
Hindawi Publishing Corporation
Applied Computational Intelligence and Soft Computing
Volume 2011, Article ID 351498, 13 pages
doi:10.1155/2011/351498

Research Article

pSum-SaDE: A Modified p-Median Problem and Self-Adaptive
Differential Evolution Algorithm for Text Summarization

Rasim M. Alguliev, Ramiz M. Aliguliyev, and Chingiz A. Mehdiyev

Institute of Information Technology of Azerbaijan National Academy of Sciences, B. Vahabzade Street, 9, AZ1141 Baku, Azerbaijan

Correspondence should be addressed to Ramiz M. Aliguliyev, r.aliguliyev@gmail.com

Received 11 May 2011; Revised 26 July 2011; Accepted 27 August 2011

Academic Editor: Chuan-Kang Ting

Copyright © 2011 Rasim M. Alguliev et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Extractive multidocument summarization is modeled as a modified p-median problem. The problem is formulated with taking
into account four basic requirements, namely, relevance, information coverage, diversity, and length limit that should satisfy
summaries. To solve the optimization problem a self-adaptive differential evolution algorithm is created. Differential evolution has
been proven to be an efficient and robust algorithm for many real optimization problems. However, it still may converge toward
local optimum solutions, need to manually adjust the parameters, and finding the best values for the control parameters is a con-
suming task. In the paper is proposed a self-adaptive scaling factor in original DE to increase the exploration and exploitation abil-
ity. This paper has found that self-adaptive differential evolution can efficiently find the best solution in comparison with the can-
onical differential evolution. We implemented our model on multi-document summarization task. Experiments have shown that
the proposed model is competitive on the DUC2006 dataset.

1. Introduction

Automatic document summarization has drawn increasing
attention in the past with rapid growth of the Internet and
electronic government. The explosion of electronic docu-
ments has led to information overload, implying that find-
ing and using information efficiently and effectively has be-
come a pressingly practical problem. The information over-
load can be reduced by text summarization together with
conventional search engines to efficiently access the relevance
of retrieved documents. Automatic document summariza-
tion aims to condense the original text into its essential con-
tent and to assist in filtering and selection of necessary infor-
mation [1].

Depending on the number of documents to be summa-
rized, the summary can be a single document or a multidoc-
ument. Single-document summarization can only condense
one document into a shorter representation, whereas multi-
document summarization can condense a set of documents
into a summary. Multidocument summarization can be con-
sidered as an extension of single-document summarization
and used for precisely describing the information contained

in a cluster of documents and facilitate users to understand
the document cluster. Since it combines and integrates the
information across documents, it performs knowledge syn-
thesis and knowledge discovery and can be used for knowl-
edge acquisition [2].

There are two approaches for document summarization:
supervised and unsupervised [3]. The supervised approaches
treat document summarization as a classification and the
task formalize as identifying whether a sentence should be
included in the summary or not. However, they require train-
ing samples. The unsupervised methods usually utilize clus-
tering algorithms to score the sentences in the documents by
combining a set of predefined features [4–6].

The summarization task can also be categorized as ei-
ther generic or query oriented. A query-oriented summary
presents the information that is more relevant to the given
queries, while a generic summary gives an overall sense of
the document’s content [7, 8].

In this paper, we focus on the unsupervised generic text
summarization, which generates a summary by extracting
salient sentences in given document(s). We represent generic
text summarization as a modified p-median problem. One of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/190821775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Applied Computational Intelligence and Soft Computing

the advantages of this approach is that it directly discovers
key sentences in the given collection and covers the main
content of the original source(s). Another advantage of our
model is that it can reduce redundancy in the summary.
In this paper, a self-adaptive differential evolution (DE)
algorithm is created to solve the optimization problem. The
performance of the proposed approach is tested on the
DUC2006 dataset and is compared with baseline systems.
The effectiveness of the proposed approach is demonstrated.

The rest of this paper is organized as follows. Section 2
gives brief review of related work. Formulation of sentence
selection problem for text summarization is introduced in
Section 3. Section 4 describes a modified DE algorithm to
solve the optimization problem. The numerical experiments
and results are given in Section 5. Finally, we conclude our
paper in Section 6.

2. Related Work

Generally, document summarization methods can be divided
into two categories: abstractive and extractive [4, 9]. Extrac-
tive summarization is a simple but robust method for text
summarization and it involves assigning saliency scores to
some textual units of the documents and extracting those
with highest scores. Abstraction can be described as reading
and understanding the text to recognize its content, which is
then compiled in a concise text. In general, an abstract can
be described as summary comprising concepts/ideas taken
from the source that are then reinterpreted and presented in
a different form, whilst an extract is a summary consisting of
units of text taken from the source and presented verbatim
[10].

Many approaches have been proposed for document
summarization based on the diversity. The pioneer work for
diversity-based document summarization is MMR (Maximal
Marginal Relevance); it was introduced by Carbonell and
Goldstein [11]. The method MMR summarizes document by
calculating the cosine similarity between a given query and
a document and the cosine similarity between the currently
selective sentence and the previously selected sentence. MMI
(Maximal Marginal Importance) [12] is also a diversity-
based text summarization method for summary generation.
It depends on the extraction of the most important sentences
from the original text. Most features (i.e., sentence centrality;
title feature; word sentence score; keyword feature; similarity
to first sentence) used in this method are combined in a
linear combination to show the importance of the sentence.
CollabSum [13] reduces redundancy by discarding the highly
overlapping sentences with already extracted highly ranked
sentences.

Clustering has become an increasingly important topic
with explosion of information available via the Internet and
electronic government services. It is an important tool in text
mining and knowledge discovery. Its ability to automatically
group similar textual objects together enables one to discover
hidden similarity and key concepts, as well as to summarize
a large amount of text into a small number of groups
[14]. In [15], the clustering is used as an effective tool for
finding the diversity among the sentences. This work firstly

clusters the sentences and uses the obtained sentence clusters
to generate a summary. The paper [16] proposes a query-
based multidocument summarization method, using NNM
semantic features and the clustering method. The works
[17–19] use the NGD-based sentence similarity measure to
cluster sentences, so that related sentences can be joined
together in a briefer representation of the original text.
Recently, a new language model, factorization with given
bases (FGB) [20], is proposed for document clustering
and summarization by making use of both word-document
matrix and word-sentence matrix.

Ouyang et al. [21] apply a machine learning approach
to topic-based summarization by regarding sentence scoring
as a regression problem. The regression function is learned
from the Support Vector Regression (SVR) model, which is
the regression type of Support Vector Machine (SVM) and
is capable of building state-of-art optimum approximation
functions. It provides a way of combining the features auto-
matically and effectively. To save the costly manual annota-
tion time and effort, they construct training data automati-
cally from the document sets where the reference summaries
generated by human have been provided. The paper [22]
investigates the problem of multi-topic-based query-orient-
ed summarization. Authors of this work formalize the major
tasks and propose a probabilistic approach to solve the tasks.
They study two strategies for simultaneously modeling docu-
ment contents and the query information and present four
methods to score sentences in the documents based on the
learned topic models. HierSum [23] is a generative summari-
zation method based on topic models, which uses sentences
as an additional level. Using an approximation for inference,
sentences are greedily added to a summary so long as they de-
crease Kullback-Leibler divergence. Ranking plays an impor-
tant role in information retrieval and natural language
processing applications. The main contributions of the work
[24] are threefold: (1) presents a “rank-learn-combine” un-
supervised ensemble-ranking framework, namely, interac-
tive ranking (iRANK); (2) explores two ranking refinement
strategies that either utilize the feedback as an additional
ranking feature or to ensure rank consistency during refine-
ment; (3) proposes two new sentence-ranking algorithms
based on iRANK for query-focused summarization. An ap-
proach, proposed in [25], for producing a summary consists
of three steps. First, it associates sentences and queries
with a representation in the latent topic space of a PLSA
model by estimating their mixing proportions. It then com-
putes several sentence-level features based on the similarity
of sentence and query distributions over latent topics. Final-
ly, it combines individual feature scores linearly into an over-
all sentence score to create a ranking, which we use to select
sentences for the summary. Hybrid hierarchical summariz-
er, HybHSum [26], is based on a hybrid learning approach
to extract sentences for generating summary. It discovers
hidden topic distributions of sentences in a given document
cluster along with provided summary sentences based on
hierarchical Latent Dirichlet Allocation (LDA), which is a
generalization of LDA. Contributions of this work are as
follows: (1) construction of hierarchical probabilistic mod-
el designed to discover the topic structures of all sentences;

Applied Computational Intelligence and Soft Computing 3

(2) representation of sentences by metafeatures to character-
ize their candidacy for inclusion in summary text; (3) im-
plementation of a feasible inference method based on a re-
gression model to enable scoring of sentences in test
document clusters without retraining.

