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A wide range of studies show the capacity of multivariate statistical methods for fMRI to improve mapping of brain activations in
a noisy environment. An advanced method uses local canonical correlation analysis (CCA) to encompass a group of neighboring
voxels instead of looking at the single voxel time course. The value of a suitable test statistic is used as a measure of activation. It
is customary to assign the value to the center voxel; however, this is a choice of convenience and without constraints introduces
artifacts, especially in regions of strong localized activation. To compensate for these deficiencies, different spatial constraints in
CCA have been introduced to enforce dominance of the center voxel. However, even if the dominance condition for the center
voxel is satisfied, constrained CCA can still lead to a smoothing artifact, often called the “bleeding artifact of CCA”, in fMRI
activation patterns. In this paper a new method is introduced to measure and correct for the smoothing artifact for constrained
CCA methods. It is shown that constrained CCA methods corrected for the smoothing artifact lead to more plausible activation
patterns in fMRI as shown using data from a motor task and a memory task.

1. Introduction

Local canonical correlation analysis (CCA) is a multivariate
statistical method in fMRI that uses the joint time course
of a group of neighboring voxels, usually in a 3 × 3 in-
plane voxel grid, to determine the significance of activation.
The value of a suitable test statistic is used as a measure of
activation. Since the joint time course of the neighborhood is
used, it is not immediately clear to which voxel the measure
of activation should be assigned. For example, if a 3 × 3
voxel neighborhood is chosen and the measure of activation
is significant, without further assumptions one can only con-
clude that activation occurred somewhere within the 3 × 3
voxel neighborhood. If the activation is assigned to all
voxels of the neighborhood, loss of spatial specificity will
occur. To increase spatial specificity, it has been proposed
to assign the measure of activation to the center voxel of

the 3 × 3 neighborhood [1, 2]. A center voxel assignment
is usually justified by mathematical convenience but can
also be reasoned on the fact that the fMRI BOLD response
leads to patches of activation patterns that are most likely
of convex shape and simple connectivity (without any holes
in the interior neighborhood). However, this center voxel
assignment proved to be prone to yield artifacts as activations
tend to bleed to the neighboring voxels of strongly active
voxels. The result is a loss of spatial specificity from this
smoothing artifact.

The smoothing artifact is not only common in con-
ventional CCA, but also in any analysis technique that
involves spatial low-pass filter kernels, such as univariate
(single voxel) analysis where the data have been preprocessed
using Gaussian spatial smoothing. In conventional data
smoothing, the smoothing artifact has been intentionally
“induced” to increase the signal-to-noise ratio at the cost of
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reduced specificity and occurrence of typical spatial low-pass
artifacts such as blurring of edges of activation patterns.

To compensate for the smoothing artifact in conventional
CCA, different assignment schemes were proposed. For
example, a minimum relative weight for the center voxel was
used to restrict false activations [3]. In another study using a
more adaptive approach, the smoothing artifact was reduced
by utilizing the spatial dependence among voxels as much as
possible and assigning the significance of activation to the
dominant voxel of local maxima [4]. This method was shown
to be effective in eliminating the smoothing artifact in motor
activation data that is known to have large contrast-to-noise
ratio (CNR), however, in data where the activation is more
subtle (such as hippocampal activation using an episodic
memory paradigm), the method has the disadvantage of
being less sensitive, according to our studies.

To reduce the smoothing artifact in CCA, it is necessary
to constrain the spatial weights properly and impose the
condition that the center voxel always has the largest weight.
Constrained CCA (cCCA) with positivity constraints have
been proposed for fMRI. Friman et al. [5] as well as
Ragnehed et al. [6] use nonnegative spatial weights with
maximum weight of the center voxel in order to ensure
spatial low-pass filter properties of cCCA. This has the
additional benefit of constraining CCA to eliminate spurious
correlations occurring in conventional CCA where spatial
filters can have positive and negative coefficients.

To our knowledge, the smoothing artifact in cCCA has
never been studied. Recently, we provided a mathematical
framework for cCCA and computed ROC properties of
cCCA with different linear constraints and a nonlinear
constraint for activation patterns of motor data and episodic
memory data [7, 8]. In this paper we expand our previous
research and investigate in detail the smoothing artifact
that is associated with each spatial constraint in cCCA.
Furthermore, we provide a novel approach of how to correct
the measure of activation for the smoothing artifact. Results
for motor activation data and episodic memory activation
data are presented. Parts of this paper have been published in
abstract form (one page) at a recent conference [9].

