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The effect of an applied electric field on the magnetic properties of L1,-ordered CoPd thin films is investigated by first-principle
calculations. Both the magnetic moment and the magnetocrystalline anisotropy of the surface atoms are changed by the electric field,
but the net effect depends on the surface termination. The magnetocrystalline anisotropy switches from in-plane to perpendicular in the
presence of external electric field. Typical magnetic-moment changes are 0.1 1.5 per eV/A . The main mechanism is the shift of the Fermi
level, but the anisotropy change also reflects a crystal-field change due to incomplete screening.

Index Terms—Anisotropy, magnetoelectric material, magnetic moment, thin films.

I. INTRODUCTION

N the last few years, the magnetoelectric effect has sparked

intense research, partially motivated by potential applica-
tions in spintronics and high-density magnetic recording [1].
The effect consists in the creation of a magnetization change due
to an electric field [2] and is related to electrically controlled ex-
change bias [3] and magnetocrystalline anisotropy [4]. There are
two main magnetoelectric (ME) mechanisms [5], [6]. The first
mechanism involves mechanical strain, that is, the external elec-
tric field changes the magnetization of the multiferroic by dis-
placing ions from their original positions. In the second mech-
anism, the ferroelectric and ferromagnetic degrees of freedom
couple through electronic effects [5], [11]. The electron screens
the electric field over the screening length of the metal and
the electron does not penetrate into the bulk of metals and the
induced electric charge is confined to a depth of the order of
atomic dimensions from the surface. The effect is therefore also
known as the surface magnetoelectric effect.

Very recently, it has been found that an electric field modi-
fies the coercivity of L1j-ordered FePd and FePt thin films in
an electrochemical environment [4]. Furthermore, the magneti-
zation direction of the magnetic semiconductors (Ga, Mn)As in
a metal-insulator—semiconductor structure can be tuned by the
application of an electric field [ 12]. Using first-principle calcula-
tions it has been demonstrated that ferromagnetism is created at
Pd thin-film surfaces through the application of an external elec-
tric field [14]. It has also been reported that an external electric
field modifies the magnetization of L1;-CoPd thin films [7] and
changes the magnetization state of a Fe/Cu(111) thin film [8].
The effect of electric field on the magnetocrystalline anisotropy
of transition-metal monolayers has also been predicted using
first-principle calculations [13].
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Fig. 1. Atomic structure of the considered Pd—Co thin film. Both the top and
the bottom of the film are Co-terminated, which is important for the physical
understanding of the ME effect.

Motivated by these experimental and theoretical findings, we
use first-principle calculations to study the influence of external
electric effect on the magnetic properties of L.1y-ordered CoPd
films. Our calculations show that an electric field yield sub-
stantial change in surface magnetization and anisotropy, due to
change in the surface electric density at the Fermi level.

II. NUMERICAL DETAILS

The calculations have been performed using the density-func-
tional calculations for L1y-CoPd thin-films (o = 3.70 A, ¢ =
3.67 A) having a thickness of seven monolayers (MLs) with
vacuum of 18 A. The L1,-CoPd films were modeled by tetrag-
onal supercell, as shown in Fig. 1. The calculations are based
on projector augmented wave (PAW) implemented in the Vi-
enna ab-initio simulation package (VASP) [9]. Exchange and
correlations are treated within the generalized gradient approx-
imation (GGA), and the electronic wave functions are repre-
sented by plane waves with a cutoff energy of 500 eV. We
have used a 13 x 13 x 1 Monkhorst—Pack grid for k£-point sam-
pling for the self-consistent calculations. All structure relax-
ations are performed until the Hellmann—Feynman forces on the
relaxed atoms become less than 0.01 eV/A. The external elec-
tric field is introduced by the planar dipole layer method [10].
The spin-orbit coupling was included to determine the magne-
tocrystalline anisotropy (MCA) and calculated using the differ-
ence between the total energy for the magnetization perpendic-
ular (001) and parallel (100) to the surface.

0018-9464/$26.00 © 2011 IEEE
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Fig. 2. Magnetic moment per Co surface atom as a function of applied electric
field.

— 0.3 eV/Aelectric field
- - without electric field

LDOS(states/eV)

Energy (eV)

Fig. 3. Effect of the electric field on the local density of states (LDOS).

