thus far presented have served (and to a con-
siderable degree continue to do so) the field with reasonable success over the last
three decades. Moreover, for any type of regional assessment of surface fluxes,
no other technique is available (Hipps & Kustas, 2000).

REFERENCES

Allen, R.G., M.E. Jensen, J.L. Wright, and R.D. Burman. 1989. Operational estimates of reference
evapotranspiration. Agron. J. 81:650–662.

Beljaars, A.C.M., 1982. The derivation fluxes form profiles in perturbed areas. Boundary-Layer
Meteorol. 24:35–55.

Boussinesq, J. 1877. Essai sur la théorie des eaux courantes,’ Mémories présentés par div. Savants à l.’
Acad. Sci. Inst. 23:1–680.

Brost, R.A. 1979. Comments on turbulent exchange coefficients for sensible heat and water vapor
under advective conditions. J. Appl. Meteorol. 18:378–380.

Brotezge, J.A., and K.C. Crawford. 2000. Estimating sensible heat flux from the Oklahoma Mesonet.
J. Appl. Meteorol. 39:102–116.

Brutsaert, W. 1982. Evaporation into the atmosphere: Theory, history and applications. D. Reidel
Publ. Company, Dordrecht, the Netherlands.

Brutsaert, W. 1992. Stability functions in the mean wind speed and temperature in the unstable sur-
face-layer. Geophys. Res. Letters. 19:469–472.

Brutsaert, W., and M. Sugita. 1992. Regional surface fluxes from satellite-derived surface tempera-
tures (AVHRR) and radiosonde profiles. Boundary-Layer Meteorol. 58:355–366. 

Businger, J.A. 1966. Transfer of momentum and heat in the planetary boundary layer. p. 305–332. In
Proc. of the Symp. on Arctic Heat Budget and Atmospheric Circulation, The Rand Corpora-
tion. Univ. of California, Berkeley.

Businger, J.A. 1987. A note on the Businger: Dyer profiles. Boundary-Layer Meteorol. 47:145–151.
Businger, J.A., J.C. Wyngaard, Y. Izumi, and E.F. Bradley. 1971. Flux: Profile relationships in the

atmospheric surface layer. J. Atmos. Sci. 28:181–189.
Businger, J.A., and A.M. Yaglom. 1971. Introduction to Obukhov’s paper on turbulence in an atmos-

phere with a non-uniform temperature. Boundary-Layer Meteorol. 2:3–6.
Cellier, P., and Y. Brunet. 1992. Flux-gradient relationships above tall plant canopies. Agric. For.

Meteorol. 58:93–117.
Chen, F. 1990a. Turbulent characteristics over a rough natural surface: I. Turbulent structures. Bound-

ary-Layer Meteorol. 52:151–175.
Chen, F. 1990b. Turbulent characteristics over a rough natural surface: II. Responses of profiles to tur-

bulence. Boundary-Layer Meteorol. 52:301–311.
Chen, F., and P. Schwerdtfeger. 1989. Flux-gradient relationships for momentum and heat over a

rough natural surface. Quart. J. R. Met. Soc. 115:335–352.
Crawford, T.V. 1965. Moisture transfer in free and forced convection. Quart. J. Roy. Meteorol. Soc.

91:18–27.
Deacon, E.L. 1949. Vertical diffusion in the lowest layers of the atmosphere. Quart. J. Roy. Soc.

75:89–103.
Deacon, E.L. 1955. Turbulent transfer of momentum in the lowest layers of the atmosphere. CSIRO

Div. of Meteorol. Phys. Tech. Pap. 4:1–36.
Dyer, A.J. 1967. Measurements of evaporation and heat transfer in the lower atmosphere by an auto-

matic eddy-correlation technique. Quart. J. Roy. Meteorol. Soc. 87:401–412.
Dyer, A.J. 1974. A review of flux-profile relationships. Quart. J. Roy. Meteorol. Soc. 96:715–721.
Dyer, A.J. and E.F. Bradley. 1982. An alternative analysis of flux-gradient relationships at the 1976

ITCE. Boundary-Layer Meteorol. 22:3–19.
Dyer, A.J., and B.B. Hicks. 1970. Flux-gradient relationships in the constant flux layer. Quart. J. Roy.

Meteorol. Soc. 96:715–721.

AERODYNAMIC METHODS FOR ESTIMATING TURBULENT FLUXES 433



Ellison, T.H. 1957. Turbulent transport of heat and momentum from an infinite rough plane. J. Fluid
Mech. 2:456–466.

Fick A. 1855. “Uber Diffusion.” Ann. Phys. U. Chemie (J.C. Poggendorf) 94:(170)59–86.
Foken, T., and G. Skeib. 1983. Profile measurements in the atmospheric near-surface layer and the use

of suitable universal functions for the determination of the turbulent energy exchange. Bound-
ary-Layer Meteorol. 25:55–62.

