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Protein-protein interactions (PPIs) play key roles in many cellular processes such as transcription regulation, cell metabolism, and
endocrine function.Understanding these interactions takes a great promotion to the pathogenesis and treatment of various diseases.
A large amount of data has been generated by experimental techniques; however, most of these data are usually incomplete or noisy,
and the current biological experimental techniques are always very time-consuming and expensive. In this paper, we proposed a
novel method (metasample-based sparse representation classification, MSRC) for PPIs prediction. A group of metasamples are
extracted from the original training samples and then use the 𝑙

1
-regularized least square method to express a new testing sample

as the linear combination of these metasamples. PPIs prediction is achieved by using a discrimination function defined in the
representation coefficients. The MSRC is applied to PPIs dataset; it achieves 84.9% sensitivity, and 94.55% specificity, which is
slightly lower than support vector machine (SVM) and much higher than naive Bayes (NB), neural networks (NN), and k-nearest
neighbor (KNN). The result shows that the MSRC is efficient for PPIs prediction.

1. Introduction

Protein-protein interactions are a hot research topic of bioin-
formatics. Proteins form protein-protein complexes and per-
formdifferent biological processes by the interaction between
protein and protein. PPIs play important roles in most
cellular processes including regulation of transcription and
translation, signal transduction, and recognition of foreign
molecules [1]. So far, many experimental methods have been
explored for detecting PPIs, including two-hybrid systems,
which detect both transient and stable interactions [2, 3],
mass spectrometry, which is used to identify components
of protein complexes [4], and protein chip technology [5],
which solidifies some proteins already known to us on a chip,
and then uses the chip to predict the interactions of proteins;
the advantages of these methods are easy to manipulate, and
the results generated from these experimental methods are
intuitive and authentic; however, such experiments for high
throughput data are impossible.

Currently, a number of computationalmethods have been
widely exploited for the prediction of PPIs. These computa-
tional methods [6] can be roughly divided into sequence-
based [7–9], structure-based [10–12], and function annota-
tion-based [13–15] methods. The advantage of sequence-
based methods is not requiring expensive and time-con-
suming processes to determine protein structures. Martin
et al. [16] used a novel description of interacting protein by
extending the signature descriptor to predict PPIs. Bock and
Gough [17, 18] attempt to solve the classification problem
based on SVM with several structural and physiochemical
descriptors. The pseudoamino acid composition approach
[19, 20] was used to predict PPIs in a hybridization space
by Chou and Cai [21]. The autocorrelation descriptor with
SVM was used to predict PPIs by Guo et al. [22] and when
performed on the PPI data of yeast S. cerevisiae, it achieved
a very promising prediction result. Zhang et al. [23] used
pairwise kernel support vectormachine to predict PPIs.There
are already many ways to predict PPIs, but these methods are
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Figure 1: The metasample model of protein-protein interactions.

not efficient and reliable to a certain extent. Moreover, most
of them have not adequately taken the local environment of
residues into account.

Sparse presentation which is inspired by the recent
progress of 𝑙

1
-norm minimization based methods is a pow-

erful data processing method and the 𝑙
1
-norm minimization

based methods include basis pursuing [24], compressive
sensing for sparse signal reconstruction [25–27], and least
absolute shrinkage and selection operator (LASSO) algo-
rithm for feature selection [28]. The SR method presents a
test sample in terms of the training samples of the same
category. To discover the SR coefficient vector, 𝑙

1
-regularized

least square [29] should be used. A training procedure is used
to create a classification model for testing in the common
learning methods. Different from that, the sparse representa-
tion approach does not include separate training and testing
stages. The SR methods present the PPIs test dataset as a
sparse linear combination of the original training samples,
and the representation error over each class is regarded as
an indicator. Nevertheless, due to the fact that the original
PPIs training samples do not contain the intrinsic structural
information of the data, the metasample [30, 31] must be
more effective for PPIs prediction than the original training
samples.

The metasample can grasp the intrinsic structural infor-
mation of the data, which present protein-protein inter-
actions as a linear combination. The metasample can be
obtained by using singular value decomposition (SVD) from
the original PPI data. The 𝑙

1
-regularized least square is used

to find the SR coefficient vector, and classification is achieved
on themetasamples by using a discriminating function of the
SR coefficient vector.

