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A three-dimensional elasticity theory bymeans of a state-space based differential quadrature method is presented for free vibration
analysis of fiber metal laminate annular plate. The kinds of composite material and metal layers are considered to be S2-glass and
aluminum, respectively. A semianalytical approach which uses state-space in the thickness and differential quadrature in the radial
direction is implemented for evaluating the nondimensional natural frequencies of the annular plates. The influences of changes in
boundary condition, plate thickness, and lay-up direction on the natural frequencies are studied. A comparison is also made with
the numerical results reported by ABAQUS software which shows an excellent agreement.

1. Introduction

Recently, fiber metal laminates (FML), due to their excellent
mechanical properties as well as low density, have gained
much attention for aircraft structures. Till now, several
research papers have been conducted on the vibrational
behavior of these structures.Using the free vibration damping
tests, Botelho et al. [1] obtained the elastic and viscous
responses for aluminum 2024-T3 alloy, carbon fiber/epoxy
composites, carbon fiber/aluminum 2024-T3/epoxy hybrid
composites, and glass fiber/aluminum2024-T3/epoxy hybrid
composites. They also compared the elastic and viscous
responses of these new materials with those of conventional
polymer composites. Reyes and Cantwell [2] investigated the
quasistatic and impact properties of a novel fiber/metal
laminate system based on a tough glass-fiber-reinforced pol-
ypropylene. Their testing showed that, by incorporating an
interlayer based on a maleic-anhydride modified polypropy-
lene copolymer at the interface between the composite and
aluminum layers, one can reach to excellent adhesion prop-
erties. Based on the first-order shear deformation theory,
Shooshtari and Razavi [3] solved the linear and nonlinear
vibrations of FML plate using the multiple time scales
method. Khalili et al. [4] studied the dynamic response of

FML cylindrical shells subjected to initial combined axial
load and internal pressure. They implemented the Galerkin
method for solving the governing equations. They examined
the influences of FML parameters and arrived at the point
that the FML layup has a significant effect on the natural
frequencies of vibration. In recent years, several research-
ers have implemented the differential quadrature method
(DQM) for investigating the free vibration and static analyses
of engineering structures. Using the three-dimensional the-
ory of elasticity, Alibeigloo and Shakeri [5] combined the
state-space and differential quadrature method (DQM) for
investigating the free vibration analysis of crossply laminated
cylindrical panels. Based on the theory of elasticity, Li and Shi
[6] extended a state-space based DQM for investigating the
free vibrational behavior of functionally graded piezoelectric
material (FGPM) beam under various boundary conditions.
Alibeigloo and Madoliat [7] gave a three-dimensional solu-
tion for the static analysis of crossply rectangular plates with
integrated surface piezoelectric layers using DQM and the
Fourier series approach. Also, the static and free vibration
characteristics of anisotropic laminated cylindrical shells
have been studied by applying the state-space in conjunction
with DQM [8]. Yas and Aragh [9] investigated the free
vibration characteristics of rectangular continuous grading
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fiber reinforced (CGFR) plates resting on elastic foundations
based on the three-dimensional, linear, and small strain
elasticity theory and using DQM.

Nallim and Grossi [10] performed the free transverse
vibration analysis of symmetrically laminated solid and
annular elliptic and circular plates using Rayleigh-Ritz
method. Ovesy and Fazilati [11] applied the finite strip
method based upon a Reddy type, third-order shear defor-
mation theory for investing the buckling and free vibrational
behavior of thick plates containing internal cutouts. The
buckling behavior of laminated composite circular plates hav-
ing circular holes and subjected to uniform radial load was
investigated using the finite element method by Baltaci et al.
[12]. They also studied the influences of changes in the hole
size, location of the hole, thickness, and boundary conditions
on the buckling load. Based on the three-dimensional theory
of elasticity and a combination of state-space method and
DQM,Nie and Zhong [13] used a semianalytical approach for
obtaining the vibration frequencies and dynamic response of
functionally graded circular plates. Seifi et al. [14] studied the
buckling behavior of composite annular plates under uniform
internal and external radial edge loadswhich have been inves-
tigated using energy method. Jodaei et al. [15] used a state-
space based DQM to analyze the free vibrational behavior
of functionally graded annular plates. They also modeled
the plate by artificial neural network for different boundary
conditions. Further, the influences of thickness of the annular
plate, material property graded index, and circumferential
wave number on the nondimensional natural frequencies of
the annular plates with different boundary conditions were
investigated.