With the publishing of work [27], an optimization ap-
proach began to be applied actively in extractive document
summarization. It is directly connected with character of the
extractive summarization; in other words, identification of
informative sentences in documents by the nature is an opti-
mization problem. Takamura and Okumura [28] represented
text summarization as maximum coverage problem with
knapsack constraint. McDonald [29] formalized text sum-
marization as a knapsack problem and obtained the global
solution and its approximate solutions. Wang et al. [30]
proposed a Bayesian sentence-based topic model (BSTM) for
multidocument summarization by making use of both the
word-document and word-sentence associations. The BSTM
models the probability distributions of selecting sentences
given topics and provides a principled way for the sum-
marization task. Tao et al. [31] have designed word-based
and sentence-based association networks and proposed word
and sentence weighting approaches based on how much
cooccurrence information they contain and applied to text
summarization. In [32], text summarization formalized as
a budgeted median problem. This model covers the whole
document cluster through sentence assignment, since in this
model one of the selected sentences as much as possible rep-
resents every sentence. An advantage of this method is that
it can incorporate asymmetric relations between sentences
in a natural manner. Huang et al. [33] consider document
summarization as a multiobjective optimization problem. In
particular, they formulate four objective functions, namely,
content coverage, relevancy, redundancy, and text coherence.
They measure the possible summaries based on the identified
core terms and main topics (i.e., a cluster of semantically or
statistically related core terms).

3. Problem Statement and Its
Mathematical Formulation

3.1. Problem Statement. In this section, we present our ap-
proach towards all of the four aspects of summarization as
follows.

(1) Relevancy. A good summary should contain the most
important information, that is, selected sentences
should be relevant to the main content of the source.

(2) Content Coverage. A summary should contain every
important aspect of the document. By considering
coverage, the information loss in summarization can
be minimized.

(3) Diversity. A good summary should be concise and
contain as few redundant sentences as possible,
that is, two sentences providing similar information
should not be both present in the summary. In pra-
ctice, enforcing diversity in summarization can effec-
tively reduce redundancy among the sentences.

(4) Length. A summary should be bounded in length.

Optimizing all four properties jointly is a challenging task
and is an example of a global summarization problem. That
is why the inclusion of relevant sentences relies not only on
properties of the sentences themselves, but also on properties
of every other sentence in the summary [33]. Our goal is to
choose from a set of documents a subset of sentences so that
the created summary has satisfied the above four aspects. In
our study, this goal has been reached with modifying of the
p-median problem.

To apply a p-median problem to sentence-extraction-
based document summarization, each sentence in a docu-
ment collection should be presented as a point in Euclidean
space and defined a measure to calculate a similarity between
points (sentences).

3.2. Sentence Representation and Similarity Measure. Let a
document collection be decomposed into a set of sentences
D = {s1, s2, . . . , sn}, where n is the number of sentences,
si denotes ith sentence in D. For calculation of similarity
between textual units, each of them should be presented as
a vector. The vector space model is the most known repre-
sentation scheme for textual units. The vector space model
represents textual units by counting terms or sequence of
terms. Let T = {t1, t2, . . . , tm} represent all the distinct terms
occurring in the collection, where m is the number of dif-
ferent terms.

Vector Space Model. The standard vector space model (here-
inafter referred to as VSM) is a model for representing text in
a vector space based on the bag of words approach. It was first
presented as a model for Information Retrieval (IR) in [34].
In VSM, text units of a corpus are represented by vectors.
Traditionally a whole document is used as a text unit, but
any other text unit like paragraphs or sentences can be used
just as well. Each dimension of a vector corresponds to a term
that is present in the corpus. A term might be, for example,
a single word, N-gram, or a phrase. If a term occurs in a
sentence, the value of that dimension is nonzero. Values can
be binary (1 → term is present in the sentence, 0 → term is
not present in the sentence), frequencies of terms in the sen-
tence, or term weights [35].

Term Weighting. The idea behind term weighting is to assign
a weight to represent the importance of a term. The raw
frequency of a term only states how often a term occurs in
a document without measuring the importance of that term
within the sentence or within the whole collection. Different
weighting schemes are available. The most common and
popular one is the tf-isf weighting scheme. It combines local
and global weighting of a term.

Local Term Weighting (tf). It measures the importance of a
term within a sentence:

tfik = freqik, (1)

where freqik is the frequency of term tk in sentence si. This
formula assigns a higher weight to terms that occur often in
a sentence.

4 Applied Computational Intelligence and Soft Computing

Global Term Weighting (isf). The inverse sentence frequency
(isf) measures the importance of a term within the sentence
collection:

isfik = log
(
n

nk

)
. (2)

Here n is the number of all sentences in the collection, and
nk is the number of sentences that term tk occurs in sentence
si. A term that occurs in every sentence of the collection gets
a lower isf value. This reflects the fact that it is not as sig-
nificant for the distinction between sentences as terms that
occur rarely throughout the sentence collection. The isf fac-
tor has been introduced to improve the discriminating power
of terms in the traditional IR.

This results in the tf-isf weighting scheme:

wik = tfik × isfk = tfik × log
(
n

nk

)
, (3)

where the weight wik of a term tk in a sentence si is defined by
the product of the local weight of term tk in sentence si and
the global weight of term tk.

Similarity Calculation. A very popular similarity measure is
the cosine similarity. The cosine similarity uses the weighting
terms representation of the sentences. According to the VSM
the sentence si represented as a weighting vector of the terms,
si = [wi1,wi2, . . . ,wim], where wik is the weight of the term
tk in the sentence si. This measure is based on the angle α
between two vectors in the VSM. The closer the vectors are to
each other the more similar are the sentences. The calculation
of an angle between two vectors si = [wi1,wi2, . . . ,wim] and
s j = [wj1,wj2, . . . ,wjm] can be derived from the Euclidean
dot product:

(
si, s j

)
= |si| ·

∣∣∣s j
∣∣∣ · cosα. (4)

This states that the product of two vectors is given by the
product of their norms (in spatial terms, the length of the
vector) multiplied by the cosine of the angle α between them.
Given (4) the cosine similarity is therefore

sim
(
si, s j

)
= cosα =

(
si, s j

)

|si| ·
∣∣∣s j
∣∣∣ =

∑m
k=1wikwjk√∑m

k=1w
2
ik ·
∑m

k=1w
2
jk

,

i, j = 1, 2, . . . ,n.
(5)

3.3. Mathematical Formulation of Problem. First, we intro-
duce the following variables and notations:

(i)

yj =
{

1, if sentence s j is selected as median,
0, otherwise, (6)

(ii)

xi j=
{

1, if sentence si is allocated to median, s j
0, otherwise, (7)

(iii) O = (o1, o2, . . . , om) is the center of collection D =
{s1, s2, . . . , sn}, which kth component ok is defined as:

ok =
(

1
n

) n∑
i=1

wik, k = 1, 2, . . . ,m, (8)

(iv) li is the length (in words or bytes) of sentence si,

(v) L is the length of summary.