Here, we use the sparse representation classification
(SRC) [32] method with metasample for PPIs prediction; the
approach is named as metasample-based sparse representa-
tion classification (MSRC) [33].

2. Methods

2.1. Metasample of PPIs Data. Normally, metasamples which
can receive the inherent information are extracted from
the original sample and defined as a linear combination of
several samples.Through the matrix decomposition, Figure 1
illustrates the original matrix is converted into the following
two matrices:

𝐴 ∼ 𝐵𝐶. (1)
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The PPIs data are represented as matrix 𝐴 by preprocessing.
Each row represents sample and each column represents fea-
ture. The original matrix can be converted into two matrices,
where 𝐵 is of size 𝑚 × 𝑞 and 𝐶 is of size 𝑞 × 𝑛; each of the
𝑞 columns defines a metasample. Thus a lot of information
which may express the implicit characteristic of data is
obtained.

Formetasamples, it can be extracted based on SVDwhich
is used formatrix decomposition, and it is expected to acquire
some implicit information of PPIs data for classification.

SVD is one of the important matrix decompositions in
linear algebra. SVD converts the originalmatrix into a feature
matrix and a diagonalmatrixwhich consisted of feature value.
The feature value from smallest to largest is arranged in
sequence in the diagonal matrix. The researchers use several
columns of data to arrange front in the feature matrix. In
otherwords, for amatrixwith high dimension, SVDperforms
a linear transformation on the matrix.

2.2. Sparse Representation of Test PPI Samples. In fact, PPIs
prediction is a binary classification problem. Normally, train-
ing dataset of PPIs is represented by𝑚×𝑛matrix𝐴with each
sample being a row and each feature being a column.

Each of the classes has one matrix, such as the 𝑛
𝑖
samples

of 𝑖th class which has a matrix𝐴
𝑖
= [𝐵
𝑖,1𝐵𝑖,2 ⋅ ⋅ ⋅ 𝐵𝑖,𝑛𝑖] ∈ 𝑅

𝑚×𝑛𝑖 .
Given a class of training samples and 𝑦 representing the
testing samples of PPIs, the testing sample should be associ-
ated with training samples for the given class; 𝑦 is represented
as the linear weighted of the training samples:

𝑦 = 𝑎
𝑖,1𝑏𝑖,1 + 𝑎𝑖,2𝑏𝑖,2 + ⋅ ⋅ ⋅ + 𝑎𝑖,𝑛𝑖𝑏𝑖,𝑛𝑖 . (2)

The class of new test sample 𝑦 is unknown in the pre-
diction of PPIs. When there are a lot of categories, we use the
matrix notation and any test sample 𝑦 is expressed as a linear
combination of all the training samples:

𝑦 = 𝐴𝑥0. (3)

𝑥0 is the weighted matrix of the nonzero weights with the
corresponding class; we can determine the class of the new
test sample 𝑦 from 𝑥0:

𝑥0 = [0, . . . , 𝑎
𝑖,1, 𝑎𝑖,2, . . . , 𝑎𝑖,𝑛𝑖 , 0, . . . , 0]

𝑇

∈ 𝑅
𝑛
. (4)

In order to determine the class that the test sample be-
longs to,𝑥0 should be evaluated. From the formulamentioned
above, we can see that representation of 𝑦 is naturally sparse.
If 𝑦 belongs to one class, the nonzero elements in vector 𝑥
must be associated with that class, and the remaining part
is zero which associates with other classes, more categories,
and more zeros in vector. The problem can be converted into
finding a vector 𝑥. In the following optimization problem,
‖𝑥‖
0
is the 𝑙

0
-norm of 𝑥, and it expresses the number of

nonzero elements in vector 𝑥:

𝑥0 = argmin ‖𝑥‖0 subject to 𝐴𝑥 = 𝑦. (5)

The above problem is an optimization problem with
equality constraint. Since the problem is NP-hard problem,

in order to solve the problem, (5) can convert to the following
𝑙1-minimization problem:

𝑥1 = argmin ‖𝑥‖1 subject to 𝐴𝑥 = 𝑦. (6)