Garratt, J.R. 1978. Flux profile relations above tall vegetation. Quart. J. Roy. Meteorol. Soc.
104:199–211.

Garratt, J.R. 1980. Surface influences upon vertical profiles in the atmospheric near-surface layer.
Quart. J. Roy. Meteorol. Soc. 106:803–819.

Havstad, K.M., W.P. Kustas, A. Rango, J.C. Ritchie, and T.J. Schmugge. 2000. Jornada Experimental
Range: A unique arid land location for experiments to validate satellite systems and to under-
stand effects of climate change. Rem. Sensing Environ. 74:13–25.

Hicks, B.B., and R.G. Everett. 1979. Comments on turbulent exchange coefficients for sensible heat
and water vapor under advective conditions. J. Appl. Meteorol. 18:371–382.

Hipps, L.E., and W.P. Kustas. Spatial variations in evaporation. p. 105–122. In R. Grayson and G.
Bloschl (ed.) Spatial patterns in hydrological processes: Observations and modeling. Cam-
bridge Univ. Press., Cambridge.

Högström, U. 1988. Non-dimensional wind and temperature profiles in the atmospheric surface layer:
A re-evaluation. Boundary-Layer Meteorol. 42:55–78.

Högström, U. 1996. Review of some basic characteristics of the atmospheric surface layer. Boundary-
Layer Meteorol. 78:215–246.

Holzman, B. 1943. The influence of stability on evaporation. Ann. N.Y. Acad. Sci. 44:13–18.
Kader, B.A., and A.M. Yaglom. 1990. Mean fields and fluctuation moments in unstably stratified tur-

bulent boundary layers. J. Fluid Mech. 212:637–662.
Katul, G.G., S.M. Goltz, C. Hsieh, Y. Cheng, F. Mowry, and J. Sigmon. 1995. Estimation of surface

heat and momentum fluxes using the flux-variance method above uniform and non-uniform ter-
rain. Boundary-Layer Meteorol. 74:237–260.

Katul, G.G., and C. Hsieh. 1999. A note on the flux-variance similarity relationships for heat and
water vapor in the unstable atmospheric surface layer. Boundary-Layer Meteorol. 78:215–246.

Katul, G., C-I. Hsieh, R. Oren, D. Ellsworth, and N. Phillips. 1996. ‘Latent and sensible heat flux pre-
dictions from a uniform pine forest using surface renewal and flux variance methods.
Boundary-Layer Meteorol. 80:249–282.

Katul, G., C-I. Hsieh, and D. Bowling. 1999. Spatial variability of turbulent fluxes in the roughness
sub-layer of even-aged pine forest. Boundary-Layer Meteorol. 93:1–28.

Kazanski, A.B., and A.S. Monin. 1956. Izvestia Akad. Nauk. SSSR Geophys. Series 1.
Khanna, S., and J.G. Brasseur. 1997. Analysis of Monin-Obukhov similarity from large-eddy simula-

tion. J. Fluid Mech. 345:251–286.
Kondo, J., and S. Ishida. 1997. Sensible heat flux from the earth’s surface under natural convective

conditions. J. Atmos. Sci. 54:498–509.
Kustas, W. P., J.H. Prueger, J.L. Hatfield, K. Ramalingam, and L.E. Hipps. 2000. Variability in soil

heat flux from a mesquite dune site. Agric. For. Meteorol. 103:249–264.
Kustas, W.P., J.H. Prueger, L.E. Hipps, J.L. Hatfield, and D. Meek. 1998. Inconsistencies in net radia-

tion estimates from use of several models of instruments in a desert environment. Agric. For.
Meteorol. 90:257–263.

Lettau, H. 1949. Isotropic and non-isotropic turbulence in the atmospheric surface layer. Geophys.
Res. Pap. no. 1:13–84. Air Force Cambridge Res. Lab., Cambridge, MA.

Lumley, J.L., and H.A. Panofsky. 1964. The structure of atmospheric turbulence. Interscience, New
York.

McNaughton, K.G., and B.J.J.M. Van den Hurk. 1995. A ‘Lagrangian’ revision ofthe resistors in the
two-layer model for calculating the energy budget of a plant canopy. Boundary-Layer Meteo-
rol. 74:262–288.

McVeil, G.E. 1964. Wind and temperature profiles near the ground in stable stratification. Quart. J.
Meteorol. Soc. 90:136–146.

Monin, A.S., and A.M. Obukhov. 1954. Basic laws of turbulent mixing in the ground layer of the
atmosphere. Tr. Geofiz. Inst. Akad. Nauk, SSSR no. 24 (151) p. 163–187. In (German transla-
tion (1958) Sammelband zur Statistischen Theorie der Turulenz H. Goering (ed.) Akademie
Verlag, Berlin.