2. Theory

2.1. Constrained CCA (cCCA). In the following we briefly
review CCA and cCCA, and explicitly consider the con-
straints introduced recently [8]. Mathematically, CCA is a
generalization of the General Linear Model (GLM) by allow-
ing the incorporation of spatial basis functions according to

(
α1 f1(ξ) + · · · + αs fs(ξ)

)⊗ Y(ξ, t)

= β1x1(t) + · · · + βrxr(t) + ε(t),
(1)

where the data are given by Y(ξ, t), ξ is the vector represent-
ing the spatial coordinates x, y, and z, and t is time. The func-
tions fi(ξ), i = 1, . . . , s represent the spatial basis functions
modeling the activation pattern in a neighborhood. The
functions xj(t), j = 1, . . . , r are the temporal basis functions
modeling the signal observed (which is the result of a
convolution of the hemodynamic response function and the

stimulus function). The coefficients αi and βj are the spatial
and temporal weights, respectively, that are being determined
and optimized by the data for each individual neighborhood
using an optimization routine. The symbol ⊗ denotes spatial
convolution and ε(t) is a Gaussian-distributed random error
term. If the number of spatial basis functions is reduced to a
single function, (1) becomes

f1(ξ)⊗ Y(ξ, t) = β1x1(t) + · · · + βrxr(t) + ε(t). (2)

When f1(ξ) is a simple Gaussian function, we obtain the
conventional GLM used frequently in fMRI.

Equation (1) can be represented conveniently in matrix
form. In the following we assume that the functions
fi(ξ), i = 1, . . . , s are spatial Dirac delta functions defining
a local neighborhood within a 3 × 3 pixel neighborhood
(s ≤ 9). Let Y be the matrix representing s voxel time courses
with dimension t × s and X the conventional design matrix
of size t × r for the r temporal regressors. Furthermore, let
α and β be two unknown vectors of size s × 1 and r × 1,
respectively. In CCA, we look for the linear combinations
of voxel time courses Yα and temporal regressors Xβ such
that the correlation between both quantities is maximum.
This leads to an eigenvalue problem with min(s, r) solutions
from which the solution with the largest eigenvalue (i.e.,
maximum canonical correlation) is being chosen. Without
constraints on the αi, the specificity of the activation pattern
obtained by CCA is low and could result in artifacts (see e.g.,
[8]). To put constraints on the spatial weights α in order
to restrict the space of unreasonable solutions for fMRI, we
consider the following four scenarios for the components αi
of α, where α1 is the weight for the center voxel and the other
αi’s represent the weights for the s neighborhood voxels.

Constraint 1 (Simple Constraint). One has

α1 > 0, αi ≥ 0 ∀i ≥ 2. (3)

Constraint 2 (Sum Constraint). One has

α1 ≥
s∑

i=2

αi > 0, αi ≥ 0 ∀i ≥ 2. (4)

Constraint 3 (Average Constraint). One has

α1 ≥ 1
s− 1

s∑

i=2

αi > 0, αi ≥ 0 ∀i ≥ 2. (5)

Constraint 4 (Maximum Constraint). One has

α1 ≥ max(αi) > 0, αi ≥ 0 ∀i ≥ 2. (6)

Note that the neighborhood size s is not a fixed quantity, but
is determined from the data by cCCA and can differ for each
center voxel.
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2.2. Smoothing Artifact. The smoothing artifact in CCA is
defined as the probability of incorrectly declaring the center
voxel of a configuration of size s (s ≤ 9 for a 3 × 3
neighborhood) to be active. In the following, we outline
how to compute the posterior probability to detect the
smoothing artifact in real data using a Bayesian framework.
The posterior probability, P, that a center voxel is not active
when it was in fact declared active, is given by

P = p(center voxel is not active | ω > ω0, cnr,M, CNR, s),
(7)

where ω > ω0 indicates that the center voxel was declared
active (statistic ω > threshold ω0 with ω ∈ [0,∞)),
cnr is the univariate contrast-to-noise ratio of the center
voxel, M labels the method of data analysis, CNR is the
contrast-to-noise ratio of the entire configuration defining
the neighborhood within a 3× 3 pixel region, and s is the size
of the configuration (i.e., number of declared active voxels
≤9 within the neighborhood). For abbreviation, we define
the set of parameters, θ, to be

θ = {cnr,M, CNR, s}. (8)

Then, according to Bayes’ theorem for conditional probabil-
ities, (7) can be written as

P = p(ω > ω0 | center voxel is not active, θ)

× p(center voxel is not active | θ)
(
p(ω > ω0 | θ)

)−1,
(9)

which is of the form

P = P1P3

P2
, (10)

where

P1 = p(ω > ω0 | center voxel is not active, θ), (11)

P2 = p(ω > ω0 | θ), (12)

P3 = p(center voxel is not active | θ). (13)

The term P1 is called the bleeding artifact because it
represents the probability that an inactive voxel is declared
as active. We determine P1 as a function of the size, s, of the
configuration only and not as a function of the geometrical
shape of the configuration. Note that the dependence on s
is an approximation, because in reality there are 28 = 256
possible configurations that can contain 0 to 8 active
voxels (corresponding to s ∈ {1, . . . , 9} since s labels the
neighborhood size within a 3 × 3 pixel grid, which always
includes the center voxel, independent if the center voxel is
active or not). Each configuration of size s has, depending
on its distance of all voxel members to the center voxel, a
slightly different value for P1. For example, configurations
with s = 7 leads to 3 different classes based on a distance
measure, that is, class 1 = {center voxel, 4 corner voxels, and
2 midedge voxels}, class 2 = {center voxel, 3 corner voxels,

and 3 midedge voxels}, class 3 = {center voxel, 2 corner
voxels, and 4 midedge voxels}.