For matrix 𝐴, (6) cannot obtain accurate solution, so (6)
should be converted to the following generalized version:

𝐽 (𝑥, 𝜆) = min
𝑥

{
󵄩󵄩󵄩󵄩𝐴𝑥−𝑦

󵄩󵄩󵄩󵄩2 +𝜆 ‖𝑥‖1} . (7)

Equation (7) is 𝑙1-regularized least square problem that
can accept certain extent noise and it is a generalized version
of (6). The 𝑙1-regularized least square problem always has
a solution. 𝑙1-regularized LS typically yields a sparse vector
𝑥 that has relatively few nonzero coefficients. Here, ‖𝑥‖1
represents the 𝑙1-norm of 𝑥 and 𝜆 > 0 is the regularization
parameter [29]. Through (7), we expect that the classifier can
let the output value of the 𝐴𝑥 and 𝑦 as close as possible. The
𝐷-value of 𝐴𝑥 and 𝑦 should be as small as possible; also the
positive parameter 𝜆 in (7) can prevent overfitting. In conclu-
sion, the original problem is showed by sparse representation
and then converts to optimization problem (7) by a series of
transformations.This optimization problem can be solved by
the truncated Newton interior-point method [29].

2.3. Metasample-Based Sparse Representation Classification.
Themetasamples contain the inherent structural information
of training samples. Each subdataset matrix 𝐴

𝑖
can be fac-

torized into two matrices as follows:

𝐴
𝑖
∼ 𝐵
𝑖
𝐶
𝑖
. (8)

The matrix we used to represent the metasamples from
all the 𝑘 classes after computing the metasamples𝑊

𝑖
of each

class is as follows:

𝐵 = [𝐵1, 𝐵2, . . . , 𝐵𝑘] . (9)

After converting𝐴 into 𝐵, SR is computed by minimizing
the following equality for a given test sample 𝑦:

𝐽 (𝑥, 𝜆) = min
𝑥

{
󵄩󵄩󵄩󵄩𝐵𝑥 −𝑦

󵄩󵄩󵄩󵄩2 +𝜆 ‖𝑥‖1} . (10)

The optimization problem in (10) is solved using the
truncated Newton interior-point method, which is done by
l1 ls MATLAB package.

The nonzero entries in the vector 𝑥 will be all related to
the columns of 𝐵 from a single class 𝑖 when predicting PPIs
without the noise and error; that is to say, the category of the
new test sample 𝑦 is class 𝑖. But a few nonzero entries must
be related to multiple object classes if the noise and error
exists; in order to solve this problem, we use the coefficients
from each class to observe how well the test sample can be
reconstructed.

The 𝛿
𝑖
chooses the coefficients related to the 𝑖th class for

each class 𝑖; it is the feature function. We can reconstruct the
given test sample 𝑦 as 𝑦1 = 𝐵𝛿

𝑖
(𝑥), then compute the𝐷-value

of 𝑦 and 𝑦, and finally minimize the𝐷-value as the following
equality:

min
𝑖

𝑟
𝑖
(𝑦) =

󵄩󵄩󵄩󵄩𝑦 −𝐵𝛿𝑖 (𝑥)
󵄩󵄩󵄩󵄩2 . (11)

The flow chart of experiment can be showed in Figure 2.
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Figure 2: The flow chart of classification algorithm.

2.4. Evaluation of Performance. In this paper, accuracy, sen-
sitivity, specificity, and precision were used to measure the
performance of the method:

Accuracy = TP + TN
TP + TN + FN + FP

,

Sensitivity = TP
TP + FN

,

Specificity = TN
FP + TN

,

precision =
TP

FP + TP
,

(12)

where true positive (TP) represents true interaction pair, true
negative (TN) represents true noninteraction pair, false pos-
itive (FP) represents false interaction pair, and false negative
(FN) represents false noninteraction pair. All these indicators
are obtained by 5-fold cross validation.

3. Results

3.1. Generation of the Dataset. A dataset of physical protein
interactions [34] from Guo et al. [35] has been used during
our experiments. We download the database from S. cere-
visiae core subset of database of interacting proteins (DIP)
[36]. There are 5594 protein pairs left to form an eventual
positive dataset after removing the protein with fewer than
50 residues or ≥40% sequence identity. The noninteracting
pairs comprise another final negative dataset, which were
generated from those pairs of proteins that have different sub-
cellular localizations. All these positive datasets and negative
datasets come together to form the final dataset that consist

Table 1: Division of amino acids based on the dipoles and volumes
of the side chains.

