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The deterministic flowshop model is one of the most widely studied problems; whereas its stochastic equivalent has remained
a challenge. Furthermore, the preemptive online stochastic flowshop problem has received much less attention, and most of the
previous researches have considered a nonpreemptive version. Moreover, little attention has been devoted to the problems where
a certain time penalty is incurred when preemption is allowed. This paper examines the preemptive stochastic online flowshop
with the objective of minimizing the expected makespan. All the jobs arrive overtime, which means that the existence and the
parameters of each job are unknown until its release date. The processing time of the jobs is stochastic and actual processing time
is unknown until completion of the job. A heuristic procedure for this problem is presented, which is applicable whenever the job
processing times are characterized by their means and standard deviation. The performance of the proposed heuristic method is
explored using some numerical examples.

1. Introduction

The stochastic flowshop problems have not penetrated very
far and remain challenging. The stochastic two-machine
flowshop problem is inherently more complex than its deter-
ministic counterpart. This complexity is much more when
the preemptive online version of the problem is considered.
In other words, the jobs are allowed to be preempted and
restarted. We assume that preemption can occurr only on
machine 1 in the flowshop problem. Moreover, all the jobs
arrive overtime, which indicates that the existence and the
parameters of each job are unknown until its release date.
In the previous stochastic studies, preemptions are usually
assumed to be “free” which means that each job can be pre-
empted at any point of time and resumed later without incur-
ring a penalty.However, this is not usually the case in practice.
In many cases, such as melting furnaces, the time that has
been spent before the preemption on a job is lost and consid-
ered as the preemption penalty.

Scheduling has become a well-studied problem and there
are literally tremendous efforts on providing solution strate-
gies for various kinds of modeling formulations such as job

shop and flowshop. There are literally many applications for
flowshop problem (e.g., Defersha and Chen [1]; Mahavi et al.
[2]; Braglia et al. [3]). Two-machine flowshop problem with
makespan objective function and deterministic processing
time can be optimally solved by Johnson’s rule [4].This prob-
lemwould beNP-hard if it consists of three ormoremachines
[5].Therefore, numerous heuristic algorithms have been pre-
sented for solving such problems in various studies. Framinan
et al. have reviewed some of these articles [6]. Ruiz and
Maroto referred to 53 articles on the heuristics presented for
minimizing makespan in permutation flowshop problem [7].

In the stochastic flowshop problem, the processing time is
a random variable.This simple difference leads tomany com-
plexities in stochastic problems.Makino developed a sequen-
cing rule to find the schedule that minimizes the expected
makespan in a flowshop problemwith two jobs and exponen-
tially distributed processing time [8]. Frostig and Adiri inves-
tigated three-machine flowshop stochastic scheduling with
an objective of minimizing distribution of schedule length
[9]. Sethi et al. offered feedback production planning in a
stochastic two-machine flowshop based on asymptotic anal-
ysis and computational results [10]. Elmaghraby andThoney
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studied the two-machine stochastic flowshop problem with
arbitrary processing time distributions [11]. In the stochas-
tic flowshop problem with two machines and exponential
processing times, the expected makespan value would be
minimized in the case that the jobs are sorted nonincreasingly
in terms of parameter (1/𝜇

𝑖1
− 1/𝜇

𝑖2
). This method was

proposed by Talwar and is known as Talwar’s Rule [12]. Later,
Cunningham and Dutta proved its optimality [13]. Ku and
Niu obtained a sufficient condition for stochastic dominance
and showed that Talwar’s Rule yields a stochastically minimal
makespan [14]. Soroush andAllahverdi presented a stochastic
two-machine flowshop scheduling problem with total com-
pletion time criterion [15]. Laha and Chakraborty presented
an efficient stochastic hybrid heuristic for flowshop schedul-
ing [16]. Portougal and Trietsch applied Johnson’s Rule to
stochastic problems [17]. They utilized, mean of the process-
ing time of each job as its processing time in Johnson’s Rule.
Moreover, Kalczynski and Kamburowski applied Talwar’s
Rule for Weibull distribution [18]. Baker and Altheimer used
three heuristic methods for the flowshop problem with 𝑚
machines, supposing general distributions for processing
times. They investigated the performance of these methods
in a set of problems using simulation and noticed that these
methods had near-optimal performance [19]. Baker and
Trietsch also explored three heuristic methods for the two-
machine stochastic model with a general distribution func-
tion.They compared Johnson’sHeuristicmethod andTalwar’s
Heuristic method (applying mean of the processing time
instead of job processing time in these two methods) and
also the heuristic method of changing neighboring pairs (two
neighboring jobs are separately considered and are displaced
if their order can be optimized) and figured out that none
of these methods dominate the other [20]. Heydari et al.
proposed a heuristic method for minimization of expected
value of the total weighted completion time in singlemachine
problem with preemption penalties [21]. In this paper, the
heuristic proposed by Baker andTrietsch has been applied for
sequencing the jobs which are present in the shop.

In spite of the various studies in the last decades, a consid-
erable research has not been performed on preemptive online
flowshop problems with stochastic processing times. In this
paper, a heuristic method to this problem is presented. The
logic applied in this research is emphasizing on minimizing
idling times in the second machine. In this method, decision
about the preemption of one job at arrival of a new job ismade
based on the idling time produced in the second machine. In
this research, we assume that the processing time is a random
variable with normal distribution, and processing times of
different jobs are independent from each other.

