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Abstract We studied the Rayleigh wave group velocities beneath Hungary using
ambient seismic noise tomography. Noise data were gathered from 17 broadband
seismological stations in and around the Pannonian basin. The cross-correlation
method was used to calculate the Green’s functions. Group velocities belonging
to the fundamental mode Rayleigh waves were determined by multiple filter tech-
nique. We measured the dispersion curves for each station pair in a period range of
7–28 s and computed maps of group velocity distribution using a 2D tomography
method. The group velocity maps of 7–14 s periods correlate well with sedimen-
tary thickness and regional geology. Velocity anomalies observed at longer periods
reflect the effect of the crustal and mantle structural features.

Keywords Pannonian basin · ambient seismic noise · cross-correlation · surface
wave tomography

1 Introduction

The Pannonian basin is located in the eastern part of central Europe. It is sur-
rounded by the Dinarides, the Eastern Alps and the Carpathian Mountains.

The basin formation started in the Early Miocene due to the Europe–Africa
convergence. The extensional collapse of the Eastern Alps and the continuous
push of the Adriatic microplate resulted in the extrusion of crustal blocks from
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the Alpine orogen (Royden et al, 1982; Ratschbacher et al, 1991; Horváth, 1993;
Horváth and Cloetingh, 1996)

Subduction of the European foreland and associated rollback of the subducted
slab caused lithospheric extension and asthenospheric updoming during the Middle
Miocene while discrete basins opened up due to the extension (Royden et al, 1982;
Royden and Horváth, 1988; Horváth, 1993; Bada et al, 2001; Horváth, 2007).
Cooling of the asthenospheric dome led to the subsidence of the whole Pannonian
basin in the Late Miocene (Horváth and Cloetingh, 1996; Horváth, 2007).

The continuous indentation and counterclockwise rotation of the Adriatic mi-
croplate eventually interrupted the subsidence and caused the inversion of the
basin system, resulting in large scale folding during the latest Pliocene and Qua-
ternary (Horváth, 1995; Horváth, 2007; Bada et al, 2007).

As a result of the extension the Pannonian basin can be characterized by
shallow Moho discontinuity (Grad et al, 2009) and high surface heat flow (Lenkey,
1999; Lenkey et al, 2002).

The crustal and upper mantle P-wave velocities and the structure of the Pan-
nonian basin is well known from inversion of crustal phase travel times (Mónus,
1995; Gráczer and Wéber, 2012), refraction and reflection seismic surveys (Posgay
et al, 1986, 1995; Guterch et al, 2000, 2003; Grad et al, 2006, 2009) and tomo-
graphic studies (Hovland et al, 1981; Babuška et al, 1984; Granet and Trampert,
1989; Spakman et al, 1993; Fan and Wallace, 1998; Mele et al, 1998; Hearn, 1999;
Wéber, 2002; Piromallo and Morelli, 2003; Bus, 2004; Dando et al, 2011).

Shear wave velocity structure of the Pannonian basin was studied by the means
of surface wave analysis (Calcagnile and Panza, 1990; Bondár et al, 1996), receiver
function inversion (Bus, 2003, 2004; Hetényi and Bus, 2007; Hetényi et al, 2009)
and teleseismic earthquake tomography (Dando et al, 2011).

Several studies have shown that surface wave tomography can be used in imag-
ing of the crust and upper mantle on both regional (He et al, 2005; Sabra et al,
2005) and continental scale (Villaseñor et al, 2001; Yanovskaya and Kozhevnikov,
2003; Yang et al, 2007).

Ambient noise surface wave tomography has advantages compared to earthquake-
based methods. It is easily applicable in territories with low seismicity, and only
the station configuration defines the path coverage. Nevertheless, the observable
fundamental mode Rayleigh wave period range strongly depends on the intersta-
tion distances. The closer the stations are to each other, the shorter the period
of surface waves are measurable and the shallower structure can be revealed. The
method has been successfully applied in local (Boaga et al, 2010), regional (Sabra
et al, 2005; Shapiro et al, 2005; Villaseñor et al, 2007; Gaite et al, 2012; Kim et al,
2012; Verbeke et al, 2012) and continental studies (Yang et al, 2007; Bensen et al,
2008).

In our paper we present an ambient noise Rayleigh wave group velocity tomog-
raphy for the Pannonian basin based on the data of 17 permanent seismological
stations.