In this paper the free vibrational behavior of FML plate
with central hole is investigated based on the theory of elas-
ticity. The plate is considered asymmetric in the tangential
direction which means that the displacements, stresses, and
strains are functions of the tangential component. A semi-
analytical method which is a combination of DQM, state-
space, and the Fourier series methods is applied for solving
the governing equations of motion. By applying DQM in the
radial direction, the derivatives in radius direction convert to
algebraic expressions. By using the Fourier series in tangential
direction, the displacement and stress parameters lose the
dependency of the tangential component and the equations
will contain only derivatives in the thickness direction.
Therefore, state-spacemethod is used for solving the problem
andobtaining the natural frequencies.Thekinds of composite
material and metal layers are considered to be S2-glass and
aluminum, respectively.The boundary conditions considered
here are clamped-clamped and simply supported-simply sup-
ported. The influences of variations in the plate thickness,
radius of the plate, layup of composite layers, and radius of the
hole on the natural frequencies are investigated. The results
obtained show that this method has high precision as well as
convergence. The results are compared with those obtained
via ABAQUS software. Comparison of the results demon-
strates the high accuracy of the solutions and confirms the
accuracy of the present results.
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Figure 1: Schematic viewof a circular fibermetal laminate platewith
a central hole.

2. Basic Equations

Figure 1 depicts the schematic view of a circular fiber metal
laminate platewith a central hole. 𝑎 stands for the outer radius
of the plate and 𝑏 is the hole radius. The plate is composed
of four layers with two T2024 aluminum plates on the top
and the bottom and two S2-glass inner layers. Based on the
elasticity theory, the governing equations of motion in polar
coordinates can be written as
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where 𝜎
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are the normal stresses in the radial,

tangential, and thickness directions, respectively, 𝜏
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displacement components along radial, tangential, and thick-
ness directions, respectively. The strain-displacement rela-
tions are given as
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For a linear elastic material, the structural relationship
between stress and strain is given as

𝜎
𝑖𝑗

= 𝐶
𝑖𝑗𝑘𝑙

𝜀
𝑘𝑙
, (3)
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which can be written in the matrix form for the polar system
as the following [16]:
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where 𝑄
𝑖𝑗
are the plane stress-reduced stiffnesses for the

composite material and their values as a function of material
properties and fiber angle are given in Appendix A.

3. Boundary Conditions

In the present work two kinds of boundary conditions are
considered for the annular plate. The clamped-clamped
boundary condition considers the plate around the hole and
the outer radius to be fixed.These end conditions are demon-
strated by the following equation:

𝑢
𝑟
= 𝑢
𝜃
= 𝑢
𝑧
= 0 at 𝑟 = 𝑎, 𝑏. (5)

Another boundary condition considered here is a kind of
simple-simple boundary condition. In this kind of boundary
condition, the plate is assumed tomove freely along the radius
direction, whereas in two other directions it is considered to
be fixed. This can be stated through the following:

𝜎
𝑟
= 𝑢
𝜃
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𝑧
= 0 at 𝑟 = 𝑎, 𝑏. (6)

Also, it should be noted that these end conditions are even
along the thickness at the ends.

4. Solution Method

The displacement components can be assumed in the fol-
lowing forms which simultaneously satisfy the equilibrium
equations and the boundary conditions [15]:
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Also, the stress components can be assumed as
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in which𝑚 = 0, 1, 2, . . . ,∞. In this analysis,𝑚 = 0 associated
with the axisymmetric vibration gives the first mode of
vibration and 𝑚 = 1 and 𝑚 = 2 present the first and second
modes of vibration, respectively. Also, 𝜔 denotes the natural
frequency of the plate. Introducing the following dimension-
less parameters:
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Equation (1) can be rewritten in the following form:
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where 𝜌
𝑎
is the density of aluminum,𝑄