The remainder of this paper is organized as follows:
research assumptions and definitions are presented in Sec-
tion 2. In Sections 3 and 4, nonpreemptive and preemptive
stochastic models are reviewed.Then, the proposed heuristic
method is presented in Section 5. In Section 6, a numerical
example has been solved with the proposed algorithm. The
performance analysis of the proposed heuristic method is
presented in Section 7. Finally, the conclusions are discussed
in the last section.

2. Research Assumptions and Definitions

In the stochastic case, 𝑡
𝑖𝑝
is used to denote (random) pro-

cessing time of job 𝑖 on machine 𝑝, but we retain 𝐸(𝑡
𝑖𝑗
) to

represent its expected value. And, 𝑟
𝑖
is the release time of job

𝑖, which can only be known right on or after 𝑟
𝑖
.The processing

time of each job is a randomvariablewith normal distribution
𝑡
𝑖𝑝
∼ 𝑁(𝜇

𝑖𝑝
, 𝜎2
𝑖𝑝
) and jobs are independent of each other. Our

objective is to find a schedule to minimize the expected mak-
espan. The applied symbols are as follows:

𝑡
𝑖𝑝
: processing time of job 𝑖 on machine 𝑝.

𝜇
𝑖𝑝
: mean of processing time of job 𝑖 on machine 𝑝.

𝜎2
𝑖𝑝
: variance of processing time of job 𝑖 on machine 𝑝.
𝐼
𝑖
: idle time of the second machine from completing the
job 𝑖 − 1 until starting the job 𝑖.

The considered assumptions in this article are as follows:

(i) Machines have constant speed that cannot be varied.
(ii) The order of processing the jobs is the same on the

first and second machines.
(iii) Machines are ready to be utilized at zero time.
(iv) Every machine can operate at most one job at a time.
(v) Initiation of any job on the second machine would be

after completion of the job on the first machine.
(vi) Preemption of the jobs can be occurred only on

machine 1.

We consider the preemption-repeat model in which the job
currently being processed may be preempted at any point of
time. However, by preempting a job, all the ongoing progress
is considered to be lost. Therefore, if the job is restarted at
some later moment in time, then it has to be processed from
the beginning.

3. Nonpreemptive Stochastic
Flowshop Problem

For general distributions without any special conditions on
processing times, only one thorough solution is known for the
stochastic flowshop problem, proposed by Makino [8].

Theorem 1. In the two-machine stochastic flowshop problem
with two jobs, job 𝑖 precedes job 𝑗 in an optimal sequence if

𝐸 (min {𝑡
𝑖1
, 𝑡
𝑗2
}) ≤ 𝐸 (min {𝑡

𝑖2
, 𝑡
𝑗1
}) . (1)

Based on Theorem 1, Baker and Trietsch proposed a
method that uses the properties of an adjacent pair wise inter-
change (API) [20].They assume that the processing times are
random variables with normal distribution. In this method,
the condition for job 𝑖 to precede job 𝑗 takes the following
form:

𝜇
𝑖1
− 𝜎
𝑖1𝑗2
[𝜙 (𝑧
𝑖1𝑗2
) + 𝑧
𝑖1𝑗2
⋅ Φ (𝑧

𝑖1𝑗2
)]

≤ 𝜇
𝑖2
− 𝜎
𝑖2𝑗1
[𝜙 (𝑧
𝑖2𝑗1
) + 𝑧
𝑖1𝑗2
⋅ Φ (𝑧

𝑖2𝑗1
)] .

(2)
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This form of the API procedure uses the properties of normal
distributions and is called the API Heuristic. In this method,
the expected minimum of two variables with normal distri-
bution is given by

𝐸 [min {𝑋, 𝑌}] = 𝜇𝑋 − 𝜎𝑋𝑌 [𝜙 (𝑧𝑋𝑌) + 𝑧𝑋𝑌 ⋅ Φ (𝑧𝑋𝑌)] , (3)

where 𝜙 andΦ denote the density function and the cdf of the
standard normal. In addition, 𝜇

𝑋𝑌
= 𝜇
𝑋
−𝜇
𝑌
and 𝜎2
𝑋𝑌
= 𝜎
2

𝑋
+

𝜎2
𝑌
and 𝑧
𝑋𝑌
= 𝜇
𝑋𝑌
/𝜎
𝑋𝑌

[22]. In this paper, for sequencing the
jobs present at the shop, this heuristic method has been util-
ized.

4. Preemptive Stochastic Flowshop Problem

Since the objective function of this study is expected makes-
pan minimization, and considering the fact that makespan
increase is due to increase in idling time in the second
machine, this paper focused on minimizing the sum of
expected idling times of the second machine.

As shown in Figure 1 the value of makespan is as follows:

𝐶max =
𝑛

∑
𝑖=1

𝐼
𝑖
+

𝑛

∑
𝑖=1

𝑡
𝑖2

⇒ 𝐸 [𝐶max] = 𝐸[
𝑛

∑
𝑖=1

𝐼
𝑖
] + 𝐸[

𝑛

∑
𝑖=1

𝑡
𝑖2
] ,

(4)

where 𝐼
𝑖
is the idling time of machine 2 before the starting of

job 𝑖. Science the value of 𝐸[∑𝑛
𝑖=1
𝑡
𝑖2
] is constant; minimizing

𝐸[∑
𝑛

𝑖=1
𝐼
𝑖
] leads to minimum value of makespan. Idling time

of machine 2 is as follows:
𝐼
1
= 𝑡
11
,

𝐼
2
= max {0, 𝑡

11
+ 𝑡
21
− 𝑡
12
− 𝐼
1
} ,

𝐼
2
= max {0, 𝑡

11
+ 𝑡
21
+ 𝑡
31
− 𝑡
12
− 𝑡
22
− 𝐼
1
− 𝐼
2
} ,

...

