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Histone lysine crotonylation during acute kidney injury in mice

Olga Ruiz-Andres'-23, Maria Dolores Sanchez-Nifio"?3, Pablo Cannata-Ortiz*>, Marta Ruiz-Ortega’-236,
Jesus Egido'26, Alberto Ortiz'-23.6*% and Ana Belen Sanz"-23*%

ABSTRACT

Acute kidney injury (AKI) is a potentially lethal condition for which no
therapy is available beyond replacement of renal function. Post-
translational histone modifications modulate gene expression and
kidney injury. Histone crotonylation is a recently described post-
translational modification. We hypothesized that histone crotonylation
might modulate kidney injury. Histone crotonylation was studied in
cultured murine proximal tubular cells and in kidneys from mice with AKI
induced by folic acid or cisplatin. Histone lysine crotonylation was
observed in tubular cells from healthy murine and human kidney tissue.
Kidney tissue histone crotonylation increased during AKI. This was
reproduced by exposure to the protein TWEAK in cultured tubular cells.
Specifically, ChIP-seq revealed enrichment of histone crotonylation at
the genes encoding the mitochondrial biogenesis regulator PGC-1a.
and the sirtuin-3 decrotonylase in both TWEAK-stimulated tubular
cells and in AKI kidney tissue. To assess the role of crotonylation in
kidney injury, crotonate was used to increase histone crotonylation in
cultured tubular cells or in the kidneys in vivo. Crotonate increased the
expression of PGC-1a and sirtuin-3, and decreased CCL2 expression
in cultured tubular cells and healthy kidneys. Systemic crotonate
administration protected from experimental AKI, preventing the
decrease in renal function and in kidney PGC-10. and sirtuin-3 levels
as well as the increase in CCL2 expression. For the first time, we have
identified factors such as cell stress and crotonate availability that
increase histone crotonylation in vivo. Overall, increasing histone
crotonylation might have a beneficial effect on AKI. This is the first
observation of the in vivo potential of the therapeutic manipulation of
histone crotonylation in a disease state.

KEY WORDS: Acute kidney injury, Epigenetics, Histone,
Inflammation, Tubular cell

INTRODUCTION

Post-translational modifications of proteins are involved in chronic
kidney disease and cardiovascular disease (Gajjala et al., 2015).
Indeed, mounting evidence suggests that histone post-translational
modifications, such as methylation, acetylation or phosphorylation,
play a key role in diverse biological processes, such as development,
cell differentiation, cell death and inflammation (Berdasco and
Esteller, 2010). Indeed, aberrant histone post-translational
modification contributes to disease (Berdasco and Esteller, 2010).
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Histone post-translational modifications regulate chromatin-
templated processes through two major mechanisms (Kouzarides,
2007): modulating chromatin packaging and regulating chromatin
structure and function by recruiting binding proteins specific to the
post-translational modification, which recognize modified histones.
Alternatively, histone post-translational modifications can also
inhibit the interaction of specific binders with chromatin. Recent
studies have identified lysine crotonylation (Kcr) as a novel
evolutionarily conserved histone post-translational modification
that is present in several somatic tissues from adult mice (Tan
et al,, 2011). As recently described, histone crotonylation is
mechanistically and functionally different from histone lysine
acetylation (Tan et al., 2011; Sabari et al., 2015). Histone
crotonylation was observed in kidney tissue, suggesting that it
might play a role in epigenetic regulation of gene expression during
kidney injury (Tan et al., 2011).