Norman, J.M., W.P. Kustas, and K.S. Humes. 1995. A two-source approach for estimating soil and
vegetation energy fluxes from observations of directional radiometric surface temperature.
Agric. For. Meteorol. 77:263–293.

434 PRUEGER & KUSTAS



Norman, J.M., W.P. Kustas, J.H. Prueger, and G.R. Diak 2000. Surface flux estimation using radio-
metric temperature: A dual temperature difference method to minimize measurement error.
Water Resour. Res. 36:2263–2274.

Obukhov, A.M. 1946. Turbulence in an atmosphere with non-uniform temperature. Tr. Akad. Nauk.
SSSR Inst. Teoret. Geofi., no. 1, (English translation in Boundary-Layer Meteorol. 2:7–29,
1971).

Pandolfo, J.P. 1966. Wind and temperature profiles for constant flux boundary layers in lapse condi-
tions with a variable eddy conductivity to eddy viscosity ratio. J. Atmos. Sci. 23:495–502.

Panofsky, H.A. 1961a. An alternative derivation of the diabatic wind profile. Quart. J. R. Met. Soc.
87:109–110.

Panofsky, H.A. 1961b. Similarity theory and temperature structure in the lower atmosphere. Quart. J.
R. Met. Soc. 87:597–601.

Panofsky, H.A. 1963. Determination of stress from wind and temperature measurements. Quart. J.
Roy. Meteorol. Soc. 89:85–94.

Panofsky, H.A., A.K. Blackadar, and G.E. McVehil. 1960. The diabatic wind profile. Quart. J. Roy.
Meteorol. Soc. 86:390–398.

Panofsky, H., and J. Dutton. 1984. Atmospheric turbulence: Models and methods for engineering
applications. John Wiley & Sons, New York.

Paulson, C.A. 1970. The mathematical representation of wind speed and temperature profiles in the
unstable atmospheric surface layer. J. Appl. Meteorol. 9:857–861.

Prandtl, L. 1904. ‘Uber Flüssigkeitsbewegung bei sehr kleiner Reibung’, Verhandl. III, Internat.
Math.- Kong., Heidelberg, Teubner, Leipzig. p. 484–491. (1905) (Also in Gesammelte
Abhundlungen, Vol. 2, Springer-Verlag, Berlin, 1961, p. 575–584. English in NACA, Tech.
Mem. no. 452).

Pruitt, W.O., D.L. Morgan, and F.J. Lourence. 1973. Momentum and mass transfers in the surface
boundary layer. Quart. J. Roy. Meteorol. 99:370–386.

Raupach, M.R. 1979. Anomalies in flux-gradient relationships over forest. Bound.-Layer Meteorol.
16:467–486.

Raupach, M.R. 1992. Drag and drag partition on rough surfaces. Boundary-Layer Meteorol.
60:375–395.

Raupach, M.R. 1994. Simplified expression for vegetation roughness lengths and zero-plane displace-
ment as functions of canopy height and area index. Boundary-Layer Meteorol. 71:211–216.

Raupach, M.R. 1995. Corrigenda. Boundary-Layer Meteorol. 76:303–304.
Raupach, M.R., R.A. Antonia, and S. Rajagopalan. 1991. Rough-wall turbulent boundary layers.

Appl. Mech. Rev. 44:1–25.
Raupach, M.R., A.S. Thom, and I. Edwards. 1980. Wind tunnel study of turbulent flow close to regu-

larly arrayed rough surfaces. Bound.-Layer Meteorol. 18:373–397.
Richardson, L.F. 1920. The supply of energy from and to atmospheric eddies. Proc. Roy. Soc. London

A97:354–373.
Roth, M., and T.R. Oke. 1995. Relative efficiencies of turbulent transfer of heat, mass, and momen-

tum over a patchy urban surface. J. Atmos. Sci. 52:1863–1874.
Schmid, H.P., and B. Bunzli. 1995. The influence of surface texture on the effective roughness length.

Quart. J. Roy. Meteorol. Soc. 121:1–21.
Schmidt, W. 1917. ‘Der Massenaustauch bei der ungeordneten Strömung in freier Luft und seine Fol-

gen’ Sitzber, Kais. Akad. Wissen. Wien [2a] 126:757–804.
Sellers, W.D. 1962. A simplified derivation of the diabatic wind profile. J. Atmos. Sci. 19:180.
Stull, R. 1988. An introduction to boundary layer meteorology. Kluwer Academic Publ., Boston.
Sugita, M., T. Hiyama, N. Endo, and S.-F. Tian. 1995. Flux determination over a smooth surface

under strongly unstable conditions. Bound.-Layer Meteorol. 73:145–158.
Sun, J., and L. Mahrt. 1995. Determination of surface fluxes from the surface radiative temperature. J.

