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Fibroblast growth factor-1 (FGF-1) is a well characterized growth factor among the 22 members of the FGF superfamily in humans.
It binds to all the four known FGF receptors and regulates a plethora of functions including cell growth, proliferation, migration,
differentiation, and survival in different cell types. FGF-1 is involved in the regulation of diverse physiological processes such as
development, angiogenesis, wound healing, adipogenesis, and neurogenesis. Deregulation of FGF-1 signaling is not only implicated
in tumorigenesis but also is associated with tumor invasion and metastasis. Given the biomedical significance of FGFs and the
fact that individual FGFs have different roles in diverse physiological processes, the analysis of signaling pathways induced by
the binding of specific FGFs to their cognate receptors demands more focused efforts. Currently, there are no resources in the
public domain that facilitate the analysis of signaling pathways induced by individual FGFs in the FGF/FGEFR signaling system.
Towards this, we have developed a resource of signaling reactions triggered by FGF-1/FGFR system in various cell types/tissues.
The pathway data and the reaction map are made available for download in different community standard data exchange formats
through NetPath and NetSlim signaling pathway resources.

1. Introduction

Fibroblast growth factor (FGF) superfamily consists of struc-
turally related polypeptides most of which function through
its high affinity fibroblast growth factor receptors (FGFRs).
In addition to FGFRs, they also bind to heparan sulfate
proteoglycans (HPSGs) and their analog, heparin. These
interactions influence the stability of FGFs in the extracellular
matrix and also regulate their binding and activation of
FGFRs [1-9]. In humans, FGFs are encoded by 22 genes,
FGF-1-14 and FGF-16-23, and are divided into 7 subfamilies.

FGFs 1-10 and 16-23 are FGFR ligands, while FGFs 11-14 are
intracellular FGF homologous factors which act in a receptor-
independent fashion [10]. Knock-out mice of different FGFs
exhibit diverse developmental and physiological disorders
[11]. For instance, FGF-9 is involved in the development
of lung and testes [12, 13], FGF-3 is critical for inner ear
development [14], and FGF-18 is important in bone and lung
development [15-17]. Moreover, knock-out of FGFs 4, 8, 9,
10, 15, 18, or 23 was found to be lethal in mice [18]. FGFs are
also involved in wound healing, tissue repair [19, 20], and
angiogenesis [21]. Facilitating cell proliferation, migration,
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and differentiation [16, 22-26], FGFs are implicated in diverse
pathological conditions including cancer [27] as well as
metabolic and developmental disorders [18].

Most FGFs have an N-terminal signal peptide and are
thus secreted. FGFs 1, 2, 9, 16, and 20 do not have signal
peptides. FGFs 9, 16, and 20 may be released through classical
secretory pathway; however, FGF-1 and FGF-2 are released
from damaged cells or through endoplasmic reticulum-golgi
independent exocytotic pathway [10]. FGF-1 along with FGF-
2 was initially isolated from bovine pituitary extracts based
on their ability to induce proliferation in 3T3 fibroblasts
[28, 29]. Also known as acidic FGE, FGF-1 is a 155 amino
acid long non-glycosylated polypeptide. FGF-11is not released
from the cells under normal physiological conditions, but
it was secreted in response to stress conditions such as
heat shock, hypoxia [30, 31], serum starvation [32], and
exposure to low-density lipoproteins [33]. Stress induces
the release of inactive disulfide bond-linked homodimeric
form of FGF-1, which is dependent on p40-Sytl, SI00A13,
and Cu®' ions [34-37]. FGF-1 has been shown to reduce
apoptosis in vascular injury [38-40]. Administration of FGF-
1 has shown promise as a therapeutic strategy against human
cervical spinal cord injury [41] and ischemic conditions [42-
44]. Increased expression of FGF-1 was observed in ovarian
[45] and prostate cancers [46]. Taken together, FGFI1 is
involved in different cellular functions that are mediated
through its interaction with the four FGF receptors [47, 48].
A pathway resource representing these diverse functions and
the underlying mechanisms that regulate these processes
would be immensely useful.