Number Group
1 A, G, V
2 C
3 D, E
4 F, I, L, P
5 H, N, Q, W
6 K, R
7 M, S, T, Y

of 11188 protein pairs. 80% of the protein pairs from the final
dataset were, respectively, randomly used as the training set,
and the rest of the protein pairs as the testing set.

3.2. Feature Representation. Conjoint triad (CT) [37] is used
as feature representation method due to its prediction accu-
racy in previous study.

CT takes the properties of one amino acid and its vicinal
amino acids into account and any three continuous amino
acids have been treated as a unit. Therefore, according to the
classes of amino acid, we can differentiate the triad. Here, we
use a binary space (𝑊, 𝐻) to represent a protein sequence;
𝑊 is the vector of the sequence features; 𝐻 is the frequency
vector corresponding to 𝑊. According to the dipoles and
volumes of the side chains, the 20 amino acids have been
clustered into seven classes, the classification of amino acids
is listed in Table 1, and the size of𝑊 should be 7×7×7 = 343.
Figure 3 showed the descriptors for (𝑊,𝐻). Eventually, a 686-
dimensional vector can be set up to represent each protein
pair.

3.3. Classification of PPIs Dataset. The experiment of two-
class classification has been completed by the proposed
method. Each experiment has been repeated 5 times to
acquire the result of high precision. The mean classification
accuracies of 5-fold cross validation are charted in Figure 4.
Through the experiment, all the accuracy, sensitivity, speci-
ficity, and precision can be obtained. Figure 3 shows the
classification accuracy on the PPI dataset. In Figure 4, 𝑥-
axis shows the number of metasamples and 𝑦-axis shows the
accuracy of classification. As can be seen from Figure 4, it
could be drawn that the relationship between the number of
metasamples and the accuracy of classification has a general
trend of fluctuations. From the graph, it also revealed that the
accuracy depends on the number of metasamples. The more
the number of metasamples, the higher the accuracy. During
the dimension range from0 to 840, the accuracy is on a steady
rise across the board. Then when the count of metasample
is 840, the accuracy reaches its highest value about 89.72%.
After the number of metasamples dropped below 840, in the
area of 840 to 1340, the accuracy begins to decline. In other
words, if the number of metasamples is less than 840, the
metasample could not be able to capture sufficient inherent
structural information of each class. In addition, the training
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Figure 3: Schematic diagram for constructing the vector space (𝑊,𝐻) of protein sequence.

samples formetasample training cannot be too limited, which
is the main weakness of the proposed method.

3.4. Comparison with Other Methods. Among these algo-
rithms, here, the dataset is divided into 80% and 20%, the 80%
part representing training set which takes 5-fold cross val-
idation based on SVM (http://www.csie.ntu.edu.tw/∼cjlin/
libsvm/) to select the optimal parameter of 𝑐 and 𝑔 (𝑐 = 8,
𝑔 = 0.001953125). Then the optimal parameter could
apply to the other 20% representing testing set to obtain
the result with the accuracy reaching 91.96%. In order to
obtain respective accuracy, sensitivity, specificity, and preci-
sion, Weka (http://www.cs.waikato.ac.nz/ml/weka/) is used
to implement KNN, NN, and NB algorithm. Comparing the
performance of MSRC with SVM, KNN, NN, and NB, the
result reveals the advantages of MSRC.

Table 2: Comparison of state-of-the-art methods on the PPIs
dataset.