2 Method

Theoretical research and experiments (Lobkis and Weaver, 2001; Weaver and
Lobkis, 2001; Shapiro and Campillo, 2004; Larose et al, 2005; Sabra et al, 2005)
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Fig. 1 Location of the stations (black triangle) whose data were used in our computations
and geographical units mentioned in the paper. LHP: Little Hungarian Plain; TM: Transdanu-
bian Mountains; TH: Transdanubian Hills; NHM: North Hungarian Mountains; GHP: Great
Hungarian Plain; DB: Dráva basin; BB: Békés basin; MT: Makó trench.

have proven that an estimate of the Green’s function can be obtained from cross-
correlation of long-term ambient seismic noise records. The cross-correlation func-
tions (CCF) can be interpreted as surface waves originated from a source at a
seismic station and registered at the other. These CCFs are two-sided time func-
tions with both positive and negative correlation lags. They are used to determine
dispersion curves which in turn can be used for tomography. Cross-correlation
technique works best when the noise distribution is uniform in space and time
(Larose, 2004). Asymmetry in noise sources can result in asymmetric CCF, which
requires further processing steps.

2.1 Data collection

In ambient noise tomography, raypath coverage is determined by the distribution
of the stations. To get a good azimuthal coverage, records were collected from the
seismological stations located in Hungary and in the surrounding countries (Fig.
1). The data were extracted from the archive of the MTA CSFK GGI Kövesligethy
Radó Seismological Observatory or obtained from the GEOFON website in mseed
format using the ArcLink protocol. Daily segments of vertical component LHZ
stream were downloaded; if LHZ was not available, then the BHZ or the HHZ
stream was acquired. Six permanent broadband stations (BEHE, BUD, PKSM,
PSZ, SOP, TRPA) have been working in Hungary since 2005, and a new station
(LTVH) was deployed in 2011. The broadband station PKSM was shut down in
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May 2011 and reinstalled as MORH few hundred meters from its original place,
thus these two stations can be regarded as one from our point of view. Seismological
station parameters, sensor types and data intervals are listed in Table 1.

2.2 Data processing

Our data processing method is based on that discussed by Bensen et al (2007);
Yang et al (2007); Ditmar and Yanovskaya (1987) and Yanovskaya and Ditmar
(1990). It consists of three main steps: 1) calculation of the Green’s function from
seismic noise; 2) determination of the Rayleigh wave fundamental mode group
velocity dispersion curves; 3) 2D group velocity tomography.

Seismic records of BHZ and HHZ streams were resampled to 1 Hz prior to
any further analysis. Daily seismograms shorter than 86200 s were neglected. We
corrected the remaining records for instrument response and removed the mean
and trend, after which data were bandpass filtered between 4 and 50 s.

When we compute the CCFs from ambient seismic noise recordings, the earth-
quake signals are undesirable. Different types of normalization methods can be
used to remove the influence of the earthquakes, e.g. running-absolute-mean, one-
bit, clipped waveform or water level normalization. According to Bensen et al
(2007), running-absolute-mean normalization gives the best results. Nevertheless,
one-bit normalization gives nearly as good result as the running-absolute-mean
method, while the processing time is significantly less. Therefore, we used one-bit
normalization for earthquake signal removal. During this process all non negative
amplitudes are replaced with a value of 1 and all negative amplitudes with -1.
One-bit normalization has been successfully used in a number of seismic studies
(Campillo and Paul, 2003; Shapiro and Campillo, 2004; Shapiro et al, 2005; Yao
et al, 2006).

Cross-correlation functions were calculated for 1 hour segments and stacked
over longer period. Calculations were performed between all possible station pairs
using the seismological programs by Robert B. Herrmann (Herrmann and Ammon,
2002). The difference of the positive and negative time lags of the resulting CCFs
were negligible, which means that the noise distribution can be considered uniform.
Cross-correlation functions without clear Green’s function were omitted and not
used in further processing steps.

Dispersion curves from 7 to 28 s period were measured manually using multiple
filter technique (MFT) (Dziewonski et al, 1969; Herrmann, 1973). MFT plots for
every station pair were determined for the years 2008 and 2011. As part of the
quality control, the plots were visually inspected and compared for close paths. As
a result 118 dispersion curves were obtained from 136 CCFs.

To obtain reliable dispersion curves at period T , the interstation distance (∆)
must be at least 3 wavelengths (λ): ∆ > 3λ = 3cT (Bensen et al, 2007). If the
phase velocity is c ∼ 4 km/s, the maximum cut-off period is about Tmax = ∆

12 km/s
for measurements at ∆ interstation spacing. In our case, the maximum distance
between the stations is 609 km, thus the theoretical cut-off period is around 50 s.
Dispersion curves were truncated based on the 3 wavelengths criterium.