𝐼
𝑘
= max{0,

𝑘

∑
𝑖=1

𝑡
𝑖1
−
𝑘−1

∑
𝑖=1

𝑡
𝑖2
−
𝑘−1

∑
𝑖=1

𝐼
𝑖
} .

(5)

Thus, the total idle time of the second machine will be com-
puted as follows:

𝐼
1
+ 𝐼
2
= max {𝑡

11
, 𝑡
11
+ 𝑡
21
− 𝑡
12
} ,

𝐼
1
+ 𝐼
2
+ 𝐼
3
= max {𝑡

11
, 𝑡
11
+ 𝑡
21
− 𝑡
12
,

𝑡
11
+ 𝑡
21
+ 𝑡
31
− 𝑡
12
− 𝑡
22
} ,

...

⇒
𝑛

∑
𝑖=1

𝐼
𝑖
= max[𝑡

11
, max
2≤𝑘≤𝑛

{
𝑘

∑
𝑖=1

𝑡
𝑖1
−
𝑘−1

∑
𝑖=1

𝑡
𝑖2
}] .

(6)

Assume that

𝑈
𝑘
=

𝑘

∑
𝑖=1

𝑡
𝑖1
−

𝑘−1

∑
𝑖=1

𝑡
𝑖2
. (7)

Therefore, the sum of idling times of machine 2 is given by
𝑛

∑
𝑖=1

𝐼
𝑖
= max
1≤𝑘≤𝑛

(𝑈
𝑘
) . (8)

t11 t21 t31 t41

t42t32t22t12

· · ·

· · ·
I1 I3 I4

M1:

M2:

Figure 1: Two machine flowshop problem.

tj1

tj2

tj1

ti1

tj2

ti2

ti2

ti1

ti1

ti1

rj

rj

ti1

Set A

Set A

Set B

Set B
Ij Ii

Ii

M1:

M2:

M1:

M2:
S1

S2

Figure 2: Schedules 𝑆
1
and 𝑆
2
at arrival of job 𝑗 in preemption-repeat

mode.

In the two-machine stochastic online flowshop problem, if in
schedule 1 (𝑆

1
) job 𝑖 precedes job 𝑗 and in schedule 2 (𝑆

2
),

these two jobs are replaced, then 𝐸(𝐶𝑆1max) ≤ 𝐸(𝐶
𝑆
2

max) if

𝐸[max
1≤𝑘≤𝑛

{𝑈
𝑘
(𝑆
1
)}] ≤ 𝐸 [max

1≤𝑘≤𝑛

{𝑈
𝑘
(𝑆
2
)}] , (9)

where 𝐸[max
1≤𝑘≤𝑛
{𝑈
𝑘
(𝑆
1
)}] and 𝐸[max

1≤𝑘≤𝑛
{𝑈
𝑘
(𝑆
2
)}] are the

expected values of the sum of idling time on machine 2 in
schedule 1 and 2.

As mentioned before, minimizing the expected value of
total idling time in machine 2 leads to expected makespan
minimization. Since the expected value of makespan in 𝑆

1
is

less than its value in 𝑆
2
, the idle time ofmachine 2 in 𝑆

1
will be

less than its value in 𝑆
2
.

In preemptive online problem, assume that job 𝑖 with
processing time 𝑡

𝑖1
is being processed onmachine 1. Let 𝑡

𝑖1
be

the remaining processing time of job 𝑖 and the time spent for
processing of job 𝑖 is 𝑡

𝑖1
. Therefore, we have

𝑡
𝑖1
= 𝑡


𝑖1
+ 𝑡


𝑖1
. (10)

Suppose that the new job 𝑗 with the processing time 𝑡
𝑗𝑝

and
the release time 𝑟

𝑗
arrives at the shop (Figure 2).The new job 𝑗

becomes known at its release time.
Let 𝐴 be the subset of completed jobs on machine 1 and

𝐵 the subset of uncompleted jobs. First, the priority of job 𝑗
is determined with the API heuristic method. If the priority
of job 𝑗 is more than the job 𝑖 then one of the two 𝑆

1
and 𝑆
2

schedules would occur as shown in Figure 2; otherwise, it will
be added to list of uncompleted jobs. In 𝑆

1
job 𝑖 is preempted

because of the higher priority for job 𝑗, but in 𝑆
2
job 𝑗 will

be processed after completion of job 𝑖. As mentioned before,
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total idle time of machine 2 until start of job 𝑖 and 𝑗 in 𝑆
1
and

𝑆
2
schedules is as follows:

𝑈
𝑗
(𝑆
1
) = ∑
ℎ∈𝐴

𝑡
ℎ1
+ 𝑡


𝑖1
+ 𝑡
𝑗1
− ∑
ℎ∈𝐴

𝑡
ℎ2
,

𝑈
𝑖
 (𝑆
1
) = ∑
ℎ∈𝐴

𝑡
ℎ1
+ 𝑡


𝑖1
− ∑
ℎ∈𝐴

𝑡
ℎ2
,

𝑈
𝑖
(𝑆
1
) = ∑
ℎ∈𝐴

𝑡
ℎ1
+ 𝑡


𝑖1
+ 𝑡
𝑗1
+ 𝑡
𝑖1
− 𝑡
𝑗2
− ∑
ℎ∈𝐴

𝑡
ℎ2
,

𝑈
𝑖
(𝑆
2
) = ∑
ℎ∈𝐴

𝑡
ℎ1
+ 𝑡
𝑖1
− ∑
ℎ∈𝐴

𝑡
ℎ2
,

𝑈
𝑗
(𝑆
2
) = ∑
ℎ∈𝐴

𝑡
ℎ1
+ 𝑡
𝑖1
+ 𝑡
𝑗1
− 𝑡
𝑖2
− ∑
ℎ∈𝐴

𝑡
ℎ2
.