There is as yet very little knowledge about the regulation and
function of histone crotonylation during tissue injury. Crotonate is a
short-chain unsaturated carboxylic acid (CH3;CH=CHCO,H)
that increases histone crotonylation in cultured non-renal cells
(Tan et al., 2011; Sabari et al., 2015), but its effect in vivo has
not been addressed (Tan et al., 2011). Sirtuin-3 (SIRT3) is a
histone deacetylase, also recently identified as a decrotonylase
(Tan et al., 2011). SIRT3 is a member of the sirtuin family of
NAD(+)-dependent deacetylases (Huang et al., 2010; Scher et al.,
2007) that associates with chromatin to repress nearby genes
(Shechteret al., 2007; Iwahara et al., 2012). SIRT3 is present both in
mitochondria and nuclei (Scher et al., 2007; Nakamura et al., 2008;
Sundaresan et al., 2008), and is expressed in kidneys and
metabolically active tissues. Under physiological and stress
conditions, SIRT3 and peroxisome-proliferator-activated receptor
gamma coactivator-lo. (PGC-1co) regulate the expression of each
other (Shi et al., 2005; Palacios et al., 2009; Than et al., 2011; Giralt
etal., 2011). PGC-1a regulates gluconeogenesis and mitochondrial
biogenesis and respiration. SIRT3 is a mediator of PGC-1o. effects
on mitochondrial biogenesis (Kong et al., 2010). PGC-loa is
downregulated during acute kidney injury (AKI) (Ruiz-Andres
etal.,2015; Tran etal., 2011), a condition characterized by a sudden,
potentially prolonged, reduction of the renal glomerular filtration
rate causing azotemia. AKI is associated with high morbidity and
mortality rates and there is no therapy to treat established AKI
beyond replacement of kidney function (Berger and Moeller, 2014).
Proximal tubules are rich in mitochondria and are key sites of injury
during AKI. An improved understanding of pathogenic pathways
involved in AKI might provide clues to design novel therapeutic
approaches. Inflammation and cell death are key contributors to AKI
(Linkermann et al., 2014; Garcia-Cenador et al., 2013). In this
regard, the protein tumor necrosis factor (TNF)-like weak inducer of
apoptosis (TWEAK) has recently been shown to be a key contributor
to AKI and kidney injury in general (Ortiz et al., 2011; Sanz et al.,
2011). TWEAK is a cytokine of the TNF superfamily that activates
the Fn14 receptor, and has multiple actions on kidney cells. Thus,
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TWEAK promotes kidney inflammation by increasing chemokine
secretion by renal cells and decreasing the expression of
nephroprotective factors such as klotho, promotes tubular cell
proliferation in a permissive environment, and induces mesangial
and tubular cell apoptosis under proinflammatory conditions (Sanz
etal., 2011). TWEAK decreases PGC-1a and target gene expression
in tubular cells through nuclear factor kB (NFxB) activation and
histone deacetylation (Ruiz-Andres et al., 2015). Given that the
actions of TWEAK are mediated through the recruitment of signaling
mechanisms that include NFkB activation and histone acetylation,
we hypothesized that TWEAK might also modulate histone lysine
crotonylation. Furthermore, because epigenetic changes are also
observed in AKI, and histone deacetylase (HDAC) inhibitors might
protect from kidney injury (Van Beneden et al., 2011, 2013), we
further hypothesized that histone lysine crotonylation might be a
contributor to and a therapeutic target in AKL.

We have now explored histone crotonylation regulation and
function in cultured kidney tubular epithelial cells and during
kidney injury in vivo. Specifically, we have observed that histone
lysine crotonylation is increased during AKI and by inflammatory
cytokines such as TWEAK in tubular cells. Crotonate increased
histone lysine crotonylation and PGC-la expression in cultured
tubular cells and in the kidney in vivo, and protected from AKI.

RESULTS

Histone crotonylation is increased in kidney tubular cells
during acute kidney injury

The histone crotonylation pattern during renal injury was explored
in detail in an established mouse model of AKI induced by a folic
acid overdose, and the results were confirmed in experimental
cisplatin-induced AKI. In folic-acid-induced AKI, as in other
experimental models and human AKI, loss of renal function, tubular
cell injury and interstitial inflammation were observed (Sanz et al.,
2008a).

