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A new approximate formula of the fractional derivatives is derived. The proposed formula is based on the generalized Laguerre
polynomials. Global approximations to functions defined on a semi-infinite interval are constructed.The fractional derivatives are
presented in terms of Caputo sense. Special attention is given to study the convergence analysis and estimate an error upper bound
of the presented formula. The new spectral Laguerre collocation method is presented for solving fractional Logistic differential
equation (FLDE). The properties of Laguerre polynomials approximation are used to reduce FLDE to solve a system of algebraic
equations which is solved using a suitable numerical method. Numerical results are provided to confirm the theoretical results and
the efficiency of the proposed method.

1. Introduction

Ordinary and partial fractional differential equations (FDEs)
have been the focus of many studies due to their frequent
appearance in various applications in fluid mechanics, vis-
coelasticity, biology, physics, and engineering [1]. Fractional
calculus is a generalization of ordinary differentiation and
integration to an arbitrary noninteger order. Many physical
processes appear to exhibit fractional order behavior that
may vary with time or space. Most FDEs do not have exact
solutions, so approximate and numerical techniques [2–8]
must be used. Several numerical and approximate methods
to solve FDEs have been given such as variational itera-
tion method [9–12], homotopy perturbation method [13],
Adomian’s decomposition method [14, 15], and collocation
method [16, 17].

The fractional Logisticmodel can be obtained by applying
the fractional derivative operator on the Logistic equation.
The model is initially published by Pierre Verhulst in 1838
[18, 19]. The continuous Logistic model is described by first-
order ordinary differential equation. The discrete Logistic
model is simple iterative equation that reveals the chaotic

property in certain regions [20]. There are many variations
of the population modeling [19, 21]. The Verhulst model is
the classic example to illustrate the periodic doubling and
chaotic behavior in dynamical system [20].Themodel which
is described the population growth may be limited by certain
factors like population density [18, 19, 21].

Applications of Logistic Equation. A typical application of the
Logistic equation is a common model of population growth.
Another application of Logistic curve is in medicine, where
the Logistic differential equation is used to model the growth
of tumors. This application can be considered an extension
of the above-mentioned use in the framework of ecology.
Denoting by 𝑢(𝑡) the size of the tumor at time 𝑡.

The solution of Logistic equation is explained the constant
population growth rate which not includes the limitation on
food supply or spread of diseases [19]. The solution curve of
themodel is increasing exponentially from themultiplication
factor up to saturation limit which is maximum carrying
capacity [19], 𝑑𝑁/𝑑𝑡 = 𝜌𝑁(1 − (𝑁/𝐾)) where 𝑁 is the
population size with respect to time, 𝜌 is the rate of max-
imum population growth, and 𝐾 is the carrying capacity.
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The solution of continuous Logistic equation is in the form
of constant growth rate as in formula𝑁(𝑡) = 𝑁

0
𝑒
𝜌𝑡 where𝑁

0

is the initial population [22].
In this paper, we consider FLDE of the form

𝐷
]
𝑢 (𝑡) = 𝜌𝑢 (𝑡) (1 − 𝑢 (𝑡)) , 𝑡 > 0, 𝜌 > 0, (1)

here, the parameter ] refers to the fractional order of time
derivative with 0 < ] ≤ 1.

We also assume an initial condition

𝑢 (0) = 𝑢
0
, 𝑢
0
> 0. (2)

For ] = 1, (1) is the standard Logistic differential equation

𝑑𝑢 (𝑡)

𝑑𝑡

= 𝜌𝑢 (𝑡) (1 − 𝑢 (𝑡)) . (3)

The exact solution to this problem is 𝑢(𝑡) = 𝑢
0
/((1−𝑢

0
)𝑒
−𝜌𝑡

+

𝑢
0
).
The existence and the uniqueness of the proposed prob-

lem (1) are introduced in details in [23, 24].
The main aim of the presented paper is concerned with

an extension of the previous work on FDEs and derive
an approximate formula of the fractional derivative of the
Laguerre polynomials and then we apply this approach to
obtain the numerical solution of FLDE. Also, we present
study of the convergence analysis and estimate an error upper
bound of the proposed formula.

The structure of this paper is arranged in the following
way: in Section 2, we introduce some basic definitions about
Caputo fractional derivatives and properties of the Laguerre
polynomials. In Section 3, we give an approximate formula
of the fractional derivative of Laguerre polynomials and
its convergence analysis. In Section 4, we implement the
proposed method for solving FLDE to show the accuracy of
the presented method. Finally, in Section 5, the paper ends
with a brief conclusion and some remarks.