(11)

Therefore, the expected value ofmakespan in 𝑆
1
is less than its

value in 𝑆
2
and preemption will occur if

𝐸 [max {𝑈
𝑖
 (𝑆
1
) , 𝑈
𝑗
(𝑆
1
) , 𝑈
𝑖
(𝑆
1
)}]

< 𝐸 [max {𝑈
𝑖
(𝑆
2
) , 𝑈
𝑗
(𝑆
2
)}]

𝑈
𝑗(𝑆1)>𝑈𝑖(𝑆1)
→ 𝐸[max {𝑈

𝑗
(𝑆
1
) , 𝑈
𝑖
(𝑆
1
)}]

< 𝐸 [max {𝑈
𝑖
(𝑆
2
) , 𝑈
𝑗
(𝑆
2
)}]

⇒ 𝐸 [min {−𝑈
𝑗
(𝑆
1
) , −𝑈
𝑖
(𝑆
1
)}]

> 𝐸 [min {−𝑈
𝑗
(𝑆
2
) , −𝑈
𝑖
(𝑆
2
)}] .

(12)

The processing of the jobs in the subset𝐴 has been completed
on machine 1, and their total processing time is a constant
value. Thus, we assume that

∑
ℎ∈𝐴

𝑡
ℎ1
= 𝜆, (13)

where 𝜆 is a constant value. Some of the jobs in the subset 𝐴
have been completed and some of them have not been com-
pleted until time 𝑟

𝑗
. Let𝐴 be the subset of completed jobs on

machine 2, and let 𝐴 be the subset of uncompleted jobs on
this machine. Thus,

𝐴

∪ 𝐴

= 𝐴,

∑
ℎ∈𝐴

𝑡
ℎ2
= ∑

ℎ∈𝐴


𝑡
ℎ2
+ ∑

ℎ∈𝐴


𝑡
ℎ2
.

(14)

Therefore, ∑
ℎ∈𝐴
 𝑡ℎ2 is constant value ∑ℎ∈𝐴 𝑡ℎ2 is a random

variable with normal distribution

∑

ℎ∈𝐴


𝑡
ℎ2
= 𝛽,

∑

ℎ∈𝐴


𝑡
ℎ2
∼ 𝑁( ∑

ℎ∈𝐴


𝜇
ℎ2
, ∑

ℎ∈𝐴


𝜎
2

ℎ2
) ,

(15)

where 𝛽 is a constant value. Hence, 𝑈
𝑗
(𝑆
1
) and 𝑈

𝑖
(𝑆
1
) are

random variables with normal distribution and the following
means and variances:

𝑈
𝑗
(𝑆
1
) ∼ 𝑁(𝜆 − 𝛽 + 𝑡



𝑖1
− ∑

ℎ∈𝐴


𝜇
ℎ2
+ 𝜇
𝑗1
, 𝜎
2

𝑗1
+ ∑

ℎ∈𝐴


𝜎
2

ℎ2
) ,

𝑈
𝑖
(𝑆
1
) = 𝑁(𝜆 − 𝛽 + 𝑡



𝑖1
− ∑

ℎ∈𝐴


𝜇
ℎ2
+ 𝜇
𝑗1
+ 𝜇
𝑖1

−𝜇
𝑗2
, 𝜎
2

𝑗1
+ 𝜎
2

𝑖1
+ 𝜎
2

𝑗2
+ ∑

ℎ∈𝐴


𝜎
2

ℎ2
) .

(16)

In addition, for 𝑈
𝑗
(𝑆
2
) and 𝑈

𝑖
(𝑆
2
) we have

𝑈
𝑖
(𝑆
2
) = 𝑁(𝜆 − 𝛽 − ∑

ℎ∈𝐴


𝜇
ℎ2
+ 𝜇
𝑖1
, 𝜎
2

𝑖1
+ ∑

ℎ∈𝐴


𝜎
2

ℎ2
) ,

𝑈
𝑗
(𝑆
2
) = 𝑁(𝜆 − 𝛽 − ∑

ℎ∈𝐴


𝜇
ℎ2
+ 𝜇
𝑖1
+ 𝜇
𝑗1
− 𝜇
𝑖2
,

𝜎
2

𝑖1
+ 𝜎
2

𝑗1
+ 𝜎
2

𝑖2
+ ∑

ℎ∈𝐴


𝜎
2

ℎ2
) .

(17)

In order for decisionmaking about preemption, the following
inequality should be explored:

𝐸 [min {−𝑈
𝑗
(𝑆
1
) , −𝑈
𝑖
(𝑆
1
)}]

> 𝐸 [min {−𝑈
𝑗
(𝑆
2
) , −𝑈
𝑖
(𝑆
2
)}] .

(18)

Assume that

𝑋 = −𝑈
𝑗
(𝑆
1
) ,

𝑌 = −𝑈
𝑖
(𝑆
1
) ,

𝑋

= −𝑈
𝑖
(𝑆
2
) ,

𝑌

= −𝑈
𝑗
(𝑆
2
) .