Curated pathway maps are invaluable resources for
scientific community. Such comprehensive pathway datasets
are being increasingly used in bioinformatics efforts
directed towards analysis of high-throughput datasets
from various disease contexts. Repositories including
Pathway Interaction Database of the National Cancer
Institute (http://pid.nci.nih.gov/), Database of Cell Signaling
(http://stke.sciencemag.org/cm/), KEGG Pathway Database
(http://www.genome.jp/kegg/pathwayhtml), and INOH
Pathway Database (http://inoh.org/) have cataloged basic
components of FGF signaling. We have expanded the scope
of this by providing a comprehensive representation of FGF1
signaling pathway and its diverse roles in regulating various
cellular processes.

2. Methodology

Documentation of specific pathway reactions scattered in
the literature into an organized, user-friendly, query-enabled
platform is primary to the analysis of signaling pathways.
We used NCBI PubMed database to carry out an extensive
literature search to retrieve research articles where molec-
ular events triggered by the FGF-1/FGFR signaling system
were studied. Specific molecular events screened include (a)
physical associations between proteins, (b) posttranslational
modifications (PTMs), (c) change in subcellular localization
of proteins, (d) activation or inhibition of specific proteins,
and (e) regulation of gene expression. Relevant information
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from research articles were manually documented using
the curation tool, PathBuilder. To streamline and organize
data collection from literature, we followed the previously
described criteria for the inclusion/exclusion of pathway spe-
cific reactions [49, 50]. The data accumulated was submitted
to the NetPath signaling pathway resource developed by
our group [51]. We then generated a signaling map for this
pathway using PathVisio pathway visualization software. We
also applied additional criteria to filter out low confidence
reactions from the gathered data [52] and generated a
NetSlim map. In addition to curation of molecular level
information, we have also cataloged physiological effects
brought about by FGF-1 in different cell types/tissues.

3. Results and Discussion

Canonical FGF/FGFR signaling reactions have been doc-
umented in a few public repositories and review articles.
Vast amount of literature in the last few years have revealed
several novel pathway intermediates of FGF/FGFR signal-
ing system. In order to generate a comprehensive view
of FGF/FGFR signaling pathway, we carried out extensive
literature search on PubMed for articles pertaining to FGF-
1 signaling. Of a total of 3275 articles that were screened,
237 of them had molecular reactions reported downstream
of FGF-1 in various cell types/tissues. Manual curation from
these research articles revealed 109 molecules involved in
FGF-1 induced physical associations, modulation by PTMs,
activity, and subcellular or cell surface translocation events.
Of the 42 physical associations that were cataloged, 29 were
“binary” and 13 were “complex” interactions inclusive of the
ligand/receptor interactors. We could record a total of 87
catalysis events, 15 activation/inhibition, and 21 translocation
events. The 87 catalysis events include 19 events, where the
enzymes directly catalyzing the reactions were studied and
reported, and 68 events for which the enzymes which post-
translationally modified the proteins are not studied under
FGF-1 stimulation. Apart from these molecular reactions, we
have also cataloged 117 genes whose expression is reported to
be either upregulated or downregulated by FGF-1 treatment.
However, only a total of 25 genes were reported to be
differentially regulated at mRNA level by FGF-1 stimulation
in different human cell types. A list of genes reported to be
regulated by FGF-1 in different mammalian systems at the
mRNA and/or the protein level is provided in Table 1. After
the annotation process, all the entries were reviewed and
approved by internal reviewers. Internally reviewed pathways
were further reviewed and approved by an external pathway
authority (LC, who is an author in this paper).

3.1 Signaling Modules Activated by FGF-1. Signaling modules
comprise a well-characterized group of molecules and their
interactions downstream of activation of a receptor. We
documented the following signaling modules to be activated
upon stimulation with FGF-1.

3.1.1. Ras/Raf/Mek/Erk Pathway. The Ras/Raf/Mek/Erk path-
way has been implicated in cellular processes including cell
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growth, proliferation, and migration. Stimulation of different
cell types with FGF-1 resulted in the formation of multiple
complexes involving FRS2, GAB1, SOS1, PTPNI11, SHCI,
SH2B1, and GRB2 [53-60]. These complexes are critical to the
subsequent activation of Ras [53, 56]. Association of Ras with
Raf kinase [53] induces autophosphorylation and activation
of Raf. Activation of Raf leads to phosphorylation dependent
activation of Map kinases 1/2 (MAP2K1/2) and subsequently
Erk2/1 (MAPK1/3) [60-62]. In the context of FGF-1 signaling,
this module was reported to be involved in a number of
processes including neurogenesis, adipocyte differentiation,
cell proliferation, cholesterogenesis, cardioprotection, and
tumor invasion and metastasis [62-67].