Consistent with prior reports (Tan et al., 2011), histone
crotonylation was observed in healthy murine kidney tissue when
assessed by western blotting (Fig. 1A) or immunohistochemistry
(Fig. 1B). Western blotting identified histones as crotonylated
proteins, whereas immunohistochemistry localized lysine
crotonylation mainly to tubular cell nuclei (Fig. 1B). Western
blotting showed that there was an increase in the overall histone
crotonylation in the folic-acid-induced AKI kidney tissue (Fig. 1A).
Similar results were observed in cisplatin-induced AKI at 72 h
(Fig. S1). The rest of the detailed studies discussed in the
manuscript were obtained in the folic acid model. We also
explored the histone H3 crotonylation (H3k9cr) pattern during
renal injury. Consistent with the finding of overall histone
crotonylation, western blotting showed that there was an increase
in kidney histone H3 crotonylation in folic-acid-induced AKI tissue
(Fig. S2A). Immunohistochemistry identified tubular cells as sites
of lysine crotonylation during AKI (Fig. 1B). Nuclear localization
of lysine crotonylation consistent with histone crotonylation was
also observed in cultured murine proximal tubular cells by
immunofluorescence (Fig. 1C). As was the case in vivo, there
were different degrees of lysine crotonylation in individual cultured
tubular cells, suggesting that this is a regulated and dynamic
process. Cell separation into nuclei and cytosol showed that there
was a faint crotonylated protein band in nuclei that corresponded to
the size of histones (Fig. 1D). Thus, histones appear to be the most
abundant crotonylated proteins in kidney tubular cells.
Immunohistochemistry also identified nuclear lysine crotonylation
in diseased human kidney tubular cells (Fig. 1E).
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TWEAK increases histone crotonylation in cultured kidney
tubular cells

Next, we explored the hypothesis that inflammatory mediators of
AKI could modulate histone crotonylation. TWEAK is a key
mediator of AKI that promotes inflammatory responses in cultured
tubular cells but has no direct cytotoxicity if used in the absence of
other inflammatory mediators (Sanz et al., 2010b; Izquierdo et al.,
2012). Hence, we studied the effect of TWEAK on histone
crotonylation in kidney cells. TWEAK increased histone
crotonylation at 6 and 24 h in cultured tubular cells (Fig. 2).
These results suggest that inflammatory cytokines can regulate the
histone crotonylation status in kidney cells.

At this point, we also explored the hypothesis that direct
cytotoxicity might promote histone crotonylation. As is the case for
folic-acid-induced AKI, ischemia-reperfusion-induced AKI and
other forms of AKI, cisplatin promotes an inflammatory response
that amplifies kidney injury in vivo (Zhang et al., 2008; Baek et al.,
2015). However, in contrast to TWEAK, cisplatin has a direct toxic
effect on cultured tubular cells. In this regard, cisplatin at
concentrations that induced direct toxicity in cultured tubular
cells, did not modify histone crotonylation (Fig. S3). These results
indicate that cytotoxicity and histone crotonylation can be
dissociated in cultured tubular cells and argue for the involvement
of additional factors in vivo.

Crotonate increases histone crotonylation and elicits
biological responses in cultured tubular cells