We attempt to find a subset of the set D = {s1, s2, . . . , sn}
that covers the main content of the document collection
while reducing the redundancy in the summary. If we let
S ⊂ D be the set of sentences constituting a summary, then
the similarity between the set of sentences and the summary
is going to be sim(S,D), which we would like to maximize. As
already mentioned above, the offered model is based on the
p-median problem. This approach is used to detect the topics
of documents. Detection of topics helps to cover as much as
possible themes from the documents. After topics detection
to form a summary from each group should be selected such
sentences that would be relevant to corresponding topic. For
this purpose the informative sentences from each group, that
is, median sentences, are selected. On the other hand, the
summary length should not exceed the given limit. In our
statement, it is supposed that the summary will be created
by median sentences then at a choice of sentence as median,
it is necessary to meet a condition that the sum of length
of the selected median sentences will not exceed the given
summary length. From [36] we know that the centre is the
basic point carrying the main content of sentence collection.
Therefore relevance of the summary will be defined as an
affinity measure between them and the centre O of all set of
sentences, sim(S,O).

Under the notations and statements above, text summa-
rization task, we formalize as follows:
maximize

f
(
x, y

) = sim
(
⊕n

j=1s j y j ,O
)

+
n∑
i=1

n∑
j=1

sim
(
si, s j

)
xi j

−
n−1∑
i=1

n∑
j=i+1

sim
(
si, s j

)
yi y j ,

(9)

subject to

n∑
j=1

xi j = 1, ∀i = 1, 2, . . . ,n, (10)

xi j ≤ yj , ∀i, j = 1, 2, . . . ,n, (11)

n∑
j=1

yj l j ≤ L, (12)

yj ∈ {0, 1}, ∀ j = 1, 2, . . . ,n, (13)

xi j ∈ {0, 1}, ∀i, j = 1, 2, . . . ,n, (14)

Applied Computational Intelligence and Soft Computing 5

where S = ⊕n
j=1s j y j is the summary and ⊕ is the concate-

nation operation. Sentence concatenation is the operation of
joining two sentences end to end.

The objective function (9) balances the relevance, con-
tent coverage, and diversity in the summary. The first term
aims to evaluate the relevancy of the summary. Higher value
of the term corresponds to higher relevancy of the summary.
The second term aims to evaluate the content coverage of the
summary. The high value of the term provides that sentences
be well grouped in topics. As said above the summary
should not contain multiple sentences that convey the same
information. Since, in our formulation, it is supposed that
the summary will be formed of medians then at choosing of
sentences as a median, it is necessary to meet a condition that
similarity between them was minimum. This requirement
will be provided by the third term. Lower value of the term
corresponds to higher diversity in the summary. Constraint
(10) ensures that each sentence should be associated with
one and only one median, while constraints (11) restrict
sentences to be assigned to open medians. Constraint (12)
implies that the length constraint of summary cannot be
violated. Finally, constraints (13) and (14) refer to integrality
constraints.

As seen, the ranges of the three terms in (9) are very
different. For example, the range of the first term is [0, 1],
whereas those of the second and third ones are [0,n] and
[0, n (n− 1)/2], respectively. Therefore, in (9) we normalize
the second and third terms so that their ranges were also
[0, 1]. Thus, we get the following objective function:

f
(
x, y

) = sim
(
⊕n

j=1s j y j ,O
)

+
1
n

n∑
i=1

n∑
j=1

sim
(
si, s j

)
xi j

− 2
n(n− 1)

n−1∑
i=1

n∑
j=i+1

sim
(
si, s j

)
yi y j .

(9
′
)

Now, our objective is to find the binary assignments
Y = [yj] and X = [xi j] with the high relevancy, best content
coverage, and less redundancy such that the summary length
is at most L.

4. Self-Adaptive Differential
Evolution Algorithm

DE proposed by Storn and Price [37] is a fast and simple
technique, which performs well on a wide variety of prob-
lems [38–40]. DE is a population-based stochastic search
technique like genetic algorithm using the three operators:
crossover, mutation, and selection. The main difference in
constructing better solutions is that genetic algorithms rely
on crossover while DE relies on mutation operation. This
main operation is based on the differences of randomly
sampled pairs of solutions in the population. The algorithm
uses mutation operation as a search mechanism and selection
operation to direct the search toward the prospective regions
in the search space.

The basic idea which DE scheme is based on is to generate
new trial vector. When mutation is implemented, several
differential vectors obtained from the difference of several

randomly chosen parameter vectors are added to the target
vector to generate a mutant vector. Then, a trial vector is
produced by crossover recombining the obtained mutant
vector with the target vector. Finally, if the trial vector yields
better fitness value than the target vector, replace the target
vector with the trial vector [37–40].

In this section, a self-adaptive DE (SaDE) algorithm is
created to solve the optimization problem (9

′
)–(14). The

main steps of the SaDE algorithm are described below.

4.1. Initialization of the Parameter Vectors. DE searches for
a global optimum point an n-dimensional real parameter
space. It begins with a randomly initiated population of NP
n-dimensional real-valued parameter vectors. Each vector
forms a candidate solution to the multidimensional opti-
mization problem. We shall denote subsequent generations
in DE by t = 0, 1, . . . , tmax. Since the parameter vectors
are likely to be changed over different generations, we
adopt the following notation for representing the pth vector
of the population at the current t generation: Xp(t) =
[xp,1(t), xp,2(t), . . . , xp,n(t)], where xp,i(t) is the ith compo-
nent of the pth vector in the population, i = 1, 2, . . . ,n,
p = 1, 2, . . . , NP [38].

For each parameter of the problem, there may be a certain
range within which the value of the parameter should be
restricted, often because parameters are related to physical
components or measures that have natural bounds. The
initial population (at t = 0) should cover the entire search
space as much as possible by uniformly randomizing the
initial individuals within the search space constrained by
the prescribed minimum and maximum parameter bounds
Xmin = [xmin

1 , . . . , xmin
n] and Xmax = [xmax

1 , . . . , xmax
n]. For

example, the initial value of the ith component of the pth
individual Xp(t) at generation t = 0 is generated by [38]

xp,i(0) = xmin
i +

(
xmax
i − xmin

i

)
· randp,i, (15)

where randp,i is a uniformly distributed random number
lying between 0 and 1 and is instantiated independently for
each component i ∈ {1, 2, . . . ,n} of the pth vector.

4.2. Mutation with Self-Adaptive Scaling Factor. After ini-
tialization, DE employs the mutation operation to produce
a mutant vector with respect to each individual, so-called
target vector, in the current generation. For each target
vector, Xp(t), at generation t, its associated mutant vector
Yp(t) can be generated by following strategy:

Yp(t) = Xp1(t) + F ·
(
Xp2(t)− Xp3(t)

)
, (16)

where Xp1(t), Xp2(t), and Xp3(t) are randomly chosen
individuals from the same generation with p /= p1 /= p2 /= p3
and the F is a scaling factor which is a positive constant.
The scaling factor F is used to effect the amplification of the
difference vector, Xp2(t) − Xp3(t). A general setting for this
factor is F ∈ [0, 2]. However, Storn and Price [37] suggest
F ∈ [0.5, 1] as such a setting may result in good optimization
effectiveness.