The above described process gives different number of paths for each period
(Fig. 2). The variable number of paths results in a period dependent coverage (Fig.
3).
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Fig. 2 Number of paths used for group velocity tomography at each period value.
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Fig. 3 Paths used for tomography at 7 s and 21 s period (left). Resolution approximated as
the average of half-axes of the error ellipses (right). Gray shades correspond to the areas of at
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Group velocity tomography for each period was carried out using the Ditmar-
Yanovskaya method (Ditmar and Yanovskaya, 1987; Yanovskaya and Ditmar,
1990). The study region extends from 15.4°E to 23°E and from 45.0°N to 49.0°N
(Fig. 1). The area was divided into 0.2° by 0.2° grid, and plane geometry was used.
Damping parameter was set to α = 0.15 based on the trade-off curve between
model roughness and data misfit.

3 Results and discussion

We will discuss group velocity maps at six selected periods: 7, 14, 18, 21, 25 and
28 s (Fig. 4).

The resolution is given at each grid point as the average of the half-axes of the
error ellipses (see Ditmar and Yanovskaya (1987) for details). The best resolution
of 60 km can be seen in the central part of the Pannonian basin (Fig. 3), where
path density is highest, whereas resolution is only 100 km at the perimeter of the
area. As an example, the paths for which we were able to measure group velocity
values at 7 and 21 s periods and the corresponding resolution are shown in Fig. 3.

Seven of the stations are aligned in southwest-northeast direction, almost par-
allel to the path connecting the stations CRES and KOLS (Fig. 1). The dispersion
curves measured on the CCFs belonging to these paths are ideal for comparison
purposes, however this is an unfavourable geometry for tomography.

As a rough estimate, we can say that at a given period, the Rayleigh wave
group velocity depends on the average shear wave velocity over a depth range of
approximately a half wavelength (He et al, 2005; Li et al, 2012). In general, the
longer the period, the deeper the surfave wave energy penetrates. The so called
sensitivity kernel shows how the S wave velocity at a given depth affects the
group velocity value at a certain period. It can be calculated from the inversion of
dispersion curves as the ∂u

∂β derivatives, where u is the group velocity and β is the
shear wave velocity. To estimate a representative depth range for group velocity
periods, a dispersion curve was constructed using the average velocities at each
period (see the lower left corners of Figs. 4a–f). The resulting dispersion curve
was inverted to compute the sensitivity kernel (Fig. 5). It can be seen, that the
propagation of surface waves with period of 7 s is strongly affected by the upper
crustal structure with the maximum sensitivity at 5 km depth. Group velocity
map at 18 s period reflects the sensitivity to deeper structures, mainly the lower
crust at 10–20 km depth with maximum sensitivity at 12 km, while the map at
28 s is affected by the 12–32 km depth range, i.e. the lower crust and uppermost
mantle.

The velocity variations at 7 s period (Fig. 4a) are very consistent with surface
geology units, having low velocity regions in areas with thick sediments, such as
the Great and Little Hungarian Plains, and high-velocity anomalies under the
mountains, such as the Western Carpathians, the North Hungarian Mountains
and the Eastern Alps. The average group velocity is 2.43 km/s for the area within
the 100 km resolution curve. The minimum group velocity is 2.1 km/s, while the
maximum is 2.9 km/s. Velocity distribution at this period clearly reflects the upper
crustal structures.

It must be noted that the results of Yang et al (2007), who computed group
velocity maps from ambient noise tomography across Europe on a 1° by 1° grid
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Fig. 4 Estimated Rayleigh wave group velocity maps at different periods (upper left corner).
Maps are presented as a perturbation from the average velocities (lower left corner) in per
cent. Areas with resolution worse than 100 km are clipped to gray. Note, that subfigures (e)
and (f) have different velocity scales than the other ones.
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Fig. 5 Sensitivity kernels for 7 s, 18 s and 28 s period Rayleigh waves.

also showed the presence of a low velocity anomaly beneath the Great Hungarian
Plain at 10 s period.

Group velocities at 14 s are shown in Fig. 4b. The low velocity anomaly under
the Great Hungarian Plain changes little in shape, however its amplitude is de-
creasing. This is also true for the high velocity anomaly under the Eastern Alps.
Prominent feature is the Western Carpathians, which is imaged as high velocity
anomaly in both the 7 and 14 s maps, however the maximum of the anomaly is
shifted to the east.