11𝑎
is the first element

of the stiffness matrix for aluminum, and ℎ is the total
thickness of the plate. In terms of the above dimensionless
parameters, the strain components can be reformed as
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Applying the method of the Fourier series and separation
of components of displacement and stress at the parameters,
these parameters become a function of the thickness and
radius. The differential governing equations for vibration
analysis of plate has three equations with two variables. To
solve these equations, there are different ways but one of the
best as well as effective ways is the combination of differential
quadrature and state-space methods. This semianalytical
approach has a high rate of convergence.
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5. Differential Quadrature Method (DQM)

In order to solve the governing differential equations of
motion, DQM is applied along the radius direction.Thus, the
expressions containing the first and second order derivatives
of the displacements are replaced by differential quadrature
functions with certain amount of points. For a circular plate
of radius 𝑎, containing a central hole of radius 𝑏, the selected
points in the differential quadrature method are chosen as
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2
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𝑁 − 1
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Based on DQM, the 𝑛th-order partial derivative of a
continuous function as 𝑓(𝑟, 𝑧) with respect to 𝑟 at a given
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𝑖
is approximated by a linear summation of weighting

function values at all points in the domain of 𝑟 as
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where 𝑁 is the number of sample points and 𝑔
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For higher order derivatives, the values of weighting func-
tions can be obtained from the following formula:
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6. State-Space Equations Derivation

Using (4)–(10) and (11) and applyingDQMas proposed in this
equations, the state-space equations for the 𝑖th sample point
can be derived as [5]
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(17)

The above six equations are the state-space equations
which must be solved to obtain the natural frequencies of the
plate. After applying the method of Fourier series and DQM,
the derivatives along the tangential and radial directions are
removed from the final equation and only the first-order
derivatives with respect to thickness will remain.

The state-space equations can be found as below

𝑑

𝑑𝑧

𝛿 (𝑧) = 𝑀
𝑘

𝛿 (𝑧) , (18)

where

𝛿 (𝑧) = [[𝜎
𝑧𝑖
] [𝑢
𝑟𝑖
] [𝑢
𝜃𝑖
] [𝑢
𝑧𝑖
] [𝜏
𝑟𝑧𝑖

] [𝜏
𝜃𝑧𝑖

]]
𝑇

. (19)

In (22),

[𝜎
𝑧𝑖
] = [𝜎

𝑧1
⋅ ⋅ ⋅ 𝜎
𝑧𝑁

]
𝑇

, [𝑢
𝑟𝑖
] = [𝑢

𝑟1
⋅ ⋅ ⋅ 𝑢
𝑟𝑁

]
𝑇

, . . . .

(20)

The above equations which form a system of ordinary
differential equations can be solved to give

𝛿 (𝑧) = exp (𝑀𝑧) 𝛿 (𝑧 = 0) , (21)
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(a) (b)

Figure 2: Mode shapes associated with (a) first and (b) second modes of vibration of an annular plate.

in which 𝛿(𝑧 = 0) is the state-space vector at the bottom of
the plate [5]. Using this equation, the stress and displacement
components in the state-space vectors are extracted in each
point in the thickness direction and the other components of
stress can also be calculated. Matrix 𝑀 is different for each
boundary condition and it is given in Appendix B.

The state-space equations for each layer are written
separately. Therefore, for a laminated plate, these equations
are combined based on the following relation:

𝛿 (𝑧 = ℎ
𝑇
) =

1

∏

𝑘=𝑛

exp (𝑀ℎ
𝑘

) 𝛿 (0) ,

𝑇 =

1

∏

𝑘=𝑛

exp (𝑀ℎ
𝑘

) .