The scaling factor F that is set by the user is generally a
key factor affecting the DE’s performance. Choosing suitable

6 Applied Computational Intelligence and Soft Computing

value of F is difficult for DE, which is usually problem
dependent. Therefore, since introduction, a large body of
research has been done to study the performance of DE
and to improve its performance. In recent years, many
approaches are attempted to improve the performance of
DE by variable scaling factor [37–41]. The scaling factor is
critical for the performance of DE, which balances global
exploration and local exploitation abilities of the population.
A large mutation factor facilitates exploration, but it takes the
population long time to converge. Conversely, a small scaling
factor makes the population fast converge, but it sometimes
leads to local optimal. Hence, the adaptive and self-adaptive
DE algorithms are proposed in the literature [38–41].
Furthermore, introducing the same scaling factor for all
individuals, by ignoring the differences among individuals’
performances, is not a precise model. In fact, during the
search every individual dynamically changes its position, so
every individual locates in a complex environment and faces
a different situation. Therefore, every individual may have
different tradeoffs between global and local search abilities.

Motivated by what is previously mentioned in this sec-
tion, the scaling factor is dynamically adapted for every indi-
vidual by introducing a measure called affinity index, which
characterizes the nearness of personal solution of individuals
to the global solution of population at the tth iteration. Based
on this index, every individual could decide how to adjust
the values of scaling factor. For this purpose, the mutation
strategy is given by

Yp(t) = Xp(t) + Fp(t) ·
(
Xp1(t)− Xp2(t)

)
. (17)

To calculate the scaling factor for pth target vector in tth
iteration, denoted by Fp(t) in (17), first the affinity index (AI)
is defined as follows:

AIp(t) =
fit
(
Xp(t)

)
− fit(Xworst(t))

fit(Xbest(t))− fit(Xworst(t))
, (18)

where Xbest(t) and Xworst(t) represent the best and
worst solution of the population at the iteration t,
fit(Xbest(t)) = maxp∈{1,...,NP}{fit(Xp(t))} and fit(Xworst(t)) =
minp∈{1,...,NP}{fit(Xp(t))}, and fit(·) is the fitness function.

It can be concluded that a small AIp(t) means that the
pth individual is far away from the global best solution and it
needs a strong global exploration, therefore a large pertur-
bation. On the other hand, a big AIp(t) means that pth
individual has a high nearness to the global solution, and so it
needs a strong local exploitation, therefore a small perturba-
tion [38, 40]. Hence, the value of scaling factor for every
target individual in tth iteration is dynamically adapted with
the following formula:

Fp(t) = 1

1 + tanh
(

2 · AIp(t)
) , (19)

where tanh(z) is the hyperbolic tangent function:

tanh(z) = exp(z)− exp(−z)
exp(z) + exp(−z)

. (20)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

AI(t)

F
(t

)

Figure 1: Scaling factor (F) versus affinity index (AI(t)).

Under the assumption and definitions above, it can be
concluded that 0.5 < Fp(t) ≤ 1. Figure 1 depicts the variation
of scaling factor (F) versus affinity index (AI(t)).

According to (18) and (19), during the search, the indi-
viduals get different values of AIp(t) and then scaling factor
depending on their fitness. While the fitness of an individual
is far away from the fitness of the global best, AIp(t) for
this individual has a small value and the value of scaling
factor will be large resulting in strong global search abilities
and locate the promising search areas. Meanwhile, when the
fitness of an individual achieves near the global best, AIp(t)
for this individual has a big value and scaling factor will be
set small, depending on the neighbor of its best fitness to the
global best value, to facilitate a finer local explorations and
so accelerate convergence.

4.3. Crossover. To enhance the potential diversity of the pop-
ulation, a crossover operation comes into play after genera-
ting the mutant vector through mutation. The mutant vector
mixes its components with the target vector Xp(t) under
this operation to form the trial vector Zp(t). The DE family
of algorithms can use two kinds of crossover methods—ex-
ponential (or two-point modulo) and binomial (or uniform)
[37, 38]. In this paper we focus on the widely used binomial
crossover that is performed on each of the n variables
whenever a randomly generated number between 0 and 1 is
less than or equal to the CR value. In this case, the number of
parameters inherited from the mutant vector has a (nearly)
binomial distribution. The scheme may be outlined as

zp,i(t) =
⎧⎨
⎩
yp,i(t), if randp,i ≤ CR or i = irand,

xp,i(t), otherwise,
(21)

where yp,i(t) and zp,i(t) are the ith-dimensional components
of the vectors Yp(t) and Zp(t), respectively; CR is the
predefined crossover probability which is usually set to a
fixed value in (0, 1) or changes dynamically within (0, 1);
irand is a number randomly selected from the index set
{1, 2, . . . ,n} and used to ensure that the trial vector Zp(t) is
different from the original solution Xp(t). The crossover rate
CR controls the recombination of target vector and mutant
vector to generate trial vector.

If the values of some parameters of a newly generated trial
vector exceed the corresponding upper and lower bounds,
then all the components of the trial vector are checked

Applied Computational Intelligence and Soft Computing 7

whether they violate the boundary constraints. If the ith
component zp,i(t) of the mutant vector Zp(t) violates the
boundary constraint (15), zp,i(t) is reflected back from the
violated boundary constraint as follows:

zp,i(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2xmin
i − zp,i(t), if zp,i(t) < xmin

i ,

2xmax
i − zp,i(t), if zp,i(t) > xmax

i ,

zp,i(t), otherwise.

(22)

4.4. Selection. The next step of the algorithm calls for
selection to determine whether the target or the trial vector
survives to the next generation, that is, at t = t + 1.
Then the objective function values of all trial vectors are
evaluated. After that, a selection operation is performed. The
DE algorithm uses a greedy selection. The selection operator
chooses between the target and corresponding trial vectors.
A member of the next generation becomes the fittest vector,
that is, vector with the better fitness value. For example, if we
have a maximization problem, the selection operation can be
expressed as follows:

Xp(t + 1) =
⎧⎪⎨
⎪⎩
Zp(t), if f

(
Zp(t)

)
≥ f

(
Xp(t)

)
,

Xp(t), otherwise.
(23)

Therefore, if the trial vector yields an equal or better value
of the objective function, it replaces the corresponding target
vector in the next generation; otherwise the target is retained
in the population. Hence, the population either gets better
(with respect to the maximization of the objective function)
or remains the same in fitness status, but never deteriorates.

4.5. Binarization. Binary DE is the modified version of DE,
which operates in binary search spaces. In the binary DE, the
real value of genes is converted to the binary space by the rule
[42]

xp,i(t + 1) =
⎧⎪⎨
⎪⎩

1, if randp,i < sigm
(
xp,i(t + 1)

)
,

0, otherwise,
(24)

where, as before, randp,i is a uniformly distributed random
number lying between 0 and 1, which is instantiated
independently for each ith component of the pth parameter
vector. sigm(z) is the sigmoid function:

sigm(z) = 1
1 + exp(−z)

. (25)

The motivation to use the sigmoid function (25) is to
map interval [xmin

i , xmax
i] for each i ∈ {1, 2, . . . ,n} into

the interval (0, 1), which is equivalent to the interval of a
probability function. After such transformation from the
real-coded representation (15) we obtain the binary-coded
representation, xp,i(t) ∈ {0, 1}, where the xp,i(t) = 1
indicates that the ith sentence is selected to be included to
the summary, otherwise, the ith sentence will not be selected.
For example, the individual Xp(t) = [1, 0, 0, 1, 1] represents
a candidate solution that first, fourth, and fifth sentences are
selected to be included to the summary.