According to our simulations, P1 is strongly dependent
on s but not on a particular configuration of s. Only a
weak dependence based on different class memberships exist,
which we neglect for the purpose of this research. To estimate
P1, it is thus reasonable to group all configurations for a
particular s together and compute an average value of P1 over
all possible configurations with size s.

2.2.1. Estimation of P1 (See (11)). The term P1 can be
estimated from simulations using a mixture of resampled
resting-state data and activation data at given θ using kernel
density estimation [10]. Resampled resting-state data are
considered null data with respect to any task fMRI function
since the temporal structure is destroyed by resampling using
the wavelet transform. This resampling, however, does not
destroy the autocorrelations inherent in resting-state data.
Furthermore, the resampling does not affect the spatial
correlations within the data because the permutations of
the wavelet coefficients are kept the same for each voxel
time series in a particular simulation; however, different
simulations use different permutations [11, 12].

The simulated data are superpositions of time series from
a 3 × 3 pixel neighborhood of null data and activation data.
Since the entire neighborhoods are used from resting-state
data, realistic spatial correlations of the simulated data are
obtained. In particular, for a configuration of s active voxels
in the 3× 3 neighborhood, the simulated voxel time courses,
yi(t), are obtained by

yi(t) =
⎧
⎨

⎩
y(0)
i (t), for i = 1,

βx(t) + y(0)
i (t), for i ∈ {2, . . . , s}, (14)

where i = 1 refers to the center voxel and all other i
to the surrounding voxels of the configuration of size s

within the 3 × 3 neighborhood. All y(0)
i (t) correspond to

resampled resting-state time courses and represent spatially
and temporally correlated null (noise) data. Note that the
center voxel is always inactive by design to compute P1. Thus,
P1 is a strong function of CNR of the configuration but
not of the value cnr (which is the contrast-to-noise ratio
of the inactive center voxel), and the dependence of P1 on
cnr can be neglected. The activation is determined by the
hemodynamic response function, x(t), of interest multiplied
by factor β so that the configuration has a given CNR. In
order to compute the CNR we use the general definition

CNR =
(∑

λi∑
σi

)1/2

, (15)

where λi and σi are the eigenvalues of the covariance matrix
of the activation signal and noise, respectively [13]. Note that
(15) can be used for a single voxel time series or an entire
neighborhood of arbitrary size. To determine the activation
signal and noise of a configuration using cCCA, we convert
the cCCA problem into a multivariate multiple regression
problem of the form

Yα = XBα + Eα, (16)
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where Y are the data (size t × s), α is the optimum spatial
weight vector (size s× 1), X is the design matrix (size t × r),
B is the matrix of regression weights (size r × s), and E
is a residual error matrix (size t × s). For a given contrast
vector c, we reparameterize the design matrix X and obtain a
transformed design matrix X̃ such that

X̃ = [Xeff X⊥], (17)

where

Xeff = X(X′X)−1c
(

c′(X′X)−1c
)−1

(18)

is the first regressor of the new design matrix X̃ that is asso-
ciated with a parameter estimate equivalent to the original
contrast c′Bα [8, 14]. The matrix X⊥ is perpendicular to Xeff

and plays no role in the estimation of c′β. Then, the signal
S(t) is obtained by

S = XeffB, (19)

and the noise N(t) is obtained by

N = (Y−XeffB)α. (20)

2.2.2. Estimation of P2 (See (12)). This term can be estimated
directly from the real data. In this case, for each M and s > 1,
P2 is a 2D function of cnr and CNR, but depends strongly
only on CNR so that the dependence on cnr can be neglected.
Note that for s = 1, cnr = CNR, and in this case P2 is a
1D function of cnr only. It is possible to determine first the
joint probability density p(ω, CNR | s,M) using 2D kernel
density estimation with a 2D Gaussian kernel, which then
can be integrated numerically to obtain P2 according to

P2(ω0, CNR, s,M) =
∫∞
ω0

p(ω, CNR | s,M)dω
∫∞

0 p(ω, CNR | s,M)dω
. (21)

Note that P2(ω0, CNR, s,M) for fixed {ω0, s,M} has a
sigmoidal shape approaching the value 1 for CNR > 0.6.
Thus, voxels that are declared active at a family-wise error
rate (FWE) <0.05 have necessarily a large CNR for which
P2(ω0, CNR, s,M) → 1 (see Section 4).