Next, we searched for potential target genes of histone crotonylation
whose expression is differentially regulated in AKI. PGC-la is a
regulator of mitochondrial biogenesis that is decreased in AKI,
whereas SIRT3 is a decrotonylase, and both regulate the expression of
each other. Therefore, as a representative downregulated gene we
chose PGC-1a, because it regulates SIRT3 expression (Giralt et al.,
2011; Kong et al., 2010; Bell and Guarente, 2011). Moreover,
TWEAK decreases PGC-1a. expression by epigenetic mechanisms
involving histone acetylation (Ruiz-Andres et al., 2015). ChIP-seq
analysis using the pan anti-crotonyl-lysine antibody showed that
PGC-1a and SIRT3 were more enriched in crotonylated histones
in tubular cells treated with TWEAK and in kidneys with AKI
(Fig. 3F,G). To study the effect of crotonylation on PGC-1o and
SIRT3 expression, cells were pretreated with crotonate because
exogenous crotonate increased histone crotonylation in cultured
tubular cells (Fig. 3A). This is consistent with findings in non-renal
cells (Tanetal., 2011; Sabari etal., 2015). Crotonate increased tubular
cell PGC-1o.mRNA and protein levels (Fig. 3B,C). As representative
upregulated gene, we chose CCL2 because it encodes the MCP-1
chemokine, a promoter of kidney injury (Sanzetal.,2010a). Crotonate
decreased tubular cell CCL2 mRNA in cultured cells (Fig. 3D). Taken
together, these results suggest that histone crotonylation could play an
overall protective role in kidney injury by promoting upregulation of
some protective genes and downregulation of genes involved in tissue
injury. Crotonate also increased SIRT3 mRNA levels in cultured
tubular cells in a time-dependent manner (Fig. 3E), suggesting the
activation of a negative-feedback loop.

Crotonate did not promote tubular cell death nor proliferation as
assessed by the presence of hypodiploid cells or by analyzing the
proportion of cells in the S/M phases by flow cytometry (Fig. S4),
nor did it increase cell detachment as observed by phase-contrast
microscopy (data not shown). Mannitol, an osmolarity control, did
not modify histone crotonylation at concentrations equimolar to the
crotonate concentrations used, arguing against a role of osmolarity
in modulating histone crotonylation (Fig. S5).
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Fig. 1. Histone crotonylation in kidney tubular cells. (A) Western blot of murine healthy control kidneys and animals subjected to acute kidney injury (AKI)
induced by a folic acid overdose. A quantification expressed as the percentage change of crotonylated histones (anti-Kcr) over control is shown to the

right (meants.e.m. of five animals per group). Histone-3 was used as a loading control. *P<0.05 vs control (nonparametric Mann—-Whitney U-test).

(B) Immunohistochemistry showing that histone crotonylation is mainly localized to tubular cell nuclei in murine kidneys. Representative staining of crotonylated
histones (brown) counterstained with hematoxylin (blue). Scale bars: 100 um (left-hand panels); 50 um (right-hand panels). (C) Nuclear localization of histone
crotonylation (green) was also observed in cultured murine proximal tubular cells. Nuclei were stained with DAPI (blue) and the actin cytoskeleton with fluorescent
phalloidin (red). Note several degrees of histone crotonylation is observed; some cells have a lower staining intensity (white arrows) than others (yellow arrows).
Scale bars: 5 ym. (D) Western blotting and Coomassie Blue stain of extracts from cultured tubular cells. There is a stronger Kcr signal in histones, corresponding to
the faint bands in nuclei and the low cytosol signal. (E) Immunohistochemistry showing that histone crotonylation is also localized to tubular cells in human

kidneys. Representative staining of histone crotonylation (brown) counterstained with hematoxylin (blue). Scale bars: 50 pm (20x panels); 50 ym (40x panels);
20 pym (100x% panels).
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Fig. 2. TWEAK increases histone crotonylation in kidney tubular cells.
Western blotting of histone crotonylation (anti-Kcr) in cultured murine proximal
tubular cells stimulated with 100 ng/ml TWEAK. Data from five independent
experiments is expressed as the meants.e.m. Results are expressed as
percentage change of crotonylated histones over control.*P<0.05 vs control
(Student’s t-test).