4.6. Constraint Handling. When population initialization,
mutation, crossover, and binarization have been imple-
mented, the new generated solution may not satisfy the con-
straint (12). The most popular constraint handling strategy
at present is penalty method, which often uses function to
convert a constrained problem into an unconstraint one
[43]. Therefore, this strategy is very convenient to handle
the constraints for evolutionary algorithm by punishing the
infeasible solution during the selection procedure to ensure
the feasible ones are favored. However, this strategy has some
drawbacks and the main one is the requirement of multiple
runs for the fine-tuning of penalty factors, which would
increase the computational time and degrade the efficiency of
the algorithm. In order to overcome the drawbacks of penalty
method and handle the constraints of problem effectively,
the following heuristic procedure is produced for all NP
solutions in the population to resolve the constraint (12).

Constraint is handled by using a suitable fitness function,
which depends on the current population. Solutions in a
population are assigned fitness so that feasible solutions are
emphasized more than infeasible solutions. The following
three criteria are satisfied during the handling process.

(i) Any feasible solution wins over any infeasible solu-
tion.

(ii) Two feasible solutions are compared only based on
their objective function values.

(iii) Two infeasible solutions are compared based on the
amount of constraint violation.

4.7. Stopping Criterion. Mutation, crossover and selection
continue until some stopping criterion is satisfied. If the
predefined maximum iteration number is reached, then the
DE algorithm is terminated and outputs the best solution
obtained by DE as the result. Otherwise, it is continued to
carry out individual’s position updates process (mutation,
crossover, and selection process).

4.8. Parameter Settings of SaDE Algorithm. The crucial
parameters that affect the performance of DE are the popula-
tion size (NP), crossover rate (CR), and the scaling parameter
(F). In the proposed SaDE algorithm the population size,
NP = 50, is maintained constant throughout the evolution
process. This is a heuristic choice. For example, the value of
NP can be increased for obtaining the global solution with
higher probability. However, the higher the value of NP is,
the higher the number of fitness evaluation is. The crossover
rate controls which and how many components are mutated
in each element of the current population. The crossover rate
CR is a probability of mixing between trial and target vectors.
A large CR often speeds up convergence. However, from a
certain value upwards, the convergence speed may decrease
or the population may converge prematurely. In [40], a good
choice for CR is said to be between 0.3 and 0.9. Therefore we
ran self-adaptive DE for CR = 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, and
0.3. The best results presented for DE are obtained for CR =
0.9. Other parameters are set as tmax = 1000, xmin

i = −5, and
xmax
i = 5 for all i ∈ {1, 2, . . . ,n}.

8 Applied Computational Intelligence and Soft Computing

4.9. Framework of the SaDE Algorithm. The pseudocode of
the proposed SaDE algorithm can be summarized as follows.

Step 1 (initial population). Using the rule (15) create an
initial population.

Step 2 (binarization). Transform real-coded individuals to
binary-coded individuals using (24).

Step 3 (select best and worst individuals). Select the individ-
uals with current best and worst solution.

Step 4 (generate trial vector). Generate trial vector of the
target vector using the mutation (17)–(20) and crossover
(21) operators.

Step 5 (check the boundary constraints). Check the bound-
ary constraints (15) for the components of the trial vector
using (22).

Step 6 (binarization). Transform real-coded trial vector to
binary-coded trial vector using (24).

Step 7 (constraint handling). Handle the constraint (12)
using the strategy described in Section 4.6.

Step 8 (selection). If a trial vector is better than its target
vector is, then replace the target vector by trial vector in the
next generation.

Step 9 (stopping criterion). Repeat Steps 2–8 until a user-
specified maximum number tmax of fitness calculation is
reached.

Step 10 (output). Report the summary obtained by the best
individual as the final solution at maximum number of fit-
ness calculation.

5. Experimental Results

5.1. Dataset. We take the DUC 2006 data set as the evalua-
tion corpora [44]. DUC 2006 provides 50 document sets for
evaluation. Each document set includes a fixed number—
25 documents. For each topic, four human summarizers
are asked to provide a 250-word summary of the topic
from the 25 related documents for automatic evaluation. All
documents are preprocessed by removing stop words [45]
and conducting stemming [46].

5.2. Evaluation Metrics. A well-recognized automatic evalu-
ation toolkit ROUGE [47] is used in evaluation. It includes
five measures, which automatically determine the quality
of a machine-generated summary by comparing it to ideal
summaries created by humans: ROUGE-N , ROUGE-L,
ROUGE-W , ROUGE-S, and ROUGE-SU. These measures
evaluate the quality of the summarization by counting the
number of overlapping units, such as N-grams, between
the generated summary by a method and a set of reference
summaries.

The ROUGE-N measure compares N-grams of two
summaries and counts the number of matches:

ROUGE-N =
∑

S∈Summref

∑
N-gram∈SCountmatch

(
N-gram

)
∑

S∈Summref

∑
N-gram∈SCount

(
N-gram

) ,

(26)

where N stands for the length of the N-gram,
Countmatch(N-gram) is the maximum number of N-grams
co-occurring in candidate summary and the set of refer-
ence-summaries. Count(N-gram) is the number of N-grams
in the reference summaries.

ROUGE-L computes the ratio between the length of the
summaries’ longest common subsequence (LCS) and the
length of the reference summary:

PLCS(R, S) = LCS(R, S)
|S| ,

RLCS(R, S) = LCS(R, S)
|R| ,

FLCS(R, S) =
(
1 + β2

)
PLCS(R, S)RLCS(R, S)

β2PLCS(R, S) + RLCS(R, S)
,

(27)

where |R| and |S| are the length of the reference R and
candidate S sentence summaries, respectively. LCS(R, S) is
the length of an LCS of R and S. PLCS(R, S) is the precision
of LCS(R, S), RLCS(R, S) is the recall of LCS(R, S), and β =
PLCS(R, S)/RLCS(R, S).

Lin [47] implemented two extensions to ROUGE-N :
skip-bigram cooccurrence (ROUGE-S) and skip-bigram co-
occurrence averaged with unigram cooccurrence (ROUGE-
SU). The way ROUGE-S is calculated is identical to that
of ROUGE-2, except that skip bigrams are defined as
subsequences rather than the regular definition of bigrams
as substrings. Skip-bigram (skip bigram is any pair of words
in their sentence order, allowing for arbitrary gaps) cooccur-
rence statistics, ROUGE-S, measure the similarity of a pair
of summaries based on how many skip bigrams they have in
common:

PSKIP2(R, S) = SKIP2(R, S)
C(|S|, 2)

,

RSKIP2(R, S) = SKIP2(R, S)
C(|R|, 2)

,

FSKIP2(R, S) =
(
1 + β2

)
PSKIP2(R, S)RSKIP2(R, S)

β2PSKIP2(R, S) + RSKIP2(R, S)
,

(28)

where SKIP2(R, S) is the number of skip-bigram matches
between R and S, β is the relative importance of
PSKIP2(R, S) and RSKIP2(R, S), PSKIP2(R, S) being the precision
of SKIP2(R, S) and RSKIP2(R, S) the recall of SKIP2(R, S).
C(·, ·) is the combination function.

One potential problem for ROUGE-S is that it does not
give any credit to a candidate sentence if the sentence does
not have any word pair co-occurring with its references. To
accommodate this, ROUGE-S is extended with the addition
of unigram as counting unit. The extended version is called
ROUGE-SU that is a weighted average between ROUGE-S
and ROUGE-1.

Applied Computational Intelligence and Soft Computing 9

Table 1: ROUGE scores of the methods.

Methods ROUGE-1 ROUGE-2 ROUGE-SU4

pSum-SaDE 0.4416 0.0994 0.1592

LEX 0.4030 0.0913 0.1449

TMR + TF 0.4063 0.0913 0.1504

HybHSum 0.4300 0.0910 0.1510

PLSA-JS 0.4328 0.0970 0.1557

iRANK 0.4032 0.0912 0.1450

HierSum 0.4010 0.0860 0.1430

SVR 0.4018 0.0926 0.1485

Table 2: Comparison pSum-SaDE with other methods.