2.2.3. Estimation of P3 (See (13)). The term P3 is less difficult
to determine because it is independent of the value of the
statistic ω and depends strongly on the univariate cnr of the
center voxel (configuration with size s = 1, and M = 1), that
is,

P3 = p(center voxel is not active | θ)

≈ p(center voxel is not active | cnr, s = 1,M = 1)

= p(center voxel is not active, cnr | s = 1,M = 1)
p(cnr | s = 1,M = 1)

,

(22)

where M = 1 labels the univariate single voxel analysis
method without smoothing. Then, P3 is only a function of

cnr and can be estimated from linear mixture modeling
of the real data assuming that the data consists only of
active and inactive voxels with unknown fractions. With this
assumption, we define the cnr distribution of the data as
h(cnr), consisting of the mixtures f (cnr) and Gμ,σ(cnr) using

h(x) = a
1
d
f
(

cnr
d

)
+ (1− a)Gμ,σ(cnr). (23)

The distribution f (cnr) is estimated from resampled resting-
state data and the scaled distribution (1/d) f (cnr/d) reflects
the null distribution in activation data. The fact that f (cnr)
is scaled by constant d is rooted in the observation that
in activation data more neural activity exists and maybe
by spatial correlations or other hemodynamic means the
distribution of the signal corresponding to inactive voxels is
shifted to slightly larger values of cnr. The second term on
the right in (23), Gμ,σ(cnr), represents the cnr distribution
of active voxels modeled by a Gaussian distribution with
mean μ and variance σ . All the parameters a,d,μ, and σ
are obtained from least squares fitting using activation data.
Then,

P3(cnr) = a(1/d) f (cnr/d)
h(cnr)

. (24)

2.2.4. Final Result of Estimation of P (See (9) and (10)).
Overall, the posterior probability that a center voxel is not
active is given by

P = p(center voxel is not active | ω > ω0, θ)

≈ p(ω > ω0 | center voxel is not active, θ)P3(cnr)
p(ω > ω0 | θ)

≈ P1(ω0, CNR,M, s)P3(cnr),

(25)

since p(ω > ω0 | θ) → 1 for voxels declared highly
active (i.e., FWE <0.05). In the following, we call the
function P1(ω0, CNR,M, s) the smoothing artifact function.
To correct for the smoothing artifact we propose the rule:

Voxel is assigned to be inactive if P > 0.5 (26)

and assign zero to the measure of activation if this statement
is true. If this statement is not true, the measure of activation
is unchanged.

3. Materials and Methods

FMRI was performed for 6 normal subjects with IRB
approval (according to institutional requirements) in a
3.0T GE HDx MRI scanner equipped with an 8-channel
head coil and parallel imaging acquisition using EPI with
imaging parameters: ASSET = 2, ramp sampling, TR/TE =
2 sec/30 ms, FA = 70 deg, FOV = 22 cm × 22 cm, thick-
ness/gap = 4 mm/1 mm, 25 slices, and resolution 96 × 96.
Three fMRI data sets were obtained for each subject. In the
following we briefly describe the paradigms and refer the
reader for more detail to our previous article [7].
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Figure 1: Smoothing artifact of the center voxel for different analysis methods as a function of the configuration size and CNR for simulated
motor activation data. Note that the figure is composed of 9 separate images belonging to configuration sizes 1 to 9, and each image for a
particular configuration size is a function of the CNR ranging from 0 to 1 in steps of 0.1 in the horizontal direction. The center voxel for
each configuration is by design nonactive and the other members (neighboring voxels belonging to the particular configuration) are active
with given CNR. In general the smoothing artifact increases with increasing CNR except for single-voxel analysis, where no artifact exists
(as expected). Regarding the computation of the false positive fraction, the statistical thresholds were chosen corresponding to a family-wise
error rate (FWE) < 0.05 for re-sampled restingstate data.

The first data set was collected during resting-state where
the subject tried to relax and refrain from executing any
overt task with eyes closed. The second data set was collected
while the subject was performing an episodic memory task
with oblique coronal slices collected perpendicular to the
long axis of the hippocampus. Specifically, this task consisted
of memorization of novel faces paired with occupations
and contained 6 periods of encoding, distraction, and
recognition tasks as well as short instructions where words
on the screen reminded subjects of the task ahead. The third
data set was obtained by performing an event-related motor
task involving bilateral finger tapping while the subject was
looking at a screen.

3.1. Data Analysis. All fMRI data were realigned using
Statistical Parametric Mapping (SPM5, http://www.fil.ion
.ucl.ac.uk/spm/) and maximum motion components were
found to be less than 0.6 mm in all directions. In a prepro-
cessing step, all voxel time series were corrected for different
slice timings and high-pass filtered by regression using a
discrete cosine basis with cut-off frequency 1/120 Hz [15].
No temporal low-pass filtering was carried out. All voxels
with intensity larger than 10% of the mean intensity were
used in the analysis. This threshold effectively eliminated all
nonbrain voxels leading to an average of about 4500 voxels
per slice. All activation maps were thresholded using a FWE
<0.05 determined by using nonparametric methods [7, 16]
with wavelet resampled resting-state data [11, 12].