3.1.2. Pi3k/Akt Pathway. The complexes mentioned above
also lead to the activation of Pi3k/Akt pathway, another sig-
naling module that regulates various processes including cell
growth, survival, cell proliferation, and cell migration [68]. A
number of studies have shown FGF-1 induced phosphoryla-
tion of Akt [63, 64, 69]. Pi3k inhibitor-based functional assays
also proved the involvement of FGF-1 pathway in diverse
physiological conditions including angiogenesis [70], lung
development [71], maintenance of neuronal phenotype [72],
neuroprotection [73], and ApoE-HDL secretion [69].

3.1.3. Jnk and p38 Mapk Pathway. The c-jun N-terminal
kinase (Jnk) pathway is implicated in the regulation of
cell cycle, cell survival and apoptosis. FGF-1 stimulates the
phosphorylation of p38 Mapk (MAPKI14) as well as Jnkl/2
(MAPKS8/9). The Jnkl/2 was also found to be crucial to
neurogenesis and vascular remodeling [63, 74]. The specific
functions of FGF-1 signaling mediated by p38 Mapk include
growth arrest, promotion of apoptosis in response to oxida-
tive stress, and formation of actin stress fibers [75-77].

3.1.4. STAT3 and Nf-kb Pathway. FGF-1also stimulates STATSs
(STAT1 and STAT3) and Nf-kB signaling modules. FGFR
signaling is reported to be regulated through several down-
stream molecules including JAK2, SRC, SH2B1, MAPK1/3,
MAPKS/9, and STAT3. This signaling axis is known to reg-
ulate various cellular processes including neurite outgrowth,
cell proliferation, and increased cancer cell invasion [78-
80]. In addition, FGF-1 is also reported to induce MMP9
expression in mammary adenocarcinoma cells through the

Nf-kb pathway [81].

3.2. Physiological Effects Mediated by FGF-1. FGF-1was found
to be involved in a number of biological processes. It is
associated with the development of heart [82], lens [83], lung,
and liver [84-86]. Its crucial roles in neurogenesis as well
as adipogenesis [65, 87, 88] have also been reported. FGF-
1 induces growth arrest and differentiation in chondrocytes
[89-92]. It is implicated in angiogenesis [93-95] and wound
healing [95-99]. Multiple studies have also shown the role
of FGF-1 in cardioprotection [99-101] and neuroprotection
[22, 102]. FGF-1 also induces migration [103-105] and pro-
liferation [106-108] in different types of cancer cells. It is
also involved in the regulation of epithelial-to-mesenchymal
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transition [109, 110], and tumorigenesis [111] as well as
invasion and metastasis [64, 112]. A list of functional effects
of FGF-1 studied in different cell types/tissues is provided in
Table 2.

3.3. Pathway Visualization, Data Formats, and Availability.
User-friendly visualization of pathways is an important
aspect to provide a concise view. A number of tools are
available for visualization and analysis of pathway data
including Cytoscape [113], ChisioBioPAX Editor (ChiBE)
[114], visualization and layout services for BioPAX pathway
models (VISIBIOweb) [115], and ingenuity pathway analysis.
These tools use pathway and molecular interaction data in
different XML-based community standard data exchange
formats as input. These standard formats, which include
Proteomics Standards Initiative for Molecular Interaction
(PSI-MI version 2.5), Biological Pathway eXchange (BioPAX
level 3), and Systems Biology Markup Language (SBML
version 2.1), enable easy data exchange and interoperability
with multiple software. We have provided the annotated
pathway data in the standard formats mentioned above. This
data can be downloaded and used from NetPath [51], an open
source resource for signal transduction pathways developed
by our group (http://www.netpath.org/index.html). Addi-
tionally, we have drawn a map of FGF-1/FGFR signaling
using the data accumulated in NetPath. This network map
represents the molecules and their reactions organized by
topology and excludes the molecules identified through
phosphoproteomics approaches for which topology could not
be assigned (Figure 1). The map was manually drawn using
freely available software, PathVisio [116]. The topology of the
molecules and their reactions in the pathway was arranged
based on (i) inhibitor-based assays, (ii) mutation-based
assays, (iii) knock-out studies, (iv) prior knowledge of canon-
ical modules, and/or (v) with reference to multiple review
articles. Another map, which incorporated high confidence
reactions in accordance with NetSlim criteria [52], is submit-
ted to the NetSlim database. These maps can be visualized
and downloaded in gpml, GenMAPP, png, and pdf formats
from http://www.netpath.org/netslim/FGF-1_pathway.html.
Each node in the map is linked to their molecule page
in NetPath, thereby to other pathways in NetPath, and to
HPRD [117] and RefSeq protein accessions. In the “map with
citation” option, the edges connecting the nodes are linked to
the corresponding articles in PubMed that report the FGF-
1 stimulated reaction(s). Direct reactions are represented by
solid edges. Indirect reactions are represented with dashed
edges. The edges which represent the protein-protein inter-
actions, enzyme-substrate reactions and translocation events
are distinguished by different colors.