Methods
Improvement of the method pSum-SaDE, %

ROUGE-1 ROUGE-2 ROUGE-SU4

LEX 9.58 8.87 9.87

TMR + TF 8.69 8.87 5.85

HybHSum 2.70 9.23 5.43

PLSA-JS 2.03 2.47 2.25

iRANK 9.52 8.99 9.79

HierSum 10.12 15.58 11.33

SVR 9.91 7.34 7.21

Average 7.51 8.77 7.39

5.3. Performance Evaluation. In this section, we empirically
compare the systems using ROUGE-1, ROUGE-2, and
ROUGE-SU4 metrics. ROUGE-SU4 is an extended version
of ROUGE-2 that allows word-level gaps of maximum length
4 between the bigram tokens. These metrics were comput-
ed by comparing automatically generated summaries against
the model summaries. We implement the following most
widely used document summarization methods as the
baseline systems to compare with our method: LEX [33],
TMR + TF [22], HybHSum [26], PLSA-JS [25], iRANK [24],
HierSum [23], and SVR [21]. Table 1 provides the ROUGE
scores of the methods. The results reported here are averaged
over 20 runs. In Table 1 through pSum-SaDE our method is
denoted.

From the results reported in Table 1, we have the follow-
ing observations: (1) the method pSum-SaDE outperforms
all other methods and its results are close to results of the
method PLSA-JS; (2) HierSum has the worst performance;
(3) the results of LEX and iRANK are similar.

Table 2 demonstrates the improvements of the method
pSum-SaDE in all ROUGE scores. We clearly observe
that our method achieves the highest ROUGE scores
and outperforms all the other systems. For comparison
we have used the relative improvement ((our method −
other methods)/other methods)× 100. We also observe that
among other methods the PLSA-JS shows the best results
compared to other methods. Compared with the method
PLSA-JS the method pSum-SaDE improves the performance
by 2.03%, 2.47%, and 2.25% in terms ROUGE-1, ROUGE-2,
and ROUGE-SU4 metrics, respectively.

Table 3: Comparison with the three best systems on DUC 2006.

Method ROUGE-1 ROUGE-2 ROUGE-SU4

pSum-SaDE 0.4416 0.0994 0.1592

System24 0.4106 0.0951 0.1549

System15 0.4020 0.0903 0.1468

System12 0.4040 0.0890 0.1469

We further compared our results with the three best par-
ticipant systems [22] in DUC 2006. Table 3 shows the com-
parison results. We see that our proposed method outper-
forms the three systems. We need note that our method
does not make use of any external information, while
the systems usually (heavily) depend on some external
knowledge, for example, System 15 employs WordNet for
discovering semantic similarity between words and System
24 employs linguistic features such as named entity, linguistic
patterns, and semantic similarity between words.

5.4. Comparison with Canonical DE Algorithm. This section
demonstrates the feasibility of the SaDE-based document
summarization. The results are compared to the results
obtained from canonical DE. In SaDE and canonical DE the
parameter CR does not change during search process which
is equal to CR = 0.6. In canonical DE algorithm, the muta-
tion strategy is defined by (16), whose parameter F does not
change during search process. In our experiment, the scal-
ing factor F is set to 0.5. To perform a fair comparison, the
same computational effort is used in both of canonical DE
and SaDE. That is, the maximum generation, population
size, and searching range of the parameters in DE are the
same as those in adaptive DE. In addition, notice that
random number generator is initialized with the same seed
values. The maximum generation, the population size, and
the maximum number of iterations are set to 20, 50, and
1000, respectively.

Table 4 shows the worst, mean, best, and standard devia-
tion of ROUGE results during 20 runs for each algorithm DE
and SaDE. From Table 4, it is obvious that the worst results
obtained by adaptive DE are even better than the best results
obtained by DE.

5.5. Comparison of Runtime of the Methods. In this section,
CPU runtimes of the seven tested methods are compared.
All the methods were implemented in the Delphi 7 language.
The algorithms were run on a Server running Windows Vista
with two dual-core Intel Xeon CPU (4 GHz) processors and
4 GB memory. Table 5 shows the comparison in terms of time
spent by each method. Last column shows the ranks of the
method on their time spent. From the experimental results,
we clearly observe that (1) LEX method performs slowly;
(2) the methods iRANK, HierSum, and HybHSum, and the
methods PLSA-JS and SVR spend almost equal time; (3) our
methods pSum-DE and pSum-SaDE take the first and second
places, respectively.

5.6. Statistical Significance Test. To judge the statistical
significance of the summarization results, a nonparametric

10 Applied Computational Intelligence and Soft Computing

R
O

U
G

E
-1

0.36

0.38

0.4

0.42

0.44

0.46

pS
u

m
-S

aD
E

pS
u

m
-D

E

LE
X

T
M

R
+

T
F

H
yb

H
Su

m

P
LS

A
-J

S

iR
A

N
K

H
ie

rS
u

m

SV
R

(a)

pS
u

m
-S

aD
E

pS
u

m
-D

E

LE
X

T
M

R
+

T
F

H
yb

H
Su

m

P
LS

A
-J

S

iR
A

N
K

H
ie

rS
u

m

SV
R

0.08

0.085

0.09

0.095

0.1

R
O

U
G

E
-2

(b)

pS
u

m
-S

aD
E

pS
u

m
-D

E

LE
X

T
M

R
+

T
F

H
yb

H
Su

m

P
LS

A
-J

S

iR
A

N
K

H
ie

rS
u

m

SV
R

R
O

U
G

E
-S

U
4

0.13

0.14

0.15

0.16

0.17

(c)

Figure 2: Change of ROUGE-1, ROUGE-2, and ROUGE-SU4 for different summarization methods.

Table 4: Comparison pSum-SaDE with pSum-DE.

Algorithm Worst Mean Best Stdv

ROUGE-1
SaDE 0.4399 0.4416 0.4428 1.13e − 04

DE 0.4366 0.4378 0.4388 1.45e− 04

ROUGE-2
SaDE 0.0987 0.0994 0.1011 1.11e − 04

DE 0.0955 0.0967 0.0975 1.47e− 04

ROUGE-
SU4

SaDE 0.1584 0.1592 0.1605 1.01e − 04

DE 0.1537 0.1564 0.1575 1.36e− 04

statistical significance test called Wilcoxon’s rank sum test
for independent samples [48] has been conducted at the 5%
significance level. Nine groups, corresponding to the nine
methods ((1) pSum-SaDE, (2) pSum-DE, (3) LEX, (4) TMR
+ TF, (5) HybHSum, (6) PLSA-JS, (7) iRANK, (8) HierSum,
(9) SVR), have been created for each data set. Two groups
are compared at a time one corresponding to pSum-SaDE
method and the other corresponding to some other method

Table 5: Comparison of the methods on time spent.

Methods Time (min) Rank

pSum-DE 42.7 1

pSum-SaDE 44.2 2

TMR + TF 51.3 3

PLSA-JS 54.4 4

SVR 56.6 5

iRANK 62.7 6

HierSum 63.1 7

HybHSum 64.9 8

LEX 67.6 9

considered in this paper. Each group consists of the ROUGE
scores for the data sets produced by 20 consecutive runs of
the corresponding method. The median values, 95% CI, and
standard error (stdr.) of ROUGE scores of each group for all
the data sets are shown in Table 6.

Applied Computational Intelligence and Soft Computing 11

Table 6: Median values, 95% CI, and standard error of ROUGE scores over 20 consecutive runs of methods.