Atmos. Sci. 52:1096–1106.
Swinbank, W.C. 1960. Wind profile in thermally stratified flow. Nature 186(4723):463–464.
Swinbank, W.C. 1964. The exponential wind profile. Quart. J. Roy. Meteorol. Soc. 90:119–135.
Swinbank, W.C. 1968. A comparison between predictions of dimensional analysis for the constant-

flux layer and observations in unstable conditions. Quart. J. Roy. Meteorol. Soc. 94:460–467.
Taylor, G.I. 1915. Eddy motions in the atmosphere. Phil. Trans. Roy. Soc. Lond., A215:1–26.
Tennekes, H. 1973. The logarithmic wind profile. J. Atmos. Sci. 30:234–238.
Thom, A.S. 1971 Momentum absorption by vegetation. Quart. J. Roy. Meteorol. Soc. 97:414–428.
Thom, A.S. 1975 Momentum, mass and heat exchange of plant communities. p. 57–109. In J.L. Mon-

teith (ed.) Vegetation and the atmosphere. Vol. I. Principles. Academic Press, London.

AERODYNAMIC METHODS FOR ESTIMATING TURBULENT FLUXES 435



Tsvang, L.R., V.P. Kukharts, and V.G. Perepelkin.1998. Atmospheric turbulence characteristics over a
temperature-inhomogeneous land surface: Part II. The effect of small-scale inhomogeneities of
surface temperature on some characteristics of the atmospheric surface layer. Bound.-Layer
Meteorol. 8:103–124.

Verhoef, A., H.A.R. de Bruin, and B.J.J.M. Van Den Hurk. 1997. Some practical notes on the param-
eter kB–1 for sparse vegetation. J. Appl. Meteorol. 36:560–572.

Verma, S.B., N.J. Rosenberg, and B.L. Blad. 1978. Turbulent exchange coefficients for sensible heat
under advective conditions. J. Appl. Meteorol. 17:330–338.

Warhaft, Z. 1976. Heat and moisture flux in the stratified boundary layer. Quart. J. Roy. Meteorol.
Soc. 102:703–707.

Webb, E.K. 1960. An investigation of the evaporation from Lake Eucumbene. CSRIO Aust. Div.
Meteorol. Phys. Tech. Pap. no.10. CSRIO, Melbourne, Australia.

Webb, E.K. 1970. Profile relationships: The log-linear range, and extension to strong stability. Quart.
J. Roy. Meteorol. Soc. 96:67–90.

Webb, E.K. 1982. Profile relationships in the superadiabatic surface layer. Quart. J. Roy. Meteorol.
Soc. 108:661–688.

Wesson, K.H., G. Katul, and C-T. Lai. 2001. Sensible heat flux estimation by flux variance and half-
order time derivative methods. Water Resour. Res. 37(9):2333–2343.

Wieringa, J. 1986. Roughness-dependent geographical interpolation of surface wind speed averages.
Quart. J. Roy. Meteorological Soc. 112:867–889.

Williams, A.G., and J.M. Hacker. 1993. Interactions between coherent eddies in the lower convective
boundary layer. Boundary-Layer Meteorol. 64:55–74.

Wyngaard, J.C., O.R. Cote, and Y. Izumi. 1971. Local free convection, similarity and the budgets of
shear stress and heat flux. J. Atmos. Sci. 28:1171–1182.

Yaglom, A.M. 1977. Comments on wind and temperature flux-profile relationships. Boundary-Layer
Meteorol. 11:89–102.

Yamamoto, G. 1959. Theory and transport in non-neutral conditions. J. Meteorol. Soc., Japan,
37:60–70.

Yamamoto, G. 1975. Generalization of the KEYPS formula in diabatic conditions and related discus-
sion on the critical Richardson number. J. Meteorol. Soc. Japan 53:189–194.

436 PRUEGER & KUSTAS


	Aerodynamic Methods for Estimating Turbulent Fluxes
	

	Chapter 18: Aerodynamic Methods for Estimating Turbulent Fluxes

	Flux Gradient
Approaches
	Fundamental Structure of the
Atmosphere
	Non-Dimensional Stability
Parameters
	Monin-Obukhov Similarity
Theory
	Surface-Layer Stability
Corrections
	O Function: Early Semi-Empirical
Formulations
	Unstable
Case
	Stable
Case
	Summary of the Gradient Stability
Functions
	Integrated forms of the Flux-Gradientand Stability
Functions
	Flux-Gradient-Most Approachwith Surface Boundary
Conditions
	Limitations of the Flux-Gradient Approachusing
Most
	Basic Assumptions
	Stability Correction Functions
	Roughness Sub-Layer Effects
	Variance Approach

	Flux-Gradient versus Variance Approach

	Concluding
Remarks
	References


	Text6:     This article is a U.S. government work, and is not subject to copyright in the United States.