(22)

Expanding the previous equation in the matrix form, we
arrive at the following state-space equations for fiber metal
laminate as

[

[

[

[

[

[

[

[

[𝜎
𝑧𝑖
]

[𝑢
𝑟𝑖
]

[𝑢
𝜃𝑖
]

[𝑢
𝑧𝑖
]

[𝜏
𝑟𝑧𝑖

]

[𝜏
𝜃𝑧𝑖

]

]

]

]

]

]

]

]

]𝑧=ℎ𝑇

=

[

[

[

[

[

[

[

[

𝑇
11

𝑇
12

𝑇
13

𝑇
14

𝑇
15

𝑇
16

𝑇
21

𝑇
22

𝑇
23

𝑇
24

𝑇
25

𝑇
26

𝑇
31

𝑇
32

𝑇
33

𝑇
34

𝑇
35

𝑇
36

𝑇
41

𝑇
42

𝑇
43

𝑇
44

𝑇
45

𝑇
46

𝑇
51

𝑇
52

𝑇
53

𝑇
54

𝑇
55

𝑇
56

𝑇
61

𝑇
62

𝑇
63

𝑇
64

𝑇
65

𝑇
66

]

]

]

]

]

]

]

]

[

[

[

[

[

[

[

[

[𝜎
𝑧𝑖
]

[𝑢
𝑟𝑖
]

[𝑢
𝜃𝑖
]

[𝑢
𝑧𝑖
]

[𝜏
𝑟𝑧𝑖

]

[𝜏
𝜃𝑧𝑖

]

]

]

]

]

]

]

]

]𝑧=0

.

(23)

Since, the top and bottom surfaces of the plate are free
of static and surface forces, as a result, the normal and
shear stresses are zero at these surfaces. Thus, the state-space

equations for the free vibration analysis of plate can be recast
to the following:

[

[

[

[

[

[

[

[

0

[𝑢
𝑟𝑖
]

[𝑢
𝜃𝑖
]

[𝑢
𝑧𝑖
]

0

0

]

]

]

]

]

]

]

]𝑧=ℎ𝑇

=

[

[

[

[

[

[

[

[

𝑇
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𝑇
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𝑇
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𝑇
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𝑇
15
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𝑇
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𝑇
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𝑇
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𝑇
43

𝑇
44

𝑇
45

𝑇
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𝑇
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𝑇
52

𝑇
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𝑇
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𝑇
55

𝑇
56

𝑇
61

𝑇
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𝑇
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𝑇
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𝑇
65

𝑇
66

]

]

]

]

]

]

]

]

[

[

[

[

[

[

[

[

0

[𝑢
𝑟𝑖
]

[𝑢
𝜃𝑖
]

[𝑢
𝑧𝑖
]

0

0

]

]

]

]

]

]

]

]𝑧=0

.

(24)

Expanding the first, fifth, and sixth rows and rewriting in
a matrix form, we reach to

[

[

0

0

0

]

]𝑧=ℎ𝑇

=
[

[

𝑇
12

𝑇
13

𝑇
14

𝑇
52

𝑇
53

𝑇
54

𝑇
62

𝑇
63

𝑇
64

]

]

[

[

[𝑢
𝑟𝑖
]

[𝑢
𝜃𝑖
]

[𝑢
𝑧𝑖
]

]

]𝑧=0

. (25)

To obtain the nontrivial solution of (25), the determinant
of the coefficient matrix must set to be zero, which yields a
characteristic equation whose roots are the natural frequen-
cies of the annular plate.

7. Results and Discussions

The type of plate considered is GLARE2 and composed of
four layers [17]. The layers in the top and bottom surfaces
of the plate are composed of aluminum T2024 with material
properties given in Table 1. Also, the inner layers are com-
posed of S2-glass with material properties given in Table 2.

In order to examine the convergence rate of the present
analytic procedure, Table 3 lists the nondimensional natural
frequencies of a clamped-clamped GLARE2 annular plate.
Table 4 presents the nondimensional natural frequencies
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Figure 3: Variation of the first and secondmode natural frequencies
with the radius of the plate (𝑏 = 0.05m and ℎ

𝑐
= 0.0005m).