(19)

The expected minimum of two variables with normal distri-
bution is calculated as discussed before. Thus, for computa-
tion of 𝐸[min{𝑋, 𝑌}] we have

𝜇
𝑋
= −𝜆 + 𝛽 − 𝑡



𝑖1
+ ∑

ℎ∈𝐴


𝜇
ℎ2
− 𝜇
𝑗1
,

𝜇
𝑋𝑌
= 𝜇
𝑖1
− 𝜇
𝑗2
,

𝜎
2

𝑋𝑌
= 2𝜎
2

𝑗1
+ 𝜎
2

𝑖1
+ 𝜎
2

𝑗2
+ 2 ∑

ℎ∈𝐴


𝜎
2

ℎ2
,

𝑧
𝑋𝑌
=
𝜇
𝑋𝑌

𝜎
𝑋𝑌

⇒ 𝐸 [min {𝑋, 𝑌}]

= 𝜇
𝑋
− 𝜎
𝑋𝑌
[𝜙 (𝑧
𝑋𝑌
) + 𝑧
𝑋𝑌
⋅ Φ (𝑧
𝑋𝑌
)] ,

(20)
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Prioritize uncompleted jobs from i to k according
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Preempt job i and start the
processing of job j

(i ← job j), (k ← k + 1)

E[min{X, Y}] >
E[min{X , Y}]

Figure 3: Proposed heuristic algorithm.

and 𝐸[min{𝑋, 𝑌}] is as follows:

𝜇
𝑋
 = −𝜆 + 𝛽 + ∑

ℎ∈𝐴


𝜇
ℎ2
− 𝜇
𝑖1
,

𝜇
𝑋

𝑌
 = 𝜇
𝑗1
− 𝜇
𝑖2
,

𝜎
2

𝑋

𝑌
 = 2𝜎

2

𝑖1
+ 𝜎
2

𝑗1
+ 𝜎
2

𝑖2
+ 2 ∑

ℎ∈𝐴


𝜎
2

ℎ2
,

𝑧
𝑋

𝑌
 =
𝜇
𝑋

𝑌


𝜎
𝑋

𝑌


,

𝐸 [min {𝑋, 𝑌}]

= 𝜇
𝑋
 − 𝜎
𝑋

𝑌
 [𝜙 (𝑧

𝑋

𝑌
) + 𝑧
𝑋

𝑌
 ⋅ Φ (𝑧

𝑋

𝑌
)] .

(21)

Therefore, the preemption condition will be as presented in
Lemma 2.

Lemma2. In the preemption-repeat stochastic online flowshop
problemwith twomachines, job 𝑖will be preempted at arrival of

job 𝑗 (assuming that the job 𝑗 priority is greater than the job 𝑖
based on API) if and only if

𝐸 [min {𝑋, 𝑌}] > 𝐸 [min {𝑋, 𝑌}] . (22)

Proof. As mentioned before, by preemption of job 𝑖 at arrival
of job 𝑗 the expected value of total idling time in machine 2
decreases if 𝐸[min{𝑋, 𝑌}] > 𝐸[min{𝑋, 𝑌}].

5. Proposed Algorithm

In this section, a heuristic algorithm is proposed to minimize
the expected value of makespan for the preemptive stochastic
online flowshop problem with two machines. In addition, a
schematic illustration of the algorithm is provided in Figure 3.

Step 0 (parameter definition). The parameter 𝑘 denotes the
total number of jobs in the shop and 𝑖 is the job counter
parameter whit the primary value of 1. Processing time of
each job is a random variable with normal distribution.
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Table 1: Specifications of jobs.

𝑖 𝜇
𝑖1

𝜎
𝑖1

𝜇
𝑖2

𝜎
𝑖2

𝑟
𝑖

1 17 1.5 10 2.3 0
2 11 2 13 2.1 0
3 16 2 15 2.4 0
4 10 2.4 14 1.6 0
5 11 2.6 8 1.1 15
6 9 1.2 14 2 24

Arrival time of job 𝑖 is denoted by 𝑟
𝑖
. Parameter 𝑗 denotes the

new job that arrives at the shop.

Step 1. Prioritize all uncompleted jobs with API heuristic
method, from 𝑖 to 𝑘.

Step 2. Process the job 𝑖 until it is completed, or a new job
arrives at the shop. If a new job arrives at the shop then assign
index 𝑗 to its characteristics and go to Step 4, otherwise go to
next step.

Step 3. After completion of job 𝑖, if 𝑖 is the last job then finish
the algorithm; otherwise, increment the counter 𝑖 by one and
go to Step 1.

𝑖 ← 𝑖 + 1. (23)

Step 4. If the priority of the new job according to API
heuristicmethod ismore than job 𝑖 then follow the algorithm,
otherwise go to Step 7.

Step 5. If𝐸[min{𝑋, 𝑌}] > 𝐸[min{𝑋, 𝑌}] then go to next step,
otherwise go to Step 7.

Step 6. The priority of job 𝑗 is more than job 𝑖. Thus, job 𝑖 will
be preempted and job 𝑗will be preferred. And since then, the
index 𝑖will be used for job 𝑗. Increment the counter 𝑘 by one,
and then go to Step 2.

𝑘 ← 𝑘 + 1,

𝑖 ← job 𝑗.
(24)

Step 7. Preemption is not allowed and the processing of job 𝑖
will be continued. Increment the counter 𝑘 by one, and then
go to Step 2.