Crotonate increases histone crotonylation and modulates
regulated gene expression in mouse kidney

We explored whether crotonate modulates kidney histone
crotonylation in vivo. Systemic administration of crotonate
increased histone crotonylation in mouse kidney in a dose- and
time-dependent manner (Fig. 4A,B). The 6 mmol/kg body weight
crotonate dose did not significantly change kidney histone
crotonylation (Fig. S6A) or PGC-loa mRNA expression
(Fig. S6B) at 24 h. Thus, 12 mmol/kg body weight crotonate was
used for further experiments and was found to increase whole
kidney histone crotonylation (Fig. 4), PGC-loo mRNA levels
(Fig. 5A) and PGC-1a protein (Fig. 5B), and to decrease kidney
CCL2 mRNA levels (Fig. 5C). Thus, the potential nephroprotective
actions of crotonate observed in cultured tubular cells (increased
expression of the nephroprotective gene PGC-1a and decreased
inflammatory gene expression) was reproduced in vivo.

Given that the SIRT3 decrotonylase (Bao et al., 2014) and PGC-
lo. each regulate each other under physiological and stress
conditions (Shi et al., 2005; Palacios et al., 2009; Than et al.,
2011; Giralt et al., 2011), we studied the effect of exogenous
crotonate on kidney SIRT3 expression in vivo and found that
crotonate increased whole kidney SIRT3 mRNA (Fig. 5D) and
protein levels (Fig. SE). This is consistent with the effects observed
in cultured tubular cells and is again suggestive of activation of a
negative-feedback loop.

Crotonate protects from experimental AKI

We next explored whether crotonate was nephroprotective in vivo.
Mice were pretreated with 12 mmol/kg body weight crotonate, and
24 h later, AKI was induced by a folic acid overdose and mice were
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killed at 72 h, when renal failure peaks (Sanz et al., 2010b). First, we
observed that crotonate resulted in lower serum levels of BUN and
creatinine, markers of renal dysfunction severity, and in lower KIM-
1 mRNA levels, a marker of kidney injury (Fig. 6A). PAS-stained
kidney sections revealed a trend towards decreased tubular injury in
crotonate-treated mice (Fig. S7). AKI was associated with increased
CCL2 expression (Sanz et al., 2010b) and reduced whole kidney
SIRT3 expression (Fig. S8) within the time points studied. In this
line, systemic administration of crotonate prevented the decrease in
kidney PGC-1o.and SIRT3 levels in AKI (Fig. 6B,C,E,F) as well as
the increase in CCL2 mRNA expression (Fig. 6D). This suggests a
protective effect of crotonate, and thereby of histone crotonylation,
against inflammation and mitochondrial stress during AKI.

TWEAK downregulates SIRT3 and this is prevented by
crotonate

As recently described, increased histone crotonylation in response
to crotonate loading might depend on increased substrate (crotonyl-
CoA) availability (Sabari et al., 2015). However, the mechanism of
increased histone crotonylation following TWEAK stimulation
remained unclear. Thus, we explored whether TWEAK regulated
the expression of the SIRT3 decrotonylase and observed that
TWEAK downregulated SIRT3 at mRNA and protein levels in
cultured tubular cells (Fig. 7A,B) and in whole kidney in vivo
(Fig. 7C,D). TWEAK-induced SIRT3 downregulation was
prevented by crotonate in cultured tubular cells (Fig. 7E,F). These
data suggest that decreased SIRT3 expression might be one of the
factors contributing to increased kidney cell histone crotonylation in
response to TWEAK.

DISCUSSION

The main findings of this study are that the degree of histone
crotonylation in kidney tubular cells is modified by certain cell
stressors or crotonate. Furthermore, increasing histone crotonylation
was beneficial overall in AKI. This is the first observation of the
in vivo potential of the therapeutic manipulation of histone
crotonylation in a disease state.