SVM (%) 𝐾NN (%) NN (%) NB (%) MSRC (%)
Accuracy 91.96 81.60 63.96 65.47 89.72
Sensitivity 93.11 81.60 64.00 65.5 84.9
Specificity 90.86 79.51 64.14 64.53 94.55
Precision 90.62 81.80 64.00 65.5 93.97

Table 2 shows the accuracy, sensitivity, specificity, and
precision in prediction. The result demonstrates that our
method is able to correctly predict the PPIs with the accuracy
of 89.72%, slightly lower than SVM and obviously higher
than KNN, NN, and NB. NN and NB show a distinct worse
result in sensitivity than MSRC, with the sensitivity value
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Figure 4: The classification accuracy on the PPIs dataset.

of NN, NB, and MSRC being 64%, 65.5%, and 85.9%, and
KNN with the sensitivity of 83.62% is slightly lower than
MSRC. SVM has been successfully used for PPIs prediction;
considering the characteristics of “high dimensionality” of
PPI data, SVM may be the best classifier for predicting PPI
data, so the sensitivity value of MSRC is also lower than
SVM. In the aspect of specificity, MSRC has the distinct
advantage compared to SVM, KNN, NN, and NB, which is at
94.55%. MSRC also does its best in terms of precision, which
is 93.97%, much better than other four algorithms.

As can be seen from Table 2 and Figure 4 for the PPIs
dataset,MSRC-SVDachieves better classification results than
KNN, NN, and NB.

3.5. The Number of Samples for Metasample Training. From
the above experimental results, we can see that our method
could effectively classify PPI data. The number of metasam-
ples will influence the result of MSRC. The metasamples
are extracted by SVD; we should determine the number of
metasamples of each class, which is the value of 𝑞

𝑖
in (8). In

the PPIs dataset of this paper, there are only two categories,
such that the distinct number of each class is not big. So we
make 𝑞

1
= 𝑞
2
= 𝑞; the value of 𝑞 depends on the nested

stratified 5-fold cross validation.
In the experiment, SVD is applied to extract metasample

from the origin training samples. It extracts data separately
aimed at each class. In detail, the method gets samples of
equal count from each class to combine the metasamples.
Because it should generate eigenvalues and eigenvectors
first when reducing the dimension of the SVD matrix, the
data from each class in the experiment could emerge as
eigenvector of 686∗686.Then the eigenvectors corresponding
to related rows could be extracted from this eigenvector.
In this situation, the number of rows corresponds to the
number of samples in each category to be extracted and the
data extracted from every row cannot surpass the number
of eigenvectors’ rows. According to the dataset, the highest
number from each class should not surpass 686. As a result,
the count of each extracted sample is equal; that is to say, up
to a total of 1362 samples can be extracted.

4. Conclusion

PPIs prediction is one of the hot research areas at present.
A novel method based on SR was developed for PPIs
prediction here. Since the original training samples do not
contain the instinct structural information of data as the
metasample, MSRC with PPIs uses the SVD to extract a set
of metasamples which can represent each testing sample as a
linear combination. From the experiment results, we can see
that MSRC is efficient in PPIs prediction; the approach can
match the better performance than othermethods.Moreover,
our method is different from other common classification
algorithms which construct a model by training samples. In
the future, we will investigate how to extract the appropriate
number that can improve the accuracy of classification.
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López, E. Feliu, and B. Oliva, “Understanding protein-protein
interactions using local structural features,” Journal ofMolecular
Biology, vol. 425, no. 7, pp. 1210–1224, 2013.

[13] I. Saha, J. Zubek, T. Klingström et al., “Ensemble learning
prediction of protein-protein interactions using proteins func-
tional annotations,” Molecular BioSystems, vol. 10, no. 4, pp.
820–830, 2014.

[14] L. Yang and X. Tang, “Protein-protein interactions prediction
based on iterative clique extensionwith gene ontology filtering,”
The Scientific World Journal, vol. 2014, Article ID 523634, 6
pages, 2014.

[15] O. Souiai, F. Guerfali, S. B. Miled, C. Brun, and A. Benkahla,
“In silico prediction of protein–protein interactions in human
macrophages,” BMC Research Notes, vol. 7, article 157, 2014.

[16] S. Martin, D. Roe, and J. L. Faulon, “Predicting protein-protein
interactions using signature products,” Bioinformatics, vol. 21,
no. 2, pp. 218–226, 2005.

[17] J. R. Bock and D. A. Gough, “Predicting protein-protein inter-
actions from primary structure,” Bioinformatics, vol. 17, no. 5,
pp. 455–460, 2001.

[18] J. R. Bock and D. A. Gough, “Whole-proteome interaction
mining,” Bioinformatics, vol. 19, no. 1, pp. 125–135, 2003.