Sensitivity of 18 s period Rayleigh waves is highest around 12 km depth, how-
ever it is influenced by the 10–20 km depth range (Fig. 5). As the surface waves
sample deeper regions, the effect of sedimentary basins decreases, however the
Hungarian Great Plain is still prominent (Fig. 4c). Under the Transdanubian Hills
and western Hungary negative velocity anomaly can be seen. A positive anomaly
under south of Transdanubia appears. The amplitude of the negative anomaly
under the Western Carpathians decreases. Highest velocities can be seen below
eastern Hungary. Group velocity map of 21 s (Fig. 4d) shows similar pattern to
the 18 s map, anomalies change little in shape, however, due to averaging over a
large depth range, the amplitudes decrease.

Figs. 4e and 4f show the group velocities at 25 and 28 s period, respectively.
Under the Békés basin, the Little Hungarian Plain, and eastern Hungary group
velocities are above the average velocity, the highest value is 3.6 km/s; clearly
associated with the thin crust in the area. Other prominent features are the low
velocities mapped under the Eastern Alps and Western Carpathians (Fig. 4e),
representing the mountain roots. Minimum velocities are as low as 3.0 km/s for
28 s period.
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Fig. 6 Velocity differences between the group velocity maps of 7 s and 25 s period Rayleigh
waves. Group velocities under the mountains (e.g. beneath Western Carpathians) change little
within the studied surface wave period range, whereas velocities under the deep subbasins of
the Pannonian basin increase significantly (e.g. beneath Little Hungarian Plain).

The depth of the Moho varies between 22 and 33 km in the studied region
(Horváth et al, 2006; Grad et al, 2009). At the deep subbasins of the Pannonian
basin such as the Hungarian Little Plain, the Békés basin, the Makó trench, and
the Dráva basin the crust is significantly thinned, whereas under the mountains,
such as the Carpathians, the Eastern Alps, and the Transdanubian Mountains it’s
thickened.

Where the Moho is shallower the denser material of the mantle is closer to
the surface, thus longer period surface waves sample higher velocities than under
the mountain ranges. This effect can be followed through Figs. 4c and d, where
the low velocity anomalies under the thinned crust regions decrease in extent and
amplitude. Longer periods represent greater depth according to the sensitivity
kernel, thus group velocity distribution displayed in Figs. 4e and f are determined
by the S wave structure in the lower crust and the uppermost mantle.

Velocity differences between the Rayleigh waves group velocity maps of 7 s and
25 s period are shown in Fig. 6. It’s worth noticing, that absolute velocities change
little under the Eastern Alps and the Western Carpathians, due to the thickened
crust, whereas they increase significantly with depth under the deep sedimentary
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subbasins of the Pannonian basin; e.g. under the Békés basin it changes by ap-
proximately 1.2 km/s (Fig. 6).

According to Posgay et al (1995) an upwelling of the lower crust and the crust-
mantle boundary can be inferred from various geophysical measurements beneath
the Békés basin. Based on gravitational modelling a high density body is present
under the basin (Szafián et al, 1997). Ádám and Bielik (1998) suggested that the
area is a narrow rift zone with high-density upper-mantle material intrusion into
the crust.

Our results in the Békés basin, i.e. the significant velocity increase with depth
confirms the hypothesis of high density, consequently high velocity mantle intru-
sion.

4 Conclusions

Ambient seismic noise data recorded at 17 broadband seismological stations were
collected and processed. Cross-correlation functions were calculated in daily seg-
ments and stacked over several months. Fundamental mode Rayleigh wave group
velocities have been determined from the cross-correlation functions using a mul-
tiple filter technique. Rayleigh wave group velocity maps at periods from 7 to 28
s were computed using a 2D tomography method.

Group velocity maps of 7–14 s periods correlate well with regional geology.
High group velocities can be observed in the territory of the mountains, while low
velocities can be seen in the sedimentary basin areas. Velocity anomalies observed
at 18–28 s reflect the effect of the lower crust and uppermost mantle.

As expected, notable velocity increase with depth characterizes the Great and
Little Hungarian Plains. The area belonging to the largest increment corresponds
to the Békés basin, where an upper-mantle intrusion into the crust is assumed.
Our results seem to support this hypothesis.

As the group velocity maps and the computed sensitivity kernel show that it
is possible to determine the S wave velocity structure of the crust and uppermost
mantle beneath the Pannonian basin using the ambient seismic noise data of the
presently available seismological stations, the inversion of the presented group
velocity maps are currently underway.
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