Methods
ROUGE-1 ROUGE-2 ROUGE-SU4

Median 95% CI Stdr. Median 95% CI Stdr. Median 95% CI Stdr.

pSum-SaDE 0.4422 [0.4417, 0.4426] 2.2e – 4 0.0992 [0.0990, 0.0994] 7.8e− 5 0.1596 [0.1591, 0.1598] 1.7e− 4

pSum-DE 0.4387 [0.4383, 0.4394] 2.5e – 4 0.0974 [0.0971, 0.0976] 1.1e− 4 0.1570 [0.1564, 0.1575] 2.6e− 4

LEX 0.4040 [0.4022, 0.4057] 8.3e – 4 0.0915 [0.0910, 0.0919] 2.3e− 4 0.1457 [0.1448, 0.1465] 4.1e− 4

TMR + TF 0.4059 [0.4048, 0.4067] 4.4e – 4 0.0921 [0.0911, 0.0922] 2.7e− 4 0.1515 [0.1508, 0.1520] 3.0e− 4

HybHSum 0.4306 [0.4299, 0.4310] 2.6e – 4 0.0916 [0.0908, 0.0916] 2.1e− 4 0.1514 [0.1508, 0.1518] 2.6e− 4

PLSA-JS 0.4330 [0.4327, 0.4341] 3.2e – 4 0.0975 [0.0970, 0.0981] 2.6e− 4 0.1557 [0.1549, 0.1565] 4.0e− 4

iRANK 0.4019 [0.4014, 0.4046] 7.8e – 4 0.0915 [0.0912, 0.0920] 2.0e− 4 0.1447 [0.1446, 0.1458] 2.9e− 4

HierSum 0.4016 [0.4006, 0.4023] 4.2e – 4 0.0889 [0.0877, 0.0894] 4.1e− 4 0.1441 [0.1427, 0.1442] 3.5e− 4

SVR 0.4024 [0.4008, 0.4030] 5.1e – 4 0.0922 [0.0915, 0.0941] 6.1e− 4 0.1491 [0.1483, 0.1497] 3.4e− 4

Table 7: P values produced by Wilcoxon’s rank sum test by comparing pSum-SaDE with other methods.

Metric
P values (comparing medians of pSum-SaDE with other methods)

pSum-DE LEX TMR + TF HybHSum PLSA-JS iRANK HierSum SVR

ROUGE-1 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

ROUGE-2 <0.0001 <0.0001 <0.0001 <0.0001 0.0002 <0.0001 <0.0001 <0.0001

ROUGE-SU4 <0.0001 <0.0001 <0.0001 <0.0001 0.0001 <0.0001 <0.0001 <0.0001

As is evident from Table 6, the median values of ROUGE-
1, ROUGE-2, and ROUGE-SU4 scores for pSum-SaDE are
better than those for the other methods. To establish that
this goodness is statistically significant, Table 7 reports the P
values produced by Wilcoxon’s rank sum test for comparison
of two groups (one group corresponding to pSum-SaDE and
another group corresponding to some other algorithm) at
a time [49]. As a null hypothesis, it is assumed that there
are no significant differences between the median values of
two groups, whereas the alternative hypothesis is that there is
significant difference in the median values of the two groups.
It is clear from the table that P values are much less than 0.05
(5% significance level). This is strong evidence against the
null hypothesis, indicating that the better median values of
the performance metrics produced by pSum-SaDE are statis-
tically significant and have not occurred by chance. Similar
results are obtained for all other data sets and for all other
methods compared to pSum-SaDE method, establishing the
significant superiority of the proposed technique.

The superiority of pSum-SaDE method is also evident
from Figure 2 that provides the range of solutions obtained
by the different methods [49].

6. Conclusion and Future Work

The main contributions of the paper are the following.

(i) The paper presents a document summarization mod-
el which extracts salient sentences from given doc-
uments while reducing redundant information in
the summaries with the coverage of latent topics of
document collection.

(ii) Document summarization is formalized as a modi-
fied p-median problem that takes into account four
basic requirements, namely, relevance, information

coverage, diversity, and length limit that should sat-
isfy summaries.

(iii) To solve the modified p-median problem a self-adapt-
ive differential evolution algorithm is created. In par-
ticular, in the paper is proposed a self-adaptive scaling
factor in original DE to increase the exploration and
exploitation ability.

(iv) This paper has found that self-adaptive differential
evolution can efficiently find the best solution in
comparison with the canonical differential evolution.
Experimental results on DUC 2006 dataset have
shown that our optimization approach compares well
to several summarization methods.

There are several possible directions of future research.
One of them involves replacement of the SaDE algorithm
in pSum-SaDE with a better global search method, such
as particle swarm optimization. Another direction of future
research is related to the different combination of the three
terms, namely, relevancy, coverage, and redundancy terms in
objective function (9

′
).

Acknowledgments

The authors thank the Professor Chuan-Kang Ting (the edi-
tor), and the reviewers providing very helpful comments
and suggestions. Their insight and comments led to a better
presentation of the ideas expressed in this paper.

References

[1] C. C. Yang and F. L. Wang, “Hierarchical summarization of
large documents,” Journal of the American Society for Infor-
mation Science and Technology, vol. 59, no. 6, pp. 887–902,
2008.

12 Applied Computational Intelligence and Soft Computing

[2] H. Dong, S. Yu, and Y. Jiang, “Text mining on semi-structured
e-government digital archives of China,” in Proceedings of the
2nd Pacific-Asia Conference on Web Mining and Web-Based Ap-
plication (WMWA ’09), pp. 11–14, Wuhan, China, June 2009.

[3] M. A. Fattah and F. Ren, “GA, MR, FFNN, PNN and GMM
based models for automatic text summarization,” Computer
Speech and Language, vol. 23, no. 1, pp. 126–144, 2009.

[4] I. Mani and M. T. Maybury, Advances in Automatic Text Sum-
marization, MIT Press, Cambridge, UK, 1999.

[5] J. Otterbacher, G. Erkan, and D. R. Radev, “Biased LexRank:
passage retrieval using random walks with question-based
priors,” Information Processing and Management, vol. 45, no.
1, pp. 42–54, 2009.

[6] D. Shen, J.-T. Sun, H. Li, Q. Yang, and Z. Chen, “Document
summarization using conditional random fields,” in Proceed-
ings of the 20th International Joint Conference on Artificial
Intelligence, pp. 2862–2867, Hyderabad, India, 2007.

[7] X. Wan, “Using only cross-document relationships for both
generic and topic-focused multi-document summarizations,”
Information Retrieval, vol. 11, no. 1, pp. 25–49, 2008.

[8] Y. Ouyang, W. Li, S. Li, and Q. Lu, “Applying regression
models to query-focused multi-document summarization,”
Information Processing and Management, vol. 47, no. 2, pp.
227–237, 2011.

[9] X. Wan, “An exploration of document impact on graph-based
multi-document summarization,” in Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing,
pp. 755–762, Honolulu, Hawaii, USA, 2008.

[10] M. Kutlu, C. Ciǧir, and I. Cicekli, “Generic text summarization
for Turkish,” Computer Journal, vol. 53, no. 8, pp. 1315–1323,
2010.

[11] J. Carbonell and J. Goldstein, “The use of MMR, diversity-
based reranking for reordering documents and producing
summaries,” in Proceedings of the 21st Annual International
ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, pp. 335–336, Melbourne, Australia, 1998.

[12] M. S. Binwahlan, N. Salim, and L. Suanmali, “MMI diversity
based text summarization,” International Journal of Computer
Science and Security, vol. 3, no. 1, pp. 23–33, 2009.

[13] X. Wan, J. Yang, and J. Xiao, “CollabSum: exploiting multiple
document clustering for collaborative single document sum-
marizations,” in Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’07), pp. 143–150, Amsterdam,
The Netherlands, July 2007.

[14] X. Cai, W. Li, Y. Ouyang, and H. Yan, “Simultaneous ranking
and clustering of sentences: an reinforcement approach to
multi-document summarization,” in Proceedings of the 23rd
International Conference on Computational Linguistics, pp.
134–142, Beijing, China, 2010.