[19] K.-C. Chou, “Prediction of protein cellular attributes using
pseudo-amino acid composition,” Proteins: Structure, Function
and Genetics, vol. 43, no. 3, pp. 246–255, 2001.

[20] K.-C. Chou, “Using amphiphilic pseudo amino acid composi-
tion to predict enzyme subfamily classes,” Bioinformatics, vol.
21, no. 1, pp. 10–19, 2005.

[21] K. C. Chou and Y. D. Cai, “Predicting protein-protein inter-
actions from sequences in a hybridization space,” Journal of
Proteome Research, vol. 5, no. 2, pp. 316–322, 2006.

[22] Y. Guo, L. Yu, Z. Wen, and M. Li, “Using support vector
machine combined with auto covariance to predict protein-
protein interactions from protein sequences,” Nucleic Acids
Research, vol. 36, no. 9, pp. 3025–3030, 2008.

[23] S.-W. Zhang, L.-Y. Hao, and T.-H. Zhang, “Prediction of
protein-protein interaction with pairwise kernel support vector
machine,” International Journal ofMolecular Sciences, vol. 15, no.
2, pp. 3220–3233, 2014.

[24] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decom-
position by basis pursuit,” SIAM Review, vol. 43, no. 1, pp. 129–
159, 2001.

[25] E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty
principles: exact signal reconstruction from highly incomplete
frequency information,” IEEE Transactions on InformationThe-
ory, vol. 52, no. 2, pp. 489–509, 2006.

[26] E. J. Candes andT. Tao, “Near-optimal signal recovery from ran-
dom projections: universal encoding strategies?” IEEE Transac-
tions on InformationTheory, vol. 52, no. 12, pp. 5406–5425, 2006.

[27] D. L. Donoho, “Compressed sensing,” IEEE Transactions on
Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[28] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society. Series B. Methodological,
vol. 58, no. 1, pp. 267–288, 1996.

[29] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky,
“An interior-point method for large-scale l1-regularized least
squares,” IEEE Journal on Selected Topics in Signal Processing,
vol. 1, no. 4, pp. 606–617, 2007.

[30] J.-P. Brunet, P. Tamayo, T. R. Golub, and J. P. Mesirov, “Meta-
genes and molecular pattern discovery using matrix factoriza-
tion,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 101, no. 12, pp. 4164–4169, 2004.

[31] W. Liebermeister, “Linearmodes of gene expression determined
by independent coponent analysis,” Bioinformatics, vol. 18, no.
1, pp. 51–60, 2002.

[32] X. Hang and F.-X. Wu, “Sparse representation for classification
of tumors using gene expression data,” Journal of Biomedicine
and Biotechnology, vol. 2009, Article ID 403689, 6 pages, 2009.

[33] C.-H. Zheng, L. Zhang, T.-Y. Ng, C. K. Shiu, and D.-S. Huang,
“Metasample-based sparse representation for tumor classifica-
tion,” IEEE/ACM Transactions on Computational Biology and
Bioinformatics, vol. 8, no. 5, pp. 1273–1282, 2011.

[34] J.-F. Xia, X.-M. Zhao, and D.-S. Huang, “Predicting protein-
protein interactions from protein sequences using meta predic-
tor,” Amino Acids, vol. 39, no. 5, pp. 1595–1599, 2010.

[35] Y. Z. Guo, L. Z. Yu, Z. N. Wen, and M. L. Li, “Using support
vector machine combined with auto covariance to predict pro-
tein-protein interactions from protein sequences,”Nucleic Acids
Research, vol. 36, no. 9, pp. 3025–3030, 2008.

[36] I. Xenarios, Ł. Salwı́nski, X. J. Duan, P. Higney, S.-M. Kim,
and D. Eisenberg, “DIP, the Database of Interacting Proteins: a
research tool for studying cellular networks of protein interac-
tions,” Nucleic Acids Research, vol. 30, no. 1, pp. 303–305, 2002.

[37] J. Shen, J. Zhang, X. Luo et al., “Predicting protein-protein
interactions based only on sequences information,” Proceedings
of the National Academy of Sciences of the United States of
America, vol. 104, no. 11, pp. 4337–4341, 2007.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