2

3

4

5

6

7

8

9

10

11

12

×10
−4

Ω
1

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5

b = 0.025

b = 0.05

b = 0.075

a (m)

Figure 4: Variation of the first mode natural frequency with the
radius of the plate for different hole radiuses and clamped-clamped
boundary conditions (ℎ

𝑐
= 1mm).

associated with the first mode of vibration for a clamped-
clamped annular plate with different values of ℎ

𝑐
. The top

and bottom aluminum layers are assumed to be 0.5mm
thick. While estimating the natural frequencies, the value of
𝑁 is set to be equal to 11. Results are also compared with
those reported via ABAQUS software. The plate is meshed
by shell-type elements. As would be observed, an excellent

2

3

4

5

6

7

8

9

10

11

12
×10

−4

Ω
2

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5

b = 0.025

b = 0.05

b = 0.075

a (m)

Figure 5: Variation of the second mode natural frequency with the
radius of the plate for different hole radiuses and clamped-clamped
boundary conditions (ℎ

𝑐
= 1mm).

Table 1: Mechanical properties of aluminum T2024.

𝜌 (kg/m3) ] 𝐸 (GPa)
2780 0.33 72.2

agreement has been achieved. Table 5 gives the similar results
for the second mode of vibration. The first and second mode
shapes of vibration for the clamped-clamped annular plate are
depicted in Figure 2.

Figure 3 illustrates the variation of the natural frequencies
corresponding to the first and second vibration modes with
the radius of the plate having clamped-clamped end condi-
tions. The thickness of aluminum layers on the top and bot-
tom surfaces is taken as 0.5mm.The layup of composite layers
is unidirectional. As can be seen from this figure the natural
frequency decreases as the radius increases. This is because
of the decrease in the plate stiffness. Figure 4 clarifies the
variation of the natural frequency associated with the first
vibration mode with the radius of the plate for different hole
radiuses. Figure 5 is the similar one to the second mode of
vibration. As seen from these figures, the natural frequency
increases by an increment in the hole radius. This fact is
mainly due to the fact that by an increase in the hole radius,
the effective radius of the plate decreases and this leads to
an increase in the plate stiffness and the frequency value as
a consequence. Also, by increasing the radius of the hole,
the mass decreases which results into an increase in the
natural frequency of the plate. Figures 6 and 7 illustrate the
natural frequency variations of the first and second modes
with respect to the plate radius for three different thicknesses
of the composite layer. As can be seen, the natural frequency
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Figure 6: Variation of the first mode natural frequency with the
radius of the plate for different composite layer thicknesses and
clamped-clamped end conditions (𝑏 = 0.05m).

increases as the composite layer thickness increases. How-
ever, by increasing the plate thickness, the mass and stiffness
values of the plate increase, but this increase is more signifi-
cant for the bending stiffness.

The natural frequencies of the plate for GLARE3 are also
calculated. The layup of the composite layers is considered as
cross ply. Figures 8 and 9 exhibit the variation of the natural
frequencies associated with the first and second vibration
modes with plate radius for unidirectional and cross ply
layups. The natural frequencies of plate with unidirectional
layup are greater than those of the cross ply counterpart.This
is because of the greatness of the bending stiffness for the
unidirectional layup over the cross ply case.

Figure 10 presents the variation of natural frequencies
of the first and second vibration modes for the plate with
simple-simple boundary condition. Figures 11 and 12 exhibit
the variations of the natural frequencies associated with the
first and second vibration modes for annular plate with
unidirectional layup and different boundary conditions.

8. Conclusions

Based on the theory of elasticity, free vibration analysis of
circular fiber metal composite plate with a central hole has
been performed. The governing equations derived using the
elasticity theory will then be solved using a combination of
differential quadrature method, state-space, and the Fourier
series in order to obtain the natural frequencies of the plate.
The composite metal plate is made up of GLARE and two
kinds of GLARE2 and GLARE3 are chosen for the vibration
analysis. Plate is composed of four layers with aluminum
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Figure 7: Variation of the second mode natural frequency with
the radius of the plate for different composite layer thicknesses and
clamped-clamped end conditions (𝑏 = 0.05m).
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Figure 8: Variation of the first mode natural frequency with
the radius of the plate for different layups and clamped-clamped
boundary condition (𝑏 = 0.05m, ℎ

𝑐
= 0.001m).

layers on the top and bottom surfaces and inner composite
layers. Vibration frequencies of circular fibermetal composite
plates with central holes for both the clamped-clamped and
simply supported boundary conditions were presented. Also,
effects of layup, hole radius, and plate thickness on the nat-
ural frequencies are studied. Results obtained from present
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Table 2: Mechanical properties of S2-glass.