Histones were the most abundant crotonylated proteins. The fact
that increased histone crotonylation was found under stress
conditions, be it AKI or exposure to a proinflammatory cytokine,
begs the question of what is the overall role of crotonylation in
kidney injury. As is the case with other histone post-translational
modifications, it is expected that, in response to the
microenvironment, expression of some genes will increase
whereas that of other genes will decrease depending on the
degree of histone crotonylation. Despite this expected
heterogeneity, therapeutic agents targeting other histone post-
translational modifications have been beneficial in diverse
pathological conditions, including kidney injury, even when
potentially impacting the expression of multiple genes with
diverse or even opposing functions. For example, HDAC
inhibitors such as trichostatin A are protective in experimental
models of kidney fibrosis (Van Beneden et al., 2013) and
selectively mitigate the stimulatory effect of lipopolysaccharide
on inflammatory cytokine expression (Munro et al., 2013). We
hypothesized that overall interference with histone crotonylation
might have a beneficial or deleterious effect in AKI. We have now
shown that increasing overall histone crotonylation by exposure to
crotonate has potentially beneficial effects on tubular cells in
culture and in vivo, including an increased expression of the
mitochondrial biogenesis regulator PGC-lo. and decreased
chemokine expression. Consistent with these findings, crotonate
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Fig. 3. Crotonate increases histone crotonylation and modifies gene expression in cultured proximal tubular epithelial cells. Cells were stimulated with 0,
50 or 100 mM crotonate for 24 h. (A) Quantification of histone crotonylation (anti-Kcr) and representative western blot. Meants.e.m. of three independent
experiments; *P<0.05 vs 0 mM crotonate (non-parametric Mann—Whitney U-test). (B,D) PGC-1a. and CCL2 mRNA levels. Data from eight independent
experiments expressed as mean#s.e.m. *P<0.05 vs control (Student’s t-test). (C) PGC-1a western blot of whole-cell extracts. Data from four

independent experiments is expressed as meanzts.e.m. *P<0.05 vs control (non-parametric Mann—-Whitney U-test). (E) SIRT3 mRNA levels in tubular cells
exposed to 50 mM crotonate. Data from four independent experiments expressed as meants.e.m. *P<0.05 vs control (non-parametric Mann—Whitney U-test).
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Fig. 4. Crotonate increases histone crotonylation in mouse kidney. Mice were treated with crotonate at different doses and for different times. Histone
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*P<0.05 vs control (non-parametric Mann-Whitney U-test).

protected from injury and loss of renal function in AKI. The genes
studied in the present manuscript were chosen as representative of
upregulated and downregulated genes shared by both AKI and
stressor-stimulated (i.e. TWEAK-stimulated) cultured tubular
cells. Given that histone post-translational modifications might
impact on the expression of multiple genes, it remains to be
explored whether changes in the expression of these specific genes
or other genes are the key drivers of the observed beneficial effect
of crotonate.

We identified and characterized two interventions that increased
overall histone crotonylation in kidney cells: cell stress by
inflammatory cytokines or during AKI, and increasing the
crotonate substrate availability. By contrast, direct cytotoxicity
mediated by cisplatin in culture did not modulate histone
crotonylation. However, both interventions had a differential effect
on the expression of the studied genes. Thus, we identified two
specific genes, PGC-1o. and SIRT3, which underwent increased
histone crotonylation during AKI and in tubular cells stressed by
TWEAK. Under stress conditions, the mRNA and protein levels of
both genes were decreased, suggesting decreased transcription. One
possible explanation is that increased histone crotonylation results in
decreased gene transcription. However, increasing overall histone
crotonylation by addition of crotonate increased the expression of
PGC-1o. and SIRT3. Thus, alternative explanations should be
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sought. One possibility is that the effect of histone crotonylation
might be dependent on the context: within the increased crotonate
substrate availability context, histone crotonylation could promote
gene expression whereas under a proinflammatory or cell stress
context, histone crotonylation might decrease expression of certain
genes. In this regard, the same histone post-translational modification
might be associated with increased or decreased gene expression
depending on the gene and context (Bao et al., 2014; Sabari et al.,
2015). Further studies should clarify this issue in the specific case of
crotonylation. Up to now, higher levels of histone crotonylation at the
promoters of genes activated by lipopolysaccharide, such as 116,
Gbp2, Ifitl and Rsad2, have been associated with increased gene
expression (Sabari etal., 2015). In this regard, an alternative potential
explanation is that increased histone crotonylation at the genes
encoding SIRT3 and PGC-la following cell stress might be a
compensatory mechanism that limits the fall in gene expression,
rather than the driver of gene suppression. Further studies are needed
to unravel the role of histone crotonylation in the regulation of gene
expression in different cellular contexts and for specific genes.