2. Preliminaries and Notations

In this section, we present some necessary definitions and
mathematical preliminaries of the fractional calculus theory
that will be required in the present paper.

2.1. The Caputo Fractional Derivative

Definition 1. The Caputo fractional derivative operator𝐷] of
order ] is defined in the following form:

𝐷
]
𝑓 (𝑥) =

1

Γ (𝑚 − ])
∫

𝑥

0

𝑓
(𝑚)

(𝑡)

(𝑥 − 𝑡)
]−𝑚+1

𝑑𝑡, ] > 0, 𝑥 > 0,

(4)

where𝑚 − 1 < ] ≤ 𝑚,𝑚 ∈ N.
Similar to integer-order differentiation, Caputo fractional

derivative operator is linear

𝐷
]
(𝜆𝑓 (𝑥) + 𝜇𝑔 (𝑥)) = 𝜆𝐷

]
𝑓 (𝑥) + 𝜇𝐷

]
𝑔 (𝑥) , (5)

where 𝜆 and 𝜇 are constants. For the Caputo’s derivative we
have

𝐷
]
𝐶 = 0, 𝐶 is a constant, (6)

𝐷
]
𝑥
𝑛
=

{

{

{

0, for 𝑛 ∈ N
0
, 𝑛 < ⌈]⌉ ;

Γ (𝑛 + 1)

Γ (𝑛 + 1 − ])
𝑥
𝑛−]

, for 𝑛 ∈ N
0
, 𝑛 ≥ ⌈]⌉ .

(7)

We use the ceiling function ⌈]⌉ to denote the smallest integer
greater than or equal to ], and N

0
= {0, 1, 2, . . .}. Recall that

for ] ∈ N, the Caputo differential operator coincides with the
usual differential operator of integer order.

For more details on fractional derivatives definitions and
their properties see [1, 25–28].

2.2. The Definition and Properties of the Generalized Laguerre
Polynomials. Spectral collocation methods are efficient and
highly accurate techniques for numerical solution of non-
linear differential equations. The basic idea of the spectral
collocation method is to assume that the unknown solution
𝑢(𝑡) can be approximated by a linear combination of some
basis functions, called the trial functions, such as orthogonal
polynomials. The orthogonal polynomials can be chosen
according to their special properties, which make them par-
ticularly suitable for a problem under consideration. In [16],
Khader introduced an efficient numerical method for solving
the fractional diffusion equation using the shifted Chebyshev
polynomials. In [29] the generalized Laguerre polynomials
were used to compute a spectral solution of a nonlinear
boundary value problems. The generalized Laguerre poly-
nomials constitute a complete orthogonal sets of functions
on the semi-infinite interval [0,∞). Convolution structures
of Laguerre polynomials were presented in [30]. Also, other
spectral methods based on other orthogonal polynomials are
used to obtain spectral solutions on unbounded intervals [31].

The generalized Laguerre polynomials [𝐿(𝛼)
𝑛
(𝑥)]
∞

𝑛=0
, 𝛼 >

−1 are defined on the unbounded interval (0,∞) and can be
determined with the aid of the following recurrence formula:

(𝑛 + 1) 𝐿
(𝛼)

𝑛+1
(𝑥) + (𝑥 − 2𝑛 − 𝛼 − 1) 𝐿

(𝛼)

𝑛
(𝑥)

+ (𝑛 + 𝛼) 𝐿
(𝛼)

𝑛−1
(𝑥) = 0, 𝑛 = 1, 2, . . . ,

(8)

where 𝐿(𝛼)
0
(𝑥) = 1 and 𝐿(𝛼)

1
(𝑥) = 𝛼 + 1 − 𝑥.

The analytic form of these polynomials of degree 𝑛 is
given by

𝐿
(𝛼)

𝑛
(𝑥) =

𝑛

∑

𝑘 = 0

(−1)
𝑘

𝑘!

(

𝑛 + 𝛼

𝑛 − 𝑘
)𝑥
𝑘

= (

𝑛 + 𝛼

𝑛
)

𝑛

∑

𝑘 = 0

(−𝑛)𝑘

(𝛼 + 1)
𝑘

𝑥
𝑘

𝑘!