3.2. Basis Functions for CCA. All voxel time courses and
temporal regressors were mean subtracted (over time) and
variance normalized. As local spatial basis functions we use
Dirac delta functions in each 3 × 3 in-slice neighborhood.

0.5
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20

10
0

−10 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

CNR

ω

Figure 2: Example of the calculated joint probability density
p(ω, CNR | s,M) for motor activation data for a neighborhood size
s = 5 and cCCA with the maximum constraint. The function was
determined using 2D kernel density estimation with a 2D Gaussian
kernel. The variables ω and CNR specify the statistic and the
contrast-to-noise ratio of the 5-voxel neighborhood, respectively.
The threshold to obtain FWE <0.05 is ω0 = 6.7.

For the temporal modeling, we specified design matrices
as in SPM5 containing all conditions of the paradigms. In
particular, for the memory paradigm we modeled instruction
(I), encoding (E), recognition (R), and control (C) by tem-
poral reference functions whereas for the motor paradigm,
fixation (F), and motor task (M) were modeled according to
the paradigm timings. All reference functions were convolved
as usual with the standard SPM5 two-gamma hemodynamic
response function. For the motor task we computed activa-
tion maps for the contrast M-F, and for the memory task
we used the contrast E-C. We used reparameterization of
the design matrix X (see (18)) to incorporate the contrast of
interest and optimized the spatial coefficients for each spatial
constraint using the methods proposed in our previous
publication [8].
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Figure 3: Estimation of P2(ω0, CNR, s,M) = ∫∞
ω0

p(ω, CNR |
s,M)dω/

∫∞
0 p(ω, CNR | s,M)dω from motor activation data using

numerical integration for all configurations of size s ∈ {1, . . . , 9}
for cCCA with the maximum constraint. The joint probability
density p(ω, CNR | s,M) in the integrands are determined with
2D kernel density estimation using a 2D Gaussian kernel (for an
example see Figure 2). Note that for CNR > 0.6, P2 approaches the
value 1 rapidly for all s /= 1. This relationship is also true for data
obtained from the memory experiment. Note that configurations
with s = 1 have no significance in contributing to the smoothing
artifact because the smoothing artifact is by definition equal to zero
for s = 1.
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Figure 4: Density estimation of active and inactive voxels in motor
activation data. The top curve (dark blue) shows the distribution
of the cnr using kernel density estimation techniques. The green
and red curves are the estimated distributions of the cnr for the
inactive and active voxels, respectively. Note that the distribution
of the inactive voxels (green curve) was derived from wavelet
resampled resting-state data using a dilation variable, whereas the
distribution of the active voxels (red curve) was derived from a
Gaussian distribution. The mixture of the estimated distributions
for null and active voxels is given by the light blue curve showing
very small differences to the raw curve (dark blue).
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Figure 5: Density estimation of active and inactive voxels in
memory activation data. The top curve (dark blue) shows the
distribution of the cnr using kernel density estimation techniques.
The green and red curves are the estimated distributions of the
cnr for the inactive and active voxels, respectively. Note that
the distribution of the inactive voxels (green curve) was derived
from wavelet resampled resting-state data using a dilation variable,
whereas the distribution of the active voxels (red curve) was
derived from a Gaussian distribution. The mixture of the estimated
distributions for null and active voxels is given by the light blue
curve showing very small differences to the raw curve (dark blue).

4. Results and Discussion

4.1. The Smoothing Artifact Function. Using simulated data,
the smoothing artifact function P1 (see (11)) was determined
for the motor paradigm with contrast M-F and memory
paradigm with contrast E-C, respectively. Simulations were
carried out for all methods M (single voxel analysis, single
voxel analysis with Gaussian spatial smoothing, uncon-
strained CCA, CCA with the simple constraint, CCA with
the sum constraint, CCA with the average constraint, and
CCA with the maximum constraint), CNR in the range [0, 1]
in steps of 0.1, and configuration sizes 1 to 9. All possible
256 configurations in a 3 × 3 neighborhood with inactive
center voxel were simulated 1000 times and then regrouped
according to the sizes s = {1, . . . , 9}. Figure 1 shows the
smoothing artifact function for the motor paradigm for a
typical subject. An almost identical figure was obtained for
the memory paradigm. The threshold ω0 corresponds to
FWE = 0.05. Please note that this figure is a composition
of nine different images where each image belongs to a
configuration of a particular size (1 to 9) and each abscissa is
the CNR ranging from 0 to 1 in steps of 0.1. The vertical axis
labels the different analysis methods applied and the color
determines the value of P1, ranging from 0 to 1. Bluish color
indicates that the smoothing artifact is negligible whereas
red color indicates that the smoothing artifact is significant.
It is obvious that single-voxel analysis without Gaussian
smoothing does not show any smoothing artifact and single-
voxel analysis with spatial smoothing leads to a significant
smoothing artifact, the larger the CNR and the larger
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Figure 6: Motor activation maps for contrast “motor” minus “fixation” using different data analysis methods (single voxel with Gaussian
smoothing (GS), CCA with the sum constraint (cCCA sum), CCA with the average constraint (cCCA avg), CCA with the maximum
constraint (cCCA max)). In (a), original activations maps are shown at FWE <0.05. In (b), activation maps corrected for the smoothing
artifact are shown. Corrections are done for P > 0.5. In (c), voxels affected by the smoothing artifact are shown. The color scale on the right
refers to the magnitude of the smoothing artifact in (c). In (d) we show for comparison the activation map for single voxel analysis without
Gaussian smoothing.