𝜌 (kg/m3) ]
23

]
13

]
12

𝐺
23
(GPa) 𝐺

12
(GPa) 𝐺

13
(GPa) 𝐸

33
(GPa) 𝐸

22
(GPa) 𝐸

11
(GPa)

1980 0.32 0.25 0.25 7 7 7 17 17 52

Table 3: A convergence study for the nondimensional natural frequencies associated with the first and second vibrationmodes of a clamped-
clamped annular plate (𝑎 = 40 cm and 𝑏 = 5 cm).

m h (mm) 𝑁 = 7 𝑁 = 8 𝑁 = 9 𝑁 = 10 𝑁 = 11

0
2 0.0001919 0.0001907 0.0001910 0.0001909 0.0001910
3 0.00042822 0.00042540 0.0004262 0.0004260 0.0004262
5 0.00115613 0.00114870 0.00115090 0.0011502 0.0011508

1
2 0.0002075 0.0002046 0.0002052 0.0002050 0.0002051
3 0.00046116 0.00045416 0.0004553 0.0004549 0.0004552
5 0.00123097 0.00121644 0.0012193 0.00121824 0.0012190
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Figure 9: Variation of the second mode natural frequency with
the radius of the plate for different layups and clamped-clamped
boundary condition (𝑏 = 0.05m and ℎ

𝑐
= 0.001m).

Table 4: Comparison of the frequency value associatedwith the first
vibration mode for a clamped-clamped annular plate (𝑎 = 50 cm,
𝑏 = 5 cm, and 𝑚 = 0).

ℎ
𝑐
(mm) State-space DQM ABAQUS Error (%)

0.5 0.000115 0.0001156 0.5
1 0.0002576 0.00025011 2.5
2 0.0006955 0.0006415 8

semianalytical approach have been compared with those
reported by ABAQUS software. This comparison shows that
the present solution is of high accuracy.The results show that
the natural frequency of the plate increases with an increment
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Figure 10: Variation of the first and second mode natural frequen-
cies with the radius of the plate for the simple-simple boundary
condition (𝑏 = 0.05m and ℎ

𝑐
= 0.0005m).

Table 5: Comparison of the frequency value associated with the
second vibration mode for a clamped-clamped annular plate (𝑎 =

50 cm, 𝑏 = 5 cm, and 𝑚 = 1).

ℎ
𝑐
(mm) State-space DQM ABAQUS Error (%)

0.5 0.0001246 0.0001213 2.6
1 0.0002767 0.00025997 6
2 0.0007406 0.00065769 11

in the radius of the hole. This is due to the fact that the
effective radius of the plate is reduced and this increases the
plate stiffness and the natural frequency as a consequence.
It was observed that the natural frequency of the GLARE2
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Figure 12: Variation of the second mode natural frequency with the
radius of the plate with different boundary conditions (𝑏 = 0.05m
and ℎ

𝑐
= 0.0005m).

for unidirectional composite layers arrangement is more
compared with the GLARE3 with cross ply composite layers.
Furthermore, the effect of boundary conditions on the natu-
ral frequencies was studied which illustrated that the natural
frequencies of the plate with clamped-clamped boundary
condition are higher than those of the simply supported case.

This is due to the fact that in the clamped-clamped case the
degree of freedom is less and this causes an increase in the
plate stiffness.