,

(9)
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𝐿
(𝛼)

𝑛
(0) = (

𝑛+𝛼

𝑛
). These polynomials are orthogonal on the

interval [0,∞) with respect to the weight function 𝑤(𝑥) =

(1/Γ(1 + 𝛼))𝑥
𝛼
𝑒
−𝑥. The orthogonality relation is

1

Γ (1 + 𝛼)

∫

∞

0

𝑥
𝛼
𝑒
−𝑥
𝐿
(𝛼)

𝑚
(𝑥) 𝐿
(𝛼)

𝑛
(𝑥) 𝑑𝑥 = (

𝑛 + 𝛼

𝑛
) 𝛿
𝑚𝑛
.

(10)

Also, they satisfy the differentiation formula

𝐷
𝑘
𝐿
(𝛼)

𝑛
(𝑥) = (−1)

𝑘
𝐿
(𝛼+𝑘)

𝑛−𝑘
(𝑥) , 𝑘 = 0, 1, . . . , 𝑛. (11)

Any function 𝑢(𝑥) belongs to the space 𝐿2
𝑤
[0,∞) of all square

integrable functions on [0,∞)with weight function𝑤(𝑥) can
be expanded in the following Laguerre series:

𝑢 (𝑥) =

∞

∑

𝑖 = 0

𝑐
𝑖
𝐿
(𝛼)

𝑖
(𝑥) , (12)

where the coefficients 𝑐
𝑖
are given by

𝑐
𝑖
=

Γ (𝑖 + 1)

Γ (𝑖 + 𝛼 + 1)

∫

∞

0

𝑥
𝛼
𝑒
−𝑥
𝐿
(𝛼)

𝑖
(𝑥) 𝑢 (𝑥) 𝑑𝑥, 𝑖 = 0, 1, . . . .

(13)

Consider only the first (𝑚 + 1) terms of generalized Laguerre
polynomials, so we can write

𝑢
𝑚
(𝑥) =

𝑚

∑

𝑖 = 0

𝑐
𝑖
𝐿
(𝛼)

𝑖
(𝑥) . (14)

Formore details on Laguerre polynomials, its definitions, and
properties, see [29, 31, 32].

3. An Approximate Fractional Derivative of
𝐿
(𝛼)

𝑛
(𝑥) and Its Convergence Analysis

The main goal of this section is to introduce the following
theorems to derive an approximate formula of the fractional
derivatives of the generalized Laguerre polynomials and
study the truncating error and its convergence analysis.

Lemma 2. Let 𝐿(𝛼)
𝑛
(𝑥) be a generalized Laguerre polynomial

then

𝐷
]
𝐿
(𝛼)

𝑛
(𝑥) = 0, 𝑛 = 0, 1, . . . , ⌈]⌉ − 1, ] > 0. (15)

Proof. This lemma can be proved directly by applying (6)-(7)
on (9).

The main approximate formula of the fractional deriva-
tive of 𝑢(𝑥) is given in the following theorem.

Theorem 3. Let 𝑢(𝑥) be approximated by the generalized
Laguerre polynomials as (14) and also suppose ] > 0; then
its approximated fractional derivative can be written in the
following form:

𝐷
]
(𝑢
𝑚
(𝑥)) ≅

𝑚

∑

𝑖 =⌈]⌉

𝑖

∑

𝑘 =⌈]⌉

𝑐
𝑖
𝑤
(])
𝑖, 𝑘

𝑥
𝑘−]

, (16)

where 𝑤(])
𝑖, 𝑘

is given by

𝑤
(])
𝑖, 𝑘

=

(−1)
𝑘

Γ (𝑘 + 1 − ])
(

𝑖 + 𝛼

𝑖 − 𝑘
) . (17)

Proof. Since the Caputo’s fractional differentiation is a linear
operation, we obtain

𝐷
]
(𝑢
𝑚
(𝑥)) =

𝑚

∑

𝑖 = 0

𝑐
𝑖
𝐷

]
(𝐿
(𝛼)

𝑖
(𝑥)) . (18)

Also, from (9) we can get

𝐷
]
𝐿
(𝛼)

𝑖
(𝑥) = 0, 𝑖 = 0, 1, . . . , ⌈]⌉ − 1, ] > 0. (19)

Therefore, for 𝑖 = ⌈]⌉, ⌈]⌉ + 1, . . . , 𝑚, and by using (6)-(7) in
(9), we get

𝐷
]
𝐿
(𝛼)

𝑖
(𝑥) =

𝑖

∑

𝑘 = 0

(−1)
𝑘

𝑘!