III. RESULTS

Fig. 2 shows the calculated magnetic moment of the surface
Co atoms of L1y -CoPd thin film as a function of the applied
electric field. The magnetic moment of the surface atoms in-
creases with the electric field. The electric field shifts the Fermi
level Er, thereby changing the densities of states (DOSs) of
spin-up and spin-down electrons at £z, and this change in E'r
may increase or decrease the magnetization. The magnetization
changes at both sides of film, decreasing and increasing at the
positive and negative electrodes, respectively. The magnitude
of the change is about 0.1 sz per Co atom and per eV/A.

Table I shows the spin and orbital moment of surface Co atom
in the presence of electric field, a calculation that requires the
inclusion of spin-orbit coupling. Our results show that only sur-
face Co atoms are affected by the field. Zhernenkov et al. re-
ported the modification of the magnetization depth profile of an
18.5-nm-thick CozoPds¢ film immersed in an electrolyte using
an electric field [7]. Inside the film, the external electric field is
nearly completely screened. Typical local densities of states of
surface Co atom in the absence of electric field and in the pres-
ence of 0.3 eV/A electric field are shown in Fig. 3. Basically,
the applied field is screened by Co 4s electrons and 3d elec-
trons at the surface and the electric field does not penetrate into
the bulk. Correspondingly, the change in magnetic moment re-
flects a change in the number of d electrons at the surface. We
also find that at the electric field greater than 0.3 eV/A the de-
formation of the atomic structure occurs.

The external electric field changes not only the magnetization
but also the anisotropy. Fig. 4 shows the electric-field depen-
dence of the effect. At zero electric field, the anisotropy —0.047
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Fig. 4. Magnetic anisotropy energy as a function of applied electric field.

meV/atom, indicating that the magnetization energetically fa-
vors pointing in the in-plane (100) direction. When the electric
field 0.3 eV/A is introduced, we find that the spin moment is
strongly enhanced as shown in Table I. As shown in Table I, the
orbital moment of surface Co atom increases as the magnitude
of external electric field increases.

Fig. 4 shows the magnetic anisotropy energy as a function
of external electric field. It is clear that magnetic anisotropy in-
creases with respect to external electric field. This is due to re-
cently proposed new type of transient magnetic anisotropy in-
duced by external electric field [15]. At 0.3 eV/A, the magnetic
anisotropy is strongly enhanced to 0.03 meV/atom, which fa-
vors perpendicular magnetization alignment. This means that
an external magnetic field can be used to control the magnetic
anisotropy and that it may be possible to design thin films with
the anisotropy switchable between in-plane and out-of-plane
orientation.

IV. DISCUSSION AND CONCLUSION

The above findings indicate that the magnetization change is
basically a band-filling effect, related to the strong ferromag-
netism of the Co atoms in the L1, alloys such as CoPd. The
electric field is effectively screened in the middle of the film, but
at the surface, this screening is incomplete, leading to a redis-
tribution of electrons. The magnetocrystalline anisotropy also
exhibits a strong and generally oscillating dependence of the
band filling [16], but this is not the only consideration. Magne-
tocrystalline anisotropy is also a crystal-field effect [6], and the
shifting of electrons near the surface has a pronounced effect
on the crystal field, irrespective of the whether the number of
d-electrons changes. For example, an electric field may change
a nearly isotropic environment (roughly the same electron den-
sity in all directions) into a uniaxial environment (charge density
predominantly in one direction).
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In the present system, magnetization and anisotropy change
at both sides of the films. The effects have the same magnitudes
at the top and bottom surfaces of the film but opposite signs.
This is a consequence of the CoPd-...-PdCo structure of the
film (Fig. 1). If the top and bottom surfaces were differently ter-
minated, then the magnetization and anisotropy changes at the
two surfaces would be different and yield a net magnetization
and anisotropy change.

In conclusion, we have investigated how an external elec-
tric field affects the magnetism of .1y-ordered CoPd thin films.
Due to screening by conduction electrons, the magnetization
and anisotropy changes are limited to surfaces of the film. The
net effect depends on the surface terminations, because top and
bottom Co layers exhibit effects of equal magnitudes but oppo-
site signs. While the electric field affects both the magnetization
and the anisotropy by changing the number of d electrons at the
surface, there is also an independent crystal-field change with
implications for the anisotropy.

ACKNOWLEDGMENT

The authors would like to thank Ch. Binek and D. Le Roy
for stimulating discussions on some experimental aspects of
the magnetoelectric effect. This work was supported by DST
(India-EU collaborative project “DYNAMAG” INT/EC//CMS,
24/233552, and Nano Mission, SR/NM/NS-20/2008) and NRI.