[15] T. Nomoto and Y. Matsumoto, “The diversity-based approach
to open-domain text summarization,” Information Processing
and Management, vol. 39, no. 3, pp. 363–389, 2003.

[16] S. Park, B. Cha, and D. An, “Automatic multi-document
summarization based on clustering and nonnegative matrix
factorizationfs,” IETE Technical Review, vol. 27, no. 2, pp. 167–
178, 2010.

[17] R. M. Aliguliyev, “Clustering techniques and discrete particle
swarm optimization algorithm for multi-document summa-
rization,” Computational Intelligence, vol. 26, no. 4, pp. 420–
448, 2010.

[18] R. M. Aliguliyev, “A new sentence similarity measure and sen-
tence based extractive technique for automatic text summa-
rization,” Expert Systems with Applications, vol. 36, no. 4, pp.
7764–7772, 2009.

[19] R. M. Alguliev and R. M. Aliguliyev, “Evolutionary algorithm
for extractive text summarization,” Intelligent Information
Management, vol. 1, no. 2, pp. 128–138, 2009.

[20] D. Wang, S. Zhu, T. Li, Y. Chi, and Y. Gong, “Inte-
grating clustering and multi-document summarization to
improve document understanding,” in Proceedings of the 17th
ACM Conference on Information and Knowledge Management
(CIKM ’08), pp. 1435–1436, Napa Valley, Calif, USA, October
2008.

[21] Y. Ouyang, S. Li, and W. Li, “Developing learning strategies
for topic-based summarization,” in Proceedings of the 16th
ACM Conference on Information and Knowledge Management
(CIKM ’07), pp. 79–86, Lisbon, Portugal, November 2007.

[22] J. Tang, L. Yao, and D. Chen, “Multi-topic based query-
oriented summarization,” in Proceedings of the 9th SIAM
International Conference on Data Mining (SDM ’09), pp. 1141–
1152, Sparks, Nev, USA, May 2009.

[23] A. Haghighi and L. Vanderwende, “Exploring content models
for multi-document summarization,” in Proceedings of the
Annual Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, pp. 362–370, Boulder, Colo, USA, 2009.

[24] F. Wei, W. Li, and S. Liu, “iRANK: a rank-learn-combine
framework for unsupervised ensemble ranking,” Journal of the
American Society for Information Science and Technology, vol.
61, no. 6, pp. 1232–1243, 2010.

[25] L. Hennig, “Topic-based multi-document summarization
with probabilistic latent semantic analysis,” in Proceedings of
the International Conference on Recent Advances in Natural
Language Processing, pp. 144–149, Borovets, Bulgaria, 2009.

[26] A. Celikyilmaz and D. Hakkani-Tur, “A hybrid hierarchical
model for multi-document summarization,” in Proceedings of
the 48th Annual Meeting of the Association for Computational
Linguistics, pp. 815–824, Uppsala, Sweden, 2010.

[27] E. Filatova and V. Hatzivassiloglou, “A formal model for
information selection in multi-sentence text extraction,” in
Proceedings of the 20th International Conference on Computa-
tional Linguistics, pp. 397–403, Geneva, Switzerland, 2004.

[28] H. Takamura and M. Okumura, “Text summarization model
based on maximum coverage problem and its variant,” in
Proceedings of the 12th Conference of the European Chapter of
the ACL, pp. 781–789, Athens, Greece, 2009.

[29] R. McDonald, “A study of global inference algorithms in
multi-document summarization,” in Proceedings of the 29th
European Conference on IR Research, LNCS, no. 4425, pp. 557–
564, Springer, Rome, Italy, 2007.

[30] D. Wang, T. Li, S. Zhu, and C. Ding, “Multi-document sum-
marization using sentence-based topic models,” in Proceedings
of the 47th Annual Meeting of the Association for Computa-
tional Linguistics and the 4th International Joint Conference
on Natural Language Processing of the Asian Federation of
Natural Language Processing (ACL-IJCNLP ’09), pp. 297–300,
Singapore, August 2009.

[31] Y. Tao, S. Zhou, W. Lam, and J. Guan, “Towards more effective
text summarization based on textual association networks,” in
Proceedings of the 4th International Conference on Semantics,
Knowledge, and Grid (SKG ’08), pp. 235–240, Beijing, China,
December 2008.

[32] H. Takamura and M. Okumura, “Text summarization model
based on the budgeted median problem,” in Proceedings of
the 18th ACM International Conference on Information and
Knowledge Management (CIKM ’09), pp. 1589–1592, Hong
Kong, November 2009.

Applied Computational Intelligence and Soft Computing 13

[33] L. Huang, Y. He, F. Wei, and W. Li, “Modeling document
summarization as multi-objective optimization,” in Proceed-
ings of the 3rd International Symposium on Intelligent Infor-
mation Technology and Security Informatics, pp. 382–386,
Jinggangshan, China, 2010.

[34] G. Salton, “Mathematics and information retrieval,” Journal of
Documentation, vol. 35, no. 1, pp. 1–29, 1979.

[35] J. Geiß, “Latent semantic sentence clustering for multi-
document summarization,” Tech. Rep. UCAM-CL-TR-802,
University of Cambridge, Computer Laboratory, Faculty of
Computer Science and Technology, Cambridge, UK, 2011,
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-802.pdf.

[36] D. R. Radev, H. Jing, M. Styś, and D. Tam, “Centroid-
based summarization of multiple documents,” Information
Processing and Management, vol. 40, no. 6, pp. 919–938, 2004.

[37] R. Storn and K. Price, “Differential evolution—a simple and
efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–
359, 1997.

[38] S. Das and P. N. Suganthan, “Differential evolution: a survey
of the atate-of-the-art,” IEEE Transactions on Evolutionary
Computation, vol. 15, no. 1, pp. 4–31, 2011.

[39] Y. Lu, J. Zhou, H. Qin, Y. Li, and Y. Zhang, “An adaptive
hybrid differential evolution algorithm for dynamic economic
dispatch with valve-point effects,” Expert Systems with Appli-
cations, vol. 37, no. 7, pp. 4842–4849, 2010.

[40] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, and M. F.
Tasgetiren, “Differential evolution algorithm with ensemble of
parameters and mutation strategies,” Applied Soft Computing
Journal, vol. 11, no. 2, pp. 1679–1696, 2011.

[41] L. Jia, W. Gong, and H. Wu, “An improved self-adaptive
control parameter of differential evolution for global opti-
mization,” Communications in Computer and Information Sci-
ence, vol. 51, part 5, pp. 215–224, 2009.

[42] G. Pampara, A. P. Engelbrecht, and N. Franken, “Binary dif-
ferential evolution,” in Proceedings of the IEEE Congress on Evo-
lutionary Computation, pp. 1873–1879, Vancouver, Canada,
2006.

[43] K. Deb, “An efficient constraint handling method for genetic
algorithms,” Computer Methods in Applied Mechanics and
Engineering, vol. 186, no. 2–4, pp. 311–338, 2000.

[44] Document Understanding Conference, http://duc.nist.gov.
[45] English Stoplist, ftp://ftp.cs.cornell.edu/pub/smart/english.stop.
[46] Porter Stemming Algorithm, http://www.tartarus.org/martin/

PorterStemmer/.
[47] C.-Y. Lin, “ROUGE: a package for automatic evaluation sum-

maries,” in Proceedings of the Workshop on Text Summarization
Branches out, pp. 74–81, Barcelona, Spain, 2004.

[48] M. Hollander and D. A. Wolfe, Nonparametric Statistical
Methods, Wiley-Interscience, 2nd edition, 1999.

[49] GraphPad Software, http://www.graphpad.com/welcome.htm.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