4. Conclusions

Availability of specific ligand-receptor mediated signaling
data in community approved formats is crucial to the under-
standing of proteins and their reactions in diverse biological
processes. Analysis of high-throughput data obtained from
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TABLE 2: Functions of FGF-1 identified in diverse cell/tissue types of human and other mammalian origins.
Function PubMed ID Cell type/tissue Organism
Adipogenesis 22187378, 17068114 Preadipocytes Human
20657013 Hepatoma cells, HEK293 cells Human
Apoptosis 15773903 Motor neuron Rat
9681989 Peroxynitrite-induced apoptosis in PC12 Rat
cells
Cell cycle arrest 16153144 cells Human
Cell migration 9108375 Skin fibroblasts Human
11019781 Fibroblasts Mouse
9182757 Embryo fibroblasts Rat
2441696 Arterial smooth muscle cells Human
14966081 AT?2 alveolar cells Human
15094393 Human long-bone growth plate Human
chondrocytes
1699952 Umbilical vein endothelial ceils Human
15767480 Y79 cells Human
2303528 Epidermal keratinocytes (BALB-MKI1) Mouse
2303528 Keratinocytes (BALB/MK-1) Mouse
2383402 Leydig cells (TM3) Mouse
1379845 Megakaryocyte progenitor cells Mouse
1379845 Megakaryocytes Mouse
Murine lens epithelial cell lines CRLE2,
14985304 IAMLES, TNA 1 and NKRI1 Mouse
- 15574884 NIH-3T3 cells Mouse
Cell proliferation 3272188 Adrenal chromaffin cells Rat
2566605 Astroblasts Rat
1377078 Hippocampal astrocytes Rat
2153969 Rat bladder carcinoma cell line (NBT-II) Rat
8622701 PCI2 cells Rat
8732667 Prostate cancer cells Rat
1638984 Retinal cells Rat
1377078 Skin fibroblasts Rat
12907464 Aortic smooth muscle cells Human, rat
1638984 Retinal cells Rats
22108586 Periodontal fibroblasts Rat
3272188 Adrenal chromafhin cells Rat
22108586 Periodontal ligament fibroblasts Rat
20388777 SUM-52PE cells Human
Cell rounding, growth inhibition 1779141 lzi\;felzCS cells, chondroprogenitor cell Mouse
19713443 Mouse fibroblasts and rat astrocytes Mouse, rat
19229075 Astrocytes Rat
Cholesterol biosynthesis 18216067 Astro C;t es Rat
17548887 Astrocytes Rat
Differentiation 20497026 Embryonic stem cell (mESC) line Mouse
El14-Tg2a
2153969 NBT—H cells (Rat bladder carcinoma cell Rat
o » line)
Epithelial-mesenchymal transition 7593195 NBT-II Rat
2153969 NBT-II Rat
Fiber cell differentiation 7539358 Lens epithelial cells Mouse
GO/GI arrest 21051949 Chondrosarcoma cells Rat
G2 arrest 21051949 Chondrosarcoma cells Rat
G2/M transition 20044603 Breast cancer cells Human
Growth arrest 14593093 Rat chondrosarcoma (RCS) cells Rat
Inhibition of apoptosis 16524372 Astrocytes Hat
17473910, 16091747 PC12 and RetsAF cells Rat
Inhibition of cell growth 17363592 TAKA-1 cells Hamster
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TaBLE 2: Continued.
Function PubMed ID Cell type/tissue Organism
Inhibition of neurogenesis 11466430 NEP cells Mouse
Inhibition of proliferation 10364154 Chondrosarcoma cells (RCS) Rat
Membrane ruffling 7534069 1Iqurnan ductal breast epithelial tumor cell Human
ine (T47D)
20175207 TREX 293 cells Human
3272188 Adrenal chromaffin cells Rat
Neurite outgrowth 8764646 PCI2 cells Rat
& 19249349 PCI2 cells Rat
3316527, 8576258 PCI2 cells Rat
12127979, 9182757, 2157719 PC12 cells Rat
Neuronal differentiation 16716298 Primary astrocyte from human fetal brain Human
7514169, 8622701, 2157719 PCI2 cells Rat
Osteoblast proliferation 18041768 ENU1564 cells Rat
Osteoblast differentiation 18505824 Osteoblasts Mouse
Osteogenic differentiation 12674336 Sutural mesenchyme in mouse calvaria Mouse
Protection from apoptosis 19765618, 8576258 PCI2 cells Rat