the neighborhood is. It is also obvious that unconstrained
CCA has the largest smoothing artifact and this artifact is
already large for configuration sizes of s = 2 and CNR = 0.2.
However, choosing the simple nonnegativity constraint for
cCCA almost completely eliminates the smoothing artifact
(P1 < 0.35). Similarly, cCCA with the sum constraint has a
smoothing artifact that is even lower (P1 < 0.3) and should
be considered the method of choice if a high specificity is
desirable. The cCCA methods with the more complicated
constraints (avg constraint and max constraint) show a
significant smoothing artifact for configuration sizes of s ≥
3, as long as the CNR is large (CNR > 0.6). These two
cCCA methods have very high sensitivity but can lead to false
activations when the configuration size is large.

4.2. Density Estimation of P2 (See (21)). The function
P2(ω0, CNR, s,M) = ∫∞ω0

p(ω, CNR | s,M)dω/
∫∞

0 p(ω, CNR |
s,M)dω was calculated in MATLAB (http://www.math-
works.com/) by 2D kernel density estimation of p(ω, CNR |
s,M) using an optimum bandwidth estimator according to
Sheather and Jones [17]. In general, p(ω, CNR | s,M)
has a bimodal distribution for configuration sizes s ∈
{2, 3, 4, 5, 6, 7}. For lower s, the larger mode of the density
occurs at lower values of {ω, CNR}, whereas for larger
values of s, the larger mode occurs at higher values of
{ω, CNR}. For s ∈ {8, 9}, the density becomes unimodal
with mode located at large values of {ω, CNR}. Also note,
that ω is strongly correlated with CNR, which is expected.
An example of p(ω, CNR | s,M) is given in Figure 2 for
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Figure 7: Memory activation maps for contrast “encoding” minus “control” using different data analysis methods (single voxel with Gaussian
smoothing (GS), CCA with the sum constraint (cCCA sum), CCA with the average constraint (cCCA avg), and CCA with the maximum
constraint (cCCA max)). In (a), original activations maps are shown at FWE <0.05. In (b), activation maps corrected for the smoothing
artifact are shown. Corrections are done for P > 0.5. In (c), voxels affected by the smoothing artifact are shown. The color scale on the right
refers to the magnitude of the smoothing artifact in (c). In (d) we show for comparison the activation map for single-voxel analysis without
Gaussian smoothing.

s = 5 and cCCA with the maximum constraint. The shape
of P2(ω0, CNR, s,M) obtained by numerical integration of∫∞
ω0

p(ω, CNR | s,M)dω/
∫∞

0 p(ω, CNR | s,M)dω and density
smoothing is shown in Figure 3 for all s and 0 ≤ CNR ≤
1. Note the S-shaped form obtained for P2(ω0, CNR, s,M)
for all integrations of bimodal distributions involving
p(ω, CNR | s,M), whereas for s = 1 the function P2 is
zero for CNR ≤ 1 and for s ∈ {8, 9} P2 has the value 1
for 0 < CNR ≤ 1. The function P2 for size s = 1 plays no
role in determining the posterior probability P because the
smoothing artifact is zero by definition, since a single-voxel-
neighborhood cannot have any bleeding of signal strength.

4.3. Density Estimation of the Null cnr Distribution in
Activation Data. In Figure 4 we computed the null cnr
density function (1/d) f (cnr/d) using real motor activation
data of a typical subject and obtained a dilation parameter

d = 1.26, indicating that the null distribution of the cnr
obtained from resampled resting-state data is slightly inflated
in activation data. The overall fit of the density functions
(1/d) f (cnr/d) and Gμ,σ(cnr) is good leading to a small
residual mean squared error = 0.014 ± 0.114 (compare the
light blue curve and the dark blue curve in Figure 4). A very
similar curve was obtained for the memory paradigm using
data from a different subject. Here the dilation parameter was
found to be d = 1.27 and mean squared error = 0.011±0.105
(Figure 5). Overall, the density fits obtained were similar.