(

𝑖 + 𝛼

𝑖 − 𝑘
)𝐷

]
𝑥
𝑘

=

𝑖

∑

𝑘 = ⌈]⌉

(−1)
𝑘

Γ (𝑘 + 1 − ])
(

𝑖 + 𝛼

𝑖 − 𝑘
)𝑥
𝑘−]

.

(20)

A combination of (18)–(20) leads to the desired result (16)
and ends the proof of the theorem.

Test Example. Consider the function 𝑢(𝑥) = 𝑥
3 with 𝑚 = 3,

] = 1.5, and 𝛼 = −0.5, the generalized Laguerre series of 𝑥3 is

𝑥
3
= 1.875𝐿

(𝛼)

0
(𝑥) − 11.25𝐿

(𝛼)

1
(𝑥) + 15𝐿

(𝛼)

2
(𝑥) − 6𝐿

(𝛼)

3
(𝑥) .

(21)

Now, by using formula (16), we obtain

𝐷
1.5
𝑥
3
=

3

∑

𝑖 = 2

𝑖

∑

𝑘 = 2

𝑐
𝑖
𝑤
(1.5)

𝑖,𝑘
𝑥
𝑘 −1.5

, (22)

where 𝑤(1.5)
2,2

= 1.12838, 𝑤(1.5)
3,2

= 2.82095, 𝑤(1.5)
3,3

= −0.752253,
therefore,

𝐷
1.5
𝑥
3
= 𝑐
2
𝑤
(1.5)

2,2
𝑥
0.5
+ 𝑐
3
𝑤
(1.5)

3,2
𝑥
0.5
+ 𝑐
3
𝑤
(1.5)

3,3
𝑥
1.5

=

Γ (4)

Γ (2.5)

𝑥
1.5
,

(23)

which agrees with the exact derivative (7).

Theorem4. TheCaputo fractional derivative of order ] for the
generalized Laguerre polynomials can be expressed in terms
of the generalized Laguerre polynomials themselves in the
following form:

𝐷
]
𝐿
(𝛼)

𝑖
(𝑥) =

𝑖

∑

𝑘 = ⌈]⌉

𝑘 −⌈]⌉

∑

𝑗 = 0

Ω
𝑖𝑗𝑘

𝐿
(𝛼)

𝑗
(𝑥) ,

𝑖 = ⌈]⌉ , ⌈]⌉ + 1, . . . , 𝑚,

(24)

where

Ω
𝑖𝑗𝑘

=

𝑗

∑

𝑟 = 0

(−1)
𝑟+𝑘

(𝛼 + 𝑖)! (𝑗)! (𝑘 + 𝛼 − ] + 𝑟)!

(𝑘 − ])! (𝑖 − 𝑘)! (𝛼 + 𝑘)!𝑟! (𝑗 − 𝑟)! (𝛼 + 𝑟)!
.

(25)
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Proof. From the properties of the generalized Laguerre poly-
nomials [33] and expanding 𝑥

𝑘−] in (20) in the following
form:

𝑥
𝑘−]

=

𝑘 − ⌈]⌉

∑

𝑗 = 0

𝑐
𝑘𝑗
𝐿
(𝛼)

𝑗
(𝑥) , (26)

where 𝑐
𝑘𝑗
can be obtained using (13), where 𝑢(𝑥) = 𝑥

𝑘−], then

𝑐
𝑘𝑗
=

Γ (𝑗 + 1)

Γ (𝑗 + 1 + 𝛼)

∫

∞

0

𝑥
𝑘+𝛼−]

𝑒
−𝑥
𝐿
(𝛼)

𝑗
(𝑥) 𝑑𝑥

=

𝑗

∑

𝑟 = 0

(−1)
𝑟
(𝑗)! (𝑘 − ] + 𝛼 + 𝑟)!

𝑟! (𝑗 − 𝑟)! (𝛼 + 𝑟)!

,

𝑗 = 0, 1, . . . ,

(27)

this by substituting from (9) and using the definition of
Gamma function. Now, we can write (26) in the following
form:

𝑥
𝑘−]

=

𝑘 − ⌈]⌉

∑

𝑗 = 0

𝑗

∑

𝑟 = 0

(−1)
𝑟
(𝑗)! (𝑘 − ] + 𝛼 + 𝑟)!