𝑘 ← 𝑘 + 1. (25)

6. Numerical Example

In this section, the performance of the proposed algorithm is
evaluated through a numerical example. Suppose a stochastic
two-machine flowshop problem with 6 jobs and specifica-
tions given in Table 1.

In Table 1, 𝑟
𝑖
is arrival time of job 𝑖. Moreover, we assume

that the actual processing time of a job on each machine is
equal to itsmean processing time on thatmachine. According
the proposed algorithm, first, the jobs present at the shop at

Table 2: Differences between 𝐸[min{𝑡
𝑖1
, 𝑡
𝑗2
}] and 𝐸[min{𝑡

𝑖2
, 𝑡
𝑗1
}].

𝑖
𝑗

1 2 3 4
1 3.7134 4.6283 5.2399
2 −3.7134 −1.9221 1.1447
3 −4.6283 1.9221 3.7873
4 −5.2399 −1.1447 −3.7873

r5 = 15

r6 = 24

t21

t21

t21 t61 t31 t11 t51

t31

t31

t11

t11 t51

t41

t41

t41

Preemption penalty

4.3:

4.2:

4.1:

Figure 4: Scheduling a sample problem with proposed algorithm.

time zero should be scheduled with API heuristic method.
We run the API algorithm by starting with the sequence 1-
2-3-4. Table 2 shows the differences between 𝐸[min{𝑡

𝑖1
, 𝑡
𝑗2
}]

and 𝐸[min{𝑡
𝑖2
, 𝑡
𝑗1
}] for these jobs, with job 𝑖 corresponding

to a row and 𝑗 to a column. For instance, the calculation of
𝐸[min{𝑡

11
, 𝑡
22
}] is as follows:

𝐸 [min {𝑡
11
, 𝑡
22
}]

= 𝜇
11
− 𝜎
(11)(22)

[𝜙 (𝑧
(11)(22)

) + 𝑧
(11)(22)

⋅ Φ (𝑧
(11)(22)

)] ,

𝜇
11
= 17,

𝜇
(11)(22)

= 𝜇
11
− 𝜇
12
= 17 − 13 = 4,

𝜎
2

(11)(22)
= 𝜎
2

11
+ 𝜎
2

22
= 1.5
2
+ 2.1
2
= 2.5807

2
,

𝑧
(11)(22)

=
𝜇
(11)(22)

𝜎
(11)(22)

= 1.55,

𝐸 [min {𝑡
11
, 𝑡
22
}]

= 17 − 2.5807 [0.12 + 1.55 × 0.9394] = 12.9326.

(26)

Similarly, 𝐸[min{𝑡
12
, 𝑡
21
}] = 9.2192, and the first entry in

Table 2 is the difference 12.9326 − 9.2192 = 3.7134.
In Table 2, according toAPImethod, negative values indi-

cate stable sequences. For instance, 1-2 is not a stable sequence
because the value of row 1 and column 2 is positive.Therefore,
these two jobs should be substituted. Hence, API heuristic
with altered order of the jobs yields the stable sequence 4-
2-3-1 as shown in Figure 4 (4.1).

The machines will start to process the jobs according to
the sequence 4-2-3-1. Job 5 with release time 𝑟

5
= 15 arrives

at the shop as shown in Figure 4 (4.1). Job 2 is being processed
at this time. According toAPI,The priority of job 5 is less than
the priority of job 2 because if we schedule jobs 2, 5 with this
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method, then the job 5will has less priority.Thus, the preemp-
tion is not allowed. Processing of the jobs is continued and
during the processing of job 3, job 6 with release time 𝑟

6
= 24

arrives to the shop as shown in Figure 4 (4.2). According to
API, The priority of job 6 is more than the priority of job 3 at
this time. Thus, the parameters at this time are as follows:

𝑖 = 3,

𝑖 ← job 3,

𝑗 ← job 6,

𝑡


31
= 3.

(27)

According to the proposed algorithm, satisfaction of the ine-
quality 𝐸[min{𝑋, 𝑌}] > 𝐸[min{𝑋, 𝑌}] should be explored
in order for decision making about the preemption:

𝜇
𝑋
= −𝜆 + 𝛽 − 𝑡



𝑖1
+ ∑

ℎ∈𝐴


𝜇
ℎ2
− 𝜇
𝑗1

= −21 + 14 − 3 + 13 − 9 = −6,

𝜇
𝑋𝑌
= 𝜇
𝑖1
− 𝜇
𝑗2
= 16 − 14 = 2,

𝜎
2

𝑋𝑌
= 2𝜎
2

𝑗1
+ 𝜎
2

𝑖1
+ 𝜎
2

𝑗2
+ 2 ∑

ℎ∈𝐴


𝜎
2

ℎ2

= 2 × 1.2
2
+ 2
2
+ 2
2
+ 2 × 2.1

2
= 4.4385

2
,

𝑧
𝑋𝑌
=
𝜇
𝑋𝑌

𝜎
𝑋𝑌

= 0.4506

⇒ 𝐸 [min {𝑋, 𝑌}]

= 𝜇
𝑋
− 𝜎
𝑋𝑌
[𝜙 (𝑧
𝑋𝑌
) + 𝑧
𝑋𝑌
⋅ Φ (𝑧
𝑋𝑌
)]

= −6 − 4.4385 (0.3604 + 0.4506 × 0.6739) = −8.947.