4.4. Correcting the Smoothing Artifact in Motor and Memory
Data. In Figures 6 and 7 we show examples of the severity
of the smoothing artifact for activation data thresholded at
the P < 0.05 level, corrected for multiple comparison (i.e.,
FWE<0.05). The number of voxels affected by the smoothing
artifact can be considerable for single voxel with Gaussian
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Single voxel Single voxel + GS cCCA max 

Figure 8: Magnified motor activation maps from Figure 6 for selected analysis methods (single voxel without Gaussian smoothing, single
voxel with Gaussian smoothing (GS), and CCA with the maximum constraint (cCCA max)). The top row shows the original images at FWE
<0.05 without any correction for the smoothing artifact. The bottom row shows the original images corrected for the smoothing artifact.
The green arrows point to major differences of the activation patterns. Note that correction for the smoothing artifact leads to a splitting of
activation pattern in the left (radiological convention) motor cortex (see bottom row images with green arrows pointing to the ROI).

 

Single voxel Single voxel + GS cCCA max 

Figure 9: Magnified memory activation maps from Figure 7 for selected analysis methods (single voxel without Gaussian smoothing, single
voxel with Gaussian smoothing (GS), and CCA with the maximum constraint (cCCA max)). The top row shows the original images at FWE
<0.05 without any correction for the smoothing artifact. The bottom row shows the original images corrected for the smoothing artifact.
The blue arrows point to major differences of the activation patterns. Note that hippocampal activation after correction for the smoothing
artifact appears to have three separate foci in the right temporal lobe (radiological convention) as shown in the bottom image on the right
(blue arrow).

smoothing and cCCA with the average constraint as well
as cCCA with the max constraint, as seen in motor data
(Figure 6). For cCCA with the sum constraint, however, there
is no correction for the smoothing artifact necessary because
the sum constraint produces a sufficiently dominant weight
for the center voxel so that inactive voxels cannot obtain
a dominant weight in the neighborhood of active voxels.
We did not find any voxel with a smoothing artifact >0.1
confirming that cCCA with the sum constraint has largest
specificity of the proposed cCCA methods. The activation
patterns that are corrected for the smoothing artifact show
small changes compared to the uncorrected ones, however,
these changes can provide important information of the
activation profile. For example, in Figures 8 and 9 we show
a magnified region of the left motor cortex and the right
hippocampus, respectively, for selected analysis methods
(single voxel with and without Gaussian smoothing, cCCA
with the maximum constraint). Here we see that correction
for the smoothing artifact leads to a separation of the right
motor cortex (see green arrows in Figure 8). This result

is consistent with the activation pattern from single voxel
analysis without Gaussian smoothing. We believe that for
the motor activation data, single-voxel analysis is already
accurate due to the high cnr of the BOLD response for
motor activation. Regarding the hippocampal activation, we
see that the correction for the smoothing artifact leads to a
clear separation of hippocampal activation into three focal
regions (see blue arrow in Figure 9). It is conceivable that the
corrected activation maps are more accurate representations
of true hippocampal activations in this high-resolution study
because it is known that the hippocampus is composed
of the CA fields (CA1, CA2, CA3, and CA4), the dentate
gyrus and subiculum, and each of these subregions has a
specific function in memory. The obtained corrections of
the activation pattern are more probable than a continuous
elongated activation pattern obtained with cCCA without
correction for the smoothing artifact.

We chose to correct the smoothing artifact when P > 0.5.
This condition is still a conservative correction for activation
maps. To obtain better specificity but at a cost of losing
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Figure 10: Number of voxels affected by the smoothing artifact
for two different constrained CCA methods (CCA with the average
constraint (cCCA avg) and CCA with the maximum constraint
(cCCA max)) as a function of the neighborhood size of the
configuration. (a) is for motor data, (b) for memory data (obtained
from Figures 6 and 7, resp.). Note that CCA with the max constraint
leads to configurations of larger neighborhoods that need to be
corrected for the smoothing artifact compared to CCA with the
average constraint. The result for CCA with the sum constraint
is not shown because the smoothing artifact associated with this
constraint is negligible (compare Tables 1 and 2).

Table 1: Number of voxels affected by the smoothing artifact for
different data analysis methods as a function of P > threshold in
motor activation data for contrast “motor” minus “fixation”.

Threshold SV + GS cCCA sum cCCA avg cCCA max

0.5 34 0 9 27

0.4 38 0 14 40

0.3 40 0 24 51

0.2 42 0 48 104

0.1 43 0 98 174

sensitivity, it may be worthwhile to lower the threshold.
Tables 1 and 2 show the number of voxels affected by
the smoothing artifact for thresholds 0.1 to 0.5. Note that
lowering the threshold for P to 0.2 leads to a dramatic

Table 2: Number of voxels affected by the smoothing artifact for
different data analysis methods as a function of P > threshold in
memory activation data for contrast “encoding” minus “control”.