Repression of myogenic differentiation 1379245 Skeletal muscle myoblasts (MM14) Mouse
Retinal cell proliferation 15978261 Retinal cells Mouse
Skeletal muscle development 8601591 Skeletal muscle myoblasts (MM14) Mouse
Synaptic plasticity 20649566 Hippocampal neuronal cell line HT22 Mouse
) ) 20889570 JMSUI urothelial carcinoma cell lines Human
Tumorigenesis
9038374 NBD-II Rat
Pulmonary arterial smooth muscle cells
Vascular remodeling 15121739 (F'ASMCs)y Rat
22205500 ASM (Airway Smooth Muscle cells) Human
Regeneration 3353388 Retinal ganglion cells Rat
Astrocyte activation 15773903 Primary spinal cord astrocyte Rat
Neurogenesis 20429889 Embryonic stem cells Mouse
Wound healing 9036931 Mouse
Cord Formation 16631103 Rat
Decrease in food intake 7692459 Rat
Facilitation of memory 7692459 Rat
Increase in sleep duration 8985960 Rabbit
Maintenance of the integrity of the organ
of corti, i.nitiation of protecFive recovelry 7568115 Rat
and repair processes following damaging
auditory stimuli
Arteriole dilation 8853345 Rat
Feeding suppressor function 11172932 Rat
Hair-cell innervation during the teljminal 12792312 Rat
development of the sensory epithelium
Lens regeneration 3792708 Bovine
Lung morphogenesis and differentiation 12242715 Rat
Metastasis 1707175 Rat
Muscle regeneration 1384586 Mouse
Myocardial remodeling 19629561 Rat
Neuroprotection 12095987 Rat
Prev.ention of premature angiogenesis 17643421 Mouse
and inflammatory responses
Perection against hypoxic-ischemic 16635575 Rat
injury
Spinal cord injury repair 21411654 Rat
Cardioprotection 15337227, 12176126 Mouse
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FIGURE I: Network map of FGF-1signaling. This map manually drawn using PathVisio [112] represents the reactions induced by FGF-1 through
their receptors. Each node represents the molecules and the post-translationally modified states of proteins are also represented. Distinguished
by color and continuous/dashed lines, the edges represent the specific information such as protein-protein interactions, enzyme-substrate
reactions, reactions mediated through unknown/multiple steps, and protein translocations as provided in the legend. The biological processes
that FGF-1 regulates through multiple signaling modules are also represented. A NetSlim [52] version of this map can be obtained from

http://www.netpath.org/netslim/FGF-1_pathway.html.

microarray- and mass spectrometry-based platforms essen-
tially relies on enrichment of biological function or signal-
ing pathways available in databases to obtain insights into
their physiological functions. Although some resources have
cataloged FGF signaling in general, this is the first attempt
to provide a comprehensive view of FGF-1 signaling. This
will be extended to other FGF ligands and/or specific FGFRs

in the future to facilitate the analysis of differences between
different FGFs and/or FGFRs. The pathway information has
been made available through NetPath and NetSlim resources
in multiple community standard data formats. The FGF-
1 signaling pathway data will be periodically updated in
NetPath. We have cataloged multiple signaling modules that
are activated upon activation of FGFR and their implications
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in diverse physiological and pathophysiological processes.
We believe that the data presented here will boost further
research in this area and will help identify novel thera-
peutically important molecules that could be targeted in
pathological conditions involving aberrant FGF-1 signaling.
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