𝑟! (𝑗 − 𝑟)! (𝛼 + 𝑟)!

𝐿
(𝛼)

𝑗
(𝑥) . (28)

Therefore, the Caputo fractional derivative 𝐷]
𝐿
(𝛼)

𝑖
(𝑥) in (20)

can be rewritten in the following form:

𝐷
]
𝐿
(𝛼)

𝑖
(𝑥)

=

𝑖

∑

𝑘 = ⌈]⌉

𝑘 − ⌈]⌉

∑

𝑗 = 0

𝑗

∑

𝑟 = 0

((−1)
𝑟+𝑘

(𝛼 + 𝑖)! (𝑗)! (𝑘 − ] + 𝛼 + 𝑟)!

× ((𝑘 − ])! (𝑖 − 𝑘)! (𝛼 + 𝑘)!𝑟! (𝑗 − 𝑟)!

× (𝛼 + 𝑟)!)
−1
) 𝐿
(𝛼)

𝑗
(𝑥) ,

(29)

for 𝑖 = ⌈]⌉, ⌈]⌉ + 1, . . . , 𝑚. Equation (29) leads to the desired
result (24) and this completes the proof of the theorem.

Theorem 5. For the Laguerre polynomials 𝐿(𝛼)
𝑛
(𝑥), one has the

following global uniform bounds estimates:

󵄨
󵄨
󵄨
󵄨
󵄨
𝐿
(𝛼)

𝑛
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

(𝛼 + 1)𝑛

𝑛!

𝑒
𝑥/2
, for 𝛼 ≥ 0, 𝑥 ≥ 0,

𝑛 = 0, 1, . . . ;

(2 −

(𝛼 + 1)𝑛

𝑛!

) 𝑒
𝑥/2
, for − 1 < 𝛼 ≤ 0,

𝑥 ≥ 0, 𝑛 = 0, 1, . . . .

(30)

Proof. These estimates were presented in [33–35].

Theorem 6. The error in approximating 𝐷]
𝑢(𝑥) by 𝐷]

𝑢
𝑚
(𝑥)

is bounded by

󵄨
󵄨
󵄨
󵄨
𝐸
𝑇
(𝑚)

󵄨
󵄨
󵄨
󵄨
≤

∞

∑

𝑖 =𝑚+1

𝑐
𝑖
Π] (𝑖, 𝑗)

(𝛼 + 1)𝑗

𝑗!

𝑒
𝑥/2
,

𝛼 ≥ 0, 𝑥 ≥ 0, 𝑗 = 0, 1, . . . ,

󵄨
󵄨
󵄨
󵄨
𝐸
𝑇
(𝑚)

󵄨
󵄨
󵄨
󵄨
≤

∞

∑

𝑖 =𝑚+1

𝑐
𝑖
Π] (𝑖, 𝑗) (2 −

(𝛼 + 1)
𝑗

𝑗!

) 𝑒
𝑥/2
,

− 1 < 𝛼 ≤ 0, 𝑥 ≥ 0, 𝑗 = 0, 1, . . . ,

(31)

where |𝐸
𝑇
(𝑚)| = |𝐷

]
𝑢(𝑥) − 𝐷

]
𝑢
𝑚
(𝑥)| and Π](𝑖, 𝑗) =

∑
𝑖

𝑘 = ⌈]⌉∑
𝑘−⌈]⌉
𝑗 = 0

Ω
𝑖𝑗𝑘
.

Proof. A combination of (12), (14), and (24) leads to
󵄨
󵄨
󵄨
󵄨
𝐸
𝑇
(𝑚)

󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
𝐷

]
𝑢 (𝑥) − 𝐷

]
𝑢
𝑚
(𝑥)

󵄨
󵄨
󵄨
󵄨

≤

∞

∑

𝑖 =𝑚+1

𝑐
𝑖
Π] (𝑖, 𝑗)

󵄨
󵄨
󵄨
󵄨
󵄨
𝐿
(𝛼)

𝑗
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
,

(32)

using (30) and subtracting the truncated series from the infi-
nite series, bounding each term in the difference, and sum-
ming the bounds completes the proof of the theorem.

4. Implementation of Laguerre Spectral
Method for Solving FLDE

In this section, we introduce a numerical algorithm using
Laguerre spectral method for solving the fractional Logistic
differential equation of the form (1).

The procedure of the implementation is given by the
following steps.