(28)

Similarly,𝐸[min{𝑋, 𝑌}] = −10.262. Science𝐸[min{𝑋, 𝑌}] >
𝐸[min{𝑋, 𝑌}], preemption is allowed. Job 3 will be pre-
empted and job 6 will start. Consequently, the scheduling of
jobs on machine 1 will be as shown in Figure 4 (4.3).

The computation of completion time of the jobs on
machine 1 and 2 are provided in Table 3, where𝐶

𝑖𝑗
is the com-

pletion time of job 𝑖 on machine.
As mentioned before, it is assumed that the actual pro-

cessing time of the job is equal to themean of processing time.
Therefore, the expected value of makespan is equal to 85 for
this example.

7. Performance Analysis

In order to evaluate the performance of the proposed algo-
rithm, it was applied on a variety of problems with different
sizes. Thus, 20,000 problems in 20 categories with different
quantities for the number of jobs and the processing time
specifications have been produced. The results are compared

Table 3: Completion time of jobs on machines 1 and 2.

𝑖 𝑅
𝑖1

𝐶
𝑖1

𝑅
𝑖2

𝐶
𝑖2

𝑟
𝑖

4 10 10 14 24 0
2 11 21 13 37 0
6 9 33 14 51 25
3 16 49 15 66 0
1 17 66 10 76 0
5 11 77 8 85 15

to a lower bound of the optimummakespan that is defined as
follows:

𝐶
OPT
max ≥ max

𝑖∈{1,2,3,...,𝑛}

[𝑟
𝑖
+ 𝐸 (𝑡

𝑖1
) + 𝐸 (𝑡

𝑖2
)] ,

𝐶
OPT
max ≥ min

𝑖∈{1,2,3,...,𝑛}

[𝑟
𝑖
+ 𝐸 (𝑡

𝑖1
)] +

𝑛

∑
𝑖=1

𝐸 (𝑡
𝑖2
) ,

𝐶
𝑙

max = max{ max
𝑖∈{1,2,3,...,𝑛}

[𝑟
𝑖
+ 𝐸 (𝑡

𝑖1
) + 𝐸 (𝑡

𝑖2
)] ,

min
𝑖∈{1,2,3,...,𝑛}

[𝑟
𝑖
+ 𝐸 (𝑡

𝑖1
)] +

𝑛

∑
𝑖=1

𝐸 (𝑡
𝑖2
)}

⇒ 𝐶
OPT
max ≥ 𝐶

𝑙

max.

(29)

Parameter 𝜌 is the performance guarantee of the proposed
method (MB) and called approximation factor if

𝐶
MB
max ≤ 𝜌 × 𝐶

𝑙

max ⇒ 𝐶
MB
max ≤ 𝜌 × 𝐶

OPT
max , (30)

where 𝐶MB
max and 𝐶

OPT
max are the expected values of makespan

that the MB method and an optimal method, respectively,
achieve on each instance.

Other assumptions are as follows:

(1) Release dates are generated using uniform distribu-
tion within the interval [0, 1000].

(2) All jobs are preemption-restart.
(3) The actual processing time is assumed to be equal to

the mean of processing time.
(4) We have produced 1000 problems for each category

and based on the comparison between results of each
method, the maximum value of factor 𝜌 is calculated
for these problems (worse case).

To compare the performance of the proposed method (MB)
against OPT; first, the performance is analyzed with respect
to the number of jobs which is varies from 10 to 100 and 10
categories are produced. The processing time follows a nor-
mal distribution.We assume that themean of processing time
and standard deviation of processing time are random values
within the interval [10, 20] and [1, 3], respectively. Since the
mean of processing time follows uniform distribution, the
expected value of the processing time is 𝐸(𝜇

𝑖𝑗
) = 15. Table 4

and Figure 5 summarize the details of our implementations.
Second and third columns of Table 4 are the mean of makes-
pan for 1000 produced problems in each category. Whereas
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Table 4: Makespan value of the proposed algorithm versus lower
bound of optimum.

No. of jobs 𝐶
MB
max × 10

−3
𝐶

OPT
max × 10

−3
𝜌max

10 0.9316 0.9308 1.0225
20 0.9912 0.9874 1.0332
30 1.0039 0.9959 1.0476
40 1.0183 1.0046 1.0766
50 1.0361 1.0096 1.1394
60 1.0641 1.0129 1.1737
65 1.1054 1.0279 1.2209
70 1.1693 1.1016 1.1646
80 1.3257 1.2823 1.0901
90 1.496 1.4648 1.0718
100 1.6662 1.6367 1.0602

1

1.05

1.1

1.15

1.2

1.25

0 10 20 30 40 50 60 70 80 90 100
Number of jobs

M
B/

O
PT

𝜇 ∈ [10 20], 𝜎 ∈ [1 3], ri ∈ [0 1000]

Figure 5: 𝜌 versus the number of jobs.

the forth column is the maximum value of factor 𝜌 among
1000 problems in each category. As can be observed, the
proposed method (MB) performs up to 1.2209 times worse
than the other one when number of jobs approaches 65.
Note that when 𝑛 extends beyond 65, the density of jobs will
increase illogically and we have 𝑛 × 𝐸(𝜇

𝑖𝑗
) > 1000 while

𝑟
𝑖
< 1000. When the density of jobs increases illogically, the

waiting time of jobs increases and the idle time of machine
2 decreases. Thus, the performance of proposed algorithm
almost improves.