REFERENCES

[1] W. Eerenstein, H. D. Mathur, and J. F. Scott, “Multiferroic and mag-
netoelectric materials,” Nature, vol. 442, pp. 759765, Aug. 2006.

[2] H. Schmid, “Some symmetry aspects of ferroics and single phase mul-
tiferroics,” J. Phys., Condens. Matter, vol. 20, pp. 434201-1-434201-4,
Oct. 2008.

4393

[3] P.Borisov, A. Hochstrat, X. Chen, W. Kleemann, and C. Binek, “Mag-
netoelectric switching of exchange bias,” Phys. Rev. Lett., vol. 94, pp.
117203-1-117203-4, Mar. 2005.

[4] M. Weisheit, S. Féhler, A. Marty, Y. Souche, C. Poinsignon, and D.
Givord, “Electric field-induced modification of magnetism in thin-film
ferromagnets,” Science, vol. 315, pp. 349-351, Jan. 2007.

[5] C. G. Duan, S. S. Jaswal, and E. Y. Tsymbal, “Predicted magneto-
electric effect in Fe/BaTiOs multilayers: Ferroelectric control of mag-
netism,” Phys. Rev. Lett., vol. 97, pp. 047201-1-047201-4, July 2006.

[6] R. Skomski, Simple Models of Magnetism. Oxford, U.K.: Oxford
Univ. Press, 2008.

[71 M. Zhernenkov, M. R. Fitzsimmons, J. Chlistunoff, J. Majewski, I. Tu-
dosa, and E. E. Fullerton, “Electric-field modification of magnetism in
a thin CoPd film,” Phys. Rev. B, vol. 82, pp. 024420-1-024420-6, July
2010.

[8] L. Gerhard, T. K. Yamada, T. Balashov, A. F. Takacs, R. J. H. Wes-
selink, M. Déne, M. Fechner, S. Ostanin, A. Ernst, I. Mertig, and W.
Wulfhekel, “Magnetoelectric coupling at the metal surfaces,” Nature
Nanotech., vol. 5, pp. 792-797, Oct. 2010.

[9] G. Kresse and D. Joubert, “From ultrasoft pseudo potentials to
projector augumented-wave method,” Phys. Rev. B, vol. 59, pp.
1758-1775, Jan. 1999.

[10] J. Neugebauer and M. Scheffler, “Adsorbate-substrate and adsorbate-
adsorbate interactions of Na and K adlayers on Al(111),” Phys. Rev. B,
vol. 46, pp. 16067-16080, Dec. 1992.

[11] C. G. Duan, J. P. Velev, R. F. Sabirianov, Z. Zhu, J. Chu, S. S. Jaswal,
and E. Y. Tsymbal, “Surface magnetoelectric effect in ferromagnetic
metal films,” Phys. Rev. Lett., vol. 101, pp. 137201-1-137201-4, Sep.
2008.

[12] D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H.
Ohno, “Magnetization vector manipulation by electric fields,” Nature,
vol. 455, pp. 515-518, Sep. 2008.

[13] K. Nakamura, R. Shimabukuro, Y. Fujiwara, T. Akiyama, and T. Ito,
“Giant modification of the magnetocrystalline anisotropy in transition-
metal monolayers by an external electric field,” Phys. Rev. B, vol. 102,
pp. 187201-1-187201-4, May 2009.

[14] Y. Sun, J. D. Burton, and E. Y. Tsymbal, “Electrically driven
magnetism on a Pd thin film,” Phys. Rev. B, vol. 81, pp. 064413-
1-064413-7, Feb. 2010.

[15] S.J. Gamble, M. H. Burkhardt, A. Kashuba, R. Allenspach, S. S. P.
Parkin, H. C. Siegmann, and J. Stohr, “Electric field induced magnetic
anisotropy in a ferromagnet,” Phys. Rev. Lett., vol. 102, pp. 217201-
1-217201-4, May 2009.

[16] R. Skomski, A. Kashyap, A. Solanki, A. Enders, and D. J. Sellmyer,
“Magnetic anisotropy in itinerant magnets,” J. Appl. Phys., vol. 107,
pp. 09A735-1-09A735-3, Apr. 2010.



	Magnetoelectric Effect in L10-CoPd Thin Films
	

	untitled