(1) Approximate the function 𝑢(𝑡) using the formula (14)
and its Caputo fractional derivative 𝐷]

𝑢(𝑡) using the
presented formula (16) with 𝑚 = 5, then FLDE (1) is
transformed to the following approximated form:

5

∑

𝑖 = 1

𝑖

∑

𝑘 = 1

𝑐
𝑖
𝑤
(])
𝑖,𝑘
𝑡
𝑘−]

− 𝜌(

5

∑

𝑖 = 0

𝑐
𝑖
𝐿
(𝛼)

𝑖
(𝑡))

× (1 −

5

∑

𝑖 = 0

𝑐
𝑖
𝐿
(𝛼)

𝑖
(𝑡)) = 0,

(33)

where 𝑤(])
𝑖, 𝑘

is defined in (17).
We now collocate (33) at (𝑚 + 1 − ⌈]⌉) points 𝑡

𝑝
, 𝑝 =

0, 1, . . . , 𝑚 − ⌈]⌉ as

5

∑

𝑖 = 1

𝑖

∑

𝑘 = 1

𝑐
𝑖
𝑤
(])
𝑖,𝑘
𝑡
𝑘−]
𝑝

− 𝜌(

5

∑

𝑖 = 0

𝑐
𝑖
𝐿
(𝛼)

𝑖
(𝑡
𝑝
))

× (1 −

5

∑

𝑖 = 0

𝑐
𝑖
𝐿
(𝛼)

𝑖
(𝑡
𝑝
)) = 0.

(34)

(2) From the initial condition (2) we obtain the following
equation:

5

∑

𝑖 = 0

𝑐
𝑖
𝐿
(𝛼)

𝑖
(0) = 𝑢

0
. (35)
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Figure 1: A comparison between the approximate solution and the exact solution at ] = 1 (a).The behavior of the approximate solution using
the proposed method at ] = 0.85 (b).
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Figure 2: The behavior of the approximate solution using the proposed method at ] = 0.65 (a) and at ] = 0.45 (b).

Equations (34)-(35) represent a system of nonlinear
algebraic equations which contains six equations for
the unknowns 𝑐

𝑖
, 𝑖 = 0, 1, . . . , 5.

(3) Solve the resulting system using the Newton iteration
method to obtain the unknowns 𝑐

𝑖
, 𝑖 = 0, 1, . . . , 5.

Therefore, the approximate solutionwill take the form

𝑢 (𝑡) = 𝑐
0
𝐿
(𝛼)

0
(𝑡) + 𝑐

1
𝐿
(𝛼)

1
(𝑡) + 𝑐

2
𝐿
(𝛼)

2
(𝑡)

+ 𝑐
3
𝐿
(𝛼)

3
(𝑡) + 𝑐

4
𝐿
(𝛼)

4
(𝑡) + 𝑐

5
𝐿
(𝛼)

5
(𝑡) .

(36)

The numerical results of the proposed problem (1) are given
in Figures 1 and 2 with different values of ] in the interval

[0, 1] with 𝜌 = 0.5 and 𝑢
0
= 0.25. Where in Figure 1, we

presented a comparison between the behavior of the exact
solution and the approximate solution using the introduced
technique at ] = 1 (Figure 1(a)), and the behavior of the
approximate solution using the proposed method at ] = 0.85

(Figure 1(b)). But, in Figure 2, we presented the behavior of
the approximate solution with different values of ] (] = 0.65

(Figure 2(a)) and ] = 0.45 (Figure 2(b))).

5. Conclusion and Remarks

In this paper, we introduced a new spectral collocation
method based on Laguerre polynomials for solving FLDE.
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We have introduced an approximate formula for the Caputo
fractional derivative of the generalized Laguerre polynomials
in terms of generalized Laguerre polynomials themselves. In
the proposed method we used the properties of the Laguerre
polynomials to reduce FLDE to solve a system of algebraic
equations. The error upper bound of the proposed approxi-
mate formula is stated and proved. The obtained numerical
results show that the proposed algorithm converges as the
number of𝑚 terms is increased. The solution is expressed as
a truncated Laguerre series and so it can be easily evaluated
for arbitrary values of time using any computer program
without any computational effort. From illustrative examples,
we can conclude that this approach can obtain very accurate
and satisfactory results. Comparisons are made between the
approximate solution and the exact solution to illustrate
the validity and the great potential of the technique. All
computations are done using Matlab.
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