Appendices

A. Plane Stress-Reduced Stiffnesses for
the Composite Material
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𝐶
13

+ 𝑛
2

𝐶
23
,

𝑄
14

= 𝑚𝑛 [(𝐶
11

− 𝐶
12

− 2𝐶
44
)𝑚
2

+(𝐶
11

− 𝐶
12

+ 2𝐶
44
) 𝑛
2

] ,

𝑄
22

= 𝑛
4

𝐶
11

+ 2𝑚
2

𝑛
2

(𝐶
12

+ 2𝐶
44
) + 𝑚
4

𝐶
22
,

𝑄
23

= 𝑚
2

𝐶
23

+ 𝑛
2

𝐶
13
,

𝑄
24

= 𝑚𝑛 [(𝐶
11

− 𝐶
12

− 2𝐶
44
) 𝑛
2

+ (𝐶
11

− 𝐶
12

+ 2𝐶
44
)𝑚
2

] ,

𝑄
33

= 𝐶
33
,

𝑄
56

= 𝑚𝑛 (𝐶
31

− 𝐶
32
) ,

𝑄
44

= 𝑚
2

𝑛
2

(𝐶
11

− 2𝐶
12

+ 𝐶
22

− 2𝐶
44
) +(𝑚

4

+ 𝑛
4

) 𝐶
44
,

𝑄
55

= 𝑚
2

𝐶
55

+ 𝑛
2

𝐶
66
,

𝑄
56

= 𝑚𝑛 (𝐶
55

− 𝐶
66
) ,

𝑄
66

= 𝑛
2

𝐶
55

+ 𝑚
2

𝐶
66
,

(A.1)

in which 𝑚 = cos(𝛼) and 𝑛 = sin(𝛼), where 𝛼 is the
angle between the direction of the principal axis and the fiber
direction.The values of𝐶

𝑖𝑗
constants only depend on the kind

of material and they are given as follows:

𝐶
11

=

𝐸
11

(1 − ]
23
]
32
)

Δ

; 𝐶
12

=

𝐸
11

(]
21

+ ]
31
]
23
)

Δ

𝐶
13

=

𝐸
11

(]
31

+ ]
21
]
32
)

Δ

; 𝐶
22

=

𝐸
22

(1 − ]
31
]
13
)

Δ

𝐶
23

=

𝐸
22

(]
32

+ ]
12
]
13
)

Δ

; 𝐶
33

=

𝐸
33

(1 + ]
12
]
21
)

Δ



10 Advances in Materials Science and Engineering

Δ = (1 − ]
12
]
21

− ]
23
]
32

− ]
13
]
31

− 2]
12
]
23
]
31
)

𝐶
44

= 𝐺
12

𝐶
55

= 𝐺
13

𝐶
66

= 𝐺
23
.

(A.2)

B. 𝑀 Matrices for Different
Boundary Conditions

𝑀 =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0 −

𝜌

𝜌
𝑎

Ω
2

𝐼
𝑁

−

ℎ
𝑇

𝑎

𝑔
1

𝑖𝑗
−

ℎ
𝑇

𝑎

1

𝑟
𝑖

𝐼
𝑁

−𝑚

ℎ
𝑇

𝑎

1

𝑟
𝑖

𝐼
𝑁

0 0 0 −

ℎ
𝑇

𝑎

𝑔
1

𝑖𝑗

𝐼
𝑁

𝑄
55

0

0 0 0 𝑚

ℎ
𝑇

𝑎

1

𝑟
𝑖

𝐼
𝑁

0

𝐼
𝑁

𝑄
66

𝐼
𝑁

𝑄
33

−

𝑄
13

𝑄
33

ℎ
𝑇

𝑎

𝑔
1

𝑖𝑗
−

𝑄
23

𝑄
33

ℎ
𝑇

𝑎

1

𝑟
𝑖

𝐼
𝑁

−𝑚

ℎ
𝑇

𝑎

𝑄
23

𝑄
33

1

𝑟
𝑖

𝐼
𝑁

0 0 0

𝑠
1

𝑠
2
−

𝜌

𝜌
𝑎

Ω
2

𝐼
𝑁

𝑠
3

0 0 0

𝑠
4

𝑠
5

𝑠
6
−

𝜌

𝜌
𝑎

Ω
2

𝐼
𝑁

0 0 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

𝑖, 𝑗 = 1, . . . , 𝑁,

𝑠
1
= −

𝑄
13

𝑄
33

ℎ
𝑇

𝑎

𝑔
1

𝑖𝑗
+

ℎ
𝑇

𝑎

(

𝑄
23

− 𝑄
13

𝑄
33

) 𝐼
𝑁
,

𝑠
2
= −(

ℎ
𝑇

𝑎

)

2

(𝑄
11

−

𝑄

2

13

𝑄
33

)𝑔
2

𝑖𝑗
+ −(

ℎ
𝑇

𝑎

)