Threshold SV + GS cCCA sum cCCA avg cCCA max

0.5 5 0 26 20

0.4 5 0 32 20

0.3 6 0 37 24

0.2 7 0 45 33

0.1 10 0 55 44

increase in the number of voxels. Thus, P > 0.2 should be
avoided. The choice P > 0.3 is probably a good compromise
of achieving better specificity and still maintaining high
sensitivity for the examples shown here. However, the
decision to use a lower threshold than 0.5 will primarily
dependent on the particular application of the research. We
preferred P > 0.5 which lead to a relatively small number
of voxels that needed to be corrected. With this threshold
the sensitivity of the methods is still very large and mostly
voxel configurations of sizes 4 to 8 in motor data and 3 to
7 in memory data were affected by the smoothing artifact
(Figure 10). Note that cCCA with the max constraint leads
to larger configuration sizes (mean value s = 5.6) that
are affected by the smoothing artifact than cCCA with the
average constraint (mean value s = 4.3). This fact is expected
due to the increased freedom of the spatial constraints in
cCCA with the maximum constraint leading, on average,
to larger configuration sizes which are more probable to
induce a smoothing artifact than the other constrained cCCA
methods.

5. Conclusions

We summarize the ideas introduced in this study and results
obtained as follows.

(1) We investigated the smoothing artifact in CCA and
proposed a new technique to reduce this artifact in
fMRI data analysis.

(2) Using data from a motor activation paradigm and
an episodic memory paradigm, we showed exam-
ples of activation maps obtained with constrained
CCA methods, the corresponding magnitude of the
smoothing artifact, and activation maps corrected for
the smoothing artifact.

(3) For all data studied, we found no appreciable
smoothing artifact for cCCA with the sum constraint.

(4) The best overall performance was obtained by cCCA
with the maximum constraint corrected for the
smoothing artifact. We recommend this technique
for fMRI data analysis to obtain high sensitivity and
good specificity.
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Lundberg, “Restricted canonical correlation analysis in func-
tional MRI-validation and a novel thresholding technique,”
Journal of Magnetic Resonance Imaging, vol. 29, no. 1, pp. 146–
154, 2009.

[7] M. Jin, R. Nandy, T. Curran, and D. Cordes, “Extending local
canonical correlation analysis to handle general linear con-
trasts for fMRI data,” International Journal of Biomedical
Imaging, vol. 2012, Article ID 574971, 14 pages, 2012.

[8] D. Cordes, M. Jin, T. Curran, and R. Nandy, “Optimizing the
performance of local canonical correlation analysis in fmri
using spatial constraints,” Human Brain Mapping, vol. 33, no.
11, pp. 2611–2626, 2012.

[9] D. Cordes, M. Jin, T. Curran, and R. Nandy, “The bleeding
artifact of spatially constrained canonical correlation analysis
in functional MRI,” in Proceedings of the International Society
of Magnetic Resonance in Medicine (ISMRM ’11), p. 1613,
Montreal, Canada, 2011.

[10] B. W. Silvermann, Density Estimation for Statistics and Data
Analysis, Chapman and Hall, New York, NY, USA, 1986.

[11] M. Breakspear, M. J. Brammer, E. T. Bullmore, P. Das,
and L. M. Williams, “Spatiotemporal wavelet resampling for
functional neuroimaging data,” Human Brain Mapping, vol.
23, no. 1, pp. 1–25, 2004.

[12] E. Bullmore, C. Long, J. Suckling et al., “Colored noise and
computational inference in neurophysiological (fMRI) time
series analysis: re-sampling methods in time and wavelet
domains,” Human Brain Mapping, vol. 12, pp. 61–78, 2001.

[13] D. Cordes and R. Nandy, “Independent component analysis in
the presence of noise in fMRI,” Magnetic Resonance Imaging,
vol. 25, no. 9, pp. 1237–1248, 2007.

[14] S. Smith, M. Jenkinson, C. Beckmann, K. Miller, and M. Wool-
rich, “Meaningful design and contrast estimability in FMRI,”
NeuroImage, vol. 34, no. 1, pp. 127–136, 2007.

[15] R. S. J. Frackowiak, Ed., Human Brain Function, Elsevier
Science, San Diego, Calif, USA, 2nd edition, 2004.

[16] R. Nandy and D. Cordes, “A semi-parametric approach to
estimate the family-wise error rate in fMRI using resting-state
data,” NeuroImage, vol. 34, no. 4, pp. 1562–1576, 2007.

[17] S. J. Sheather and M. C. Jones, “A reliable data-based band-
width selection method for kernel density estimation,” Journal
of the Royal Statistical Society, Series B, vol. 53, no. 3, pp. 683–
690, 1991.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