The performance of the proposed method has also been
evaluated for different values of the mean of processing time.
Ten categories have been produced and the number of jobs
and the value of standard deviation have been fixed at con-
stant values (𝑛 = 25, 𝜎 = 3). The results are shown in Table 5
and Figure 6. When the mean of processing time approaches
to the interval [10, 70], the performance of the algorithm is in
the worst condition because 𝑛×𝐸(𝜇

𝑖𝑗
) andmax{𝑟

𝑖
} are almost

equal to 1000. For the next intervals, the density of jobs
increase illogically and the idle time of machine 2 decrease.
Hence, the performance of MB algorithm almost improves.

Moreover, the performance of the proposed method has
been evaluatedwith respect to distribution of process times as

Table 5: The performance of the proposed algorithm (MB) against
OPT where the number of jobs is 25.

Mean of processing time 𝐶
MB
max × 10

−3
𝐶

OPT
max × 10

−3
𝜌max

[10 20] 0.9958 0.9907 1.0537
[10 30] 1.0156 1.0037 1.0874
[10 40] 1.0391 1.0151 1.1464
[10 50] 1.0783 1.0246 1.2579
[10 60] 1.1439 1.0365 1.3808
[10 70] 1.2466 1.0879 1.5433
[10 80] 1.3709 1.1847 1.5215
[10 90] 1.5226 1.3341 1.5087
[10 100] 1.6871 1.4994 1.4736
[10 110] 1.8537 1.6595 1.4653
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[1
0 

20
]

[1
0 

30
]

[1
0 

40
]

[1
0 

50
]

[1
0 

60
]

[1
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[1
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]

[1
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]

[1
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11
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Mean of processing time

M
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O
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n = 25, 𝜎 = 3, ri ∈ [0 1000]

Figure 6: 𝜌 versus mean of processing time.

the uniform distribution [1, 100] with the coefficient of vari-
ation being 0.05, 0.1, and 0.2. The number of jobs varies from
10 to 100, and ten categories have been produced. This mode
of fixing the process-time distribution can yield better insight
about the evaluation of computational performance of the
algorithm.The processing times are generated using uniform
distribution within the interval [1, 100]. It is assumed that the
release dates are random values within the interval [0, 3000].
Taking into consideration the fact that themean of processing
time is uniformly distributed, the expected value of the pro-
cessing time is 𝐸(𝜇

𝑖𝑗
) = 50.5. The details of implementations

have been summarized in Table 6 and Figure 7.When 𝑛 takes
a value more than 60, an illogical increase will occur in the
density of jobs and we have 𝑛×𝐸(𝜇

𝑖𝑗
) > 3000while 𝑟

𝑖
< 3000.

Hence, an increase is observed in the waiting time of jobs
and the idle time of the secondmachine decreases.Therefore,
the performance of the proposed algorithm improves.

8. Concluding Remarks

In this paper, preemptive stochastic online scheduling
problem was investigated for two-machine flowshop. The
objective function was minimizing the expected value of
makespan. Inspired by Johnson’s heuristic method for sto-
chastic flowshop problem with an emphasis on minimal idle
times of second machine, a heuristic method was presented.
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Table 6: The performance of the proposed algorithm versus lower bound of optimum.

Coefficient of variation 0.05 0.1 0.2
No. of jobs 𝐶MB

max × 10
−3 𝐶OPTmax × 10

−3 𝜌max 𝐶MB
max × 10

−3 𝐶OPTmax × 10
−3 𝜌max 𝐶MB

max × 10
−3 𝐶OPTmax × 10

−3 𝜌max

10 2.7968 2.7897 1.0219 2.8459 2.8405 1.0254 2.8307 2.825 1.0227
20 2.964 2.9525 1.0326 2.9743 2.9622 1.0418 2.971 2.9589 1.0306
30 3.0341 3.007 1.0625 3.0188 2.989 1.0803 3.0386 3.0048 1.1078
40 3.0838 3.0329 1.0841 3.0749 3.0237 1.1027 3.0739 3.0203 1.1109
50 3.1526 3.0436 1.1444 3.1592 3.0535 1.1857 3.1721 3.046 1.1915
60 3.3512 3.1049 1.2379 3.3944 3.1656 1.2431 3.4213 3.1543 1.1947
70 3.7758 3.6411 1.1272 3.8438 3.7081 1.1174 3.8903 3.7421 1.1521
80 4.2539 4.1585 1.0656 4.3728 4.2702 1.079 4.4989 4.3706 1.0951
90 4.8665 4.6817 1.0641 4.8975 4.8162 1.0453 5.0656 4.9662 1.0567
100 5.2566 5.1918 1.0401 5.4189 5.3534 1.0376 5.6141 5.5313 1.0455

M
B/

O
PT

1

1.05

1.1

1.15

1.2

1.25

0 10 20 30 40 50 60 70 80 90 100
Number of jobs

0.05
0.1
0.2

Coefficient of variation:

Figure 7: 𝜌 versus the number of jobs and the coefficient of
variation.

The implementation of the proposed method was demon-
strated using a numerical example. The performance evalu-
ation of the proposedmethod has been done with comparing
to a lower bound of optimum. Primary results indicated that
the proposed method had the approximation factor less than
2 for a wide range of problems.The proposedmethod utilized
the properties of the normal distributions, and this method
can be used as a heuristic method for other distributions, as
long as their means and variances are available. Scheduling
with preemption penalties is a novel research area in schedul-
ing field especially for online stochastic problems and we
strongly believe that this research could be well extended for
problemswith stochastic setup times, other distribution func-
tion for processing time, and flowshop problem with more
than 2 machines.
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