2

(𝑄
11

−

𝑄

2

13

𝑄
33

)

1

𝑟
𝑖

𝐼
𝑁
𝑔
1

𝑖𝑗

+ 𝑚(

ℎ
𝑇

𝑎

)

2

(𝑚
2

𝑄
44

+ 𝑄
22

−

𝑄

2

23

𝑄
33

)

1

𝑟
2

𝑖

𝐼
𝑁
,

𝑠
3
= −𝑚(

ℎ
𝑇

𝑎

)

2

(𝑄
44

+ 𝑄
12

−

𝑄
13
𝑄
23

𝑄
33

)

1

𝑟
𝑖

𝐼
𝑁
𝑔
1

𝑖𝑗

+ 𝑚(

ℎ
𝑇

𝑎

)

2

(𝑄
44

+ 𝑄
22

−

𝑄

2

23

𝑄
33

)

1

𝑟
2

𝑖

𝐼
𝑁
,

𝑠
4
= 𝑚

ℎ
𝑇

𝑎

𝑄
23

𝑄
33

1

𝑟
𝑖

𝐼
𝑁
,

𝑠
5
= 𝑚(

ℎ
𝑇

𝑎

)

2

(𝑄
44

+ 𝑄
12

−

𝑄
13
𝑄
23

𝑄
33

)

1

𝑟
𝑖

𝐼
𝑁
𝑔
1

𝑖𝑗
+ 𝑚(

ℎ
𝑇

𝑎

)

2

(𝑄
44

+ 𝑄
22

−

𝑄

2

23

𝑄
33

)

1

𝑟
2

𝑖

𝐼
𝑁
,

𝑠
6
= −(

ℎ
𝑇

𝑎

)

2

𝑄
44
𝑔
2

𝑖𝑗
− (

ℎ
𝑇

𝑎

)

2

𝑄
44

1

𝑟
𝑖

𝐼
𝑁
𝑔
1

𝑖𝑗

+ (

ℎ
𝑇

𝑎

)

2

(𝑄
44

+ 𝑚
2

(𝑄
22

−

𝑄

2

23

𝑄
33

))

1

𝑟
2

𝑖

𝐼
𝑁
,
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𝑀
𝐶

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0 −

𝜌

𝜌
𝑎

Ω
2

𝐼
𝑁−2

−𝑄
55
(

ℎ
𝑇

𝑎

)

2

𝑓
𝑐𝑐

−

ℎ
𝑇

𝑎

𝑔
1

𝑖𝑗
−

ℎ
𝑇

𝑎

1

𝑟
𝑖

𝐼
𝑁−2

−𝑚

ℎ
𝑇

𝑎

1

𝑟
𝑖

𝐼
𝑁−2

0 0 0 −

ℎ
𝑇

𝑎

𝑔
1

𝑖𝑗

𝐼
𝑁−2

𝑄
55

0

0 0 0 𝑚

ℎ
𝑇

𝑎

1

𝑟
𝑖

𝐼
𝑁−2

0

𝐼
𝑁−2

𝑄
66

𝐼
𝑁

𝑄
33

−

𝑄
13

𝑄
33

ℎ
𝑇

𝑎

𝑔
1

𝑖𝑗
−

𝑄
23

𝑄
33

ℎ
𝑇

𝑎

1

𝑟
𝑖

𝐼
𝑁−2

−𝑚

ℎ
𝑇

𝑎

𝑄
23

𝑄
33

1

𝑟
𝑖

𝐼
𝑁−2

0 0 0

𝑠
1

𝑠
2
−

𝜌

𝜌
𝑎

Ω
2

𝐼
𝑁−2

𝑠
3

0 0 0

𝑠
4

𝑠
5

𝑠
6
−

𝜌

𝜌
𝑎

Ω
2

𝐼
𝑁−2

0 0 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

𝑓
𝑐𝑐

= 𝑔
1

𝑖1
𝑔
1

1𝑗
+ 𝑔
1

𝑖𝑁
𝑔
1

𝑖𝑗
, 𝑖, 𝑗 = 2, . . . , 𝑁 − 1.
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