It has recently been reported that crotonate increases the
intracellular crotonyl-CoA availability, thus stimulating gene
transcription through p300 (also known as EP300)-catalyzed
histone crotonylation (Sabari et al., 2015). In this regard, histone
crotonylation can be catalyzed by either p300 or the p300-CREB-
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Crotonate

binding protein (CBP) complex (Sabari et al., 2015). Interestingly, crotonate, by increasing crotonyl-CoA availability, leads to
SIRT3 and PGC-1la regulate each other through CREB-mediated increased histone crotonylation (Sabari et al., 2015), and
gene expression mechanisms (Shi et al., 2005; Palacios et al., 2009;  increased gene transcription of SIRT3, that, in turn, acts as a
Than et al., 2011; Giralt et al., 2011). Our results suggests that decrotonylase. The increased expression of a decrotonylase in
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Fig. 7. TWEAK downregulates SIRT3 in cultured tubular cells and this is
prevented by crotonate. (A) SIRT3 mRNA levels in tubular cells incubated
with 100 ng/ml TWEAK. Meants.e.m. of three independent experiments.
*P<0.05 vs control (non-parametric Mann-Whitney U-test). (B) Total protein
levels of SIRT3 in MCT cells incubated with 100 ng/ml TWEAK for different
periods of time. Meants.e.m. of three independent experiments. *P<0.05 vs
control (non-parametric Mann—Whitney U-test). (C) Kidney SIRT3 mRNA
levels in mice treated with TWEAK. Meanzs.e.m. of five animals per group.
*P<0.05 vs control (non-parametric Mann—Whitney U-test). (D) Kidney SIRT3
protein levels in mice treated with TWEAK for different times. Meanzts.e.m. of
five animals per group. *P<0.05 vs control (non-parametric Mann—Whitney
U-test). (E) SIRT3 mRNA levels were tested in tubular cells incubated with
100 ng/ml TWEAK with or without 50 mM crotonate for 6 h. Data from three
independent experiments and expressed as meants.e.m. *P<0.05 vs vehicle
control; #P<0.05 vs vehicle TWEAK (non-parametric Mann—Whitney U-test).
(F) Total SIRT3 protein levels in tubular cells incubated with 100 ng/ml TWEAK
with or without 50 mM crotonate for 48 h. Data from four independent
experiments and expressed as meants.e.m. *P<0.05 vs vehicle control,
#P<0.05 vs vehicle TWEAK (non-parametric Mann—-Whitney U-test).

response to crotonate might be teleologically interpreted as the
activation of a negative-feedback mechanism. Increased SIRT3
levels and histone crotonylation at the PGC-1a gene might increase
PGC-1a levels, limiting cell injury in response to stress.

By contrast, under stress conditions, such as AKI or in tubular cells
stressed by inflammatory cytokines (e.g. TWEAK), the decrease in

Cell stress

A)

SIRT3 expression, and, potentially, in SIRT3 decrotonylase activity,
might lead to increased histone crotonylation, thus limiting the
downregulation of protective genes such as PGC-1o. (Fig. 8). Thus,
decreased SIRT3 expression might be an additional pathway leading
to increased histone crotonylation in an inflammatory milieu. Further
research should explore the changes of histone crotonylation in
relation to the functional status of the cell, as well as identify changes
in histone crotonylation for individual genes.

SIRT3 is the physiological deacetylase that antagonizes p300-
mediated histone acetylation (Wang et al., 2012). Although sirtuins
were initially described as NAD-dependent deacetylases (Imai
et al., 2000; Landry et al., 2000; Sauve et al., 2006), some sirtuins
with weak deacetylase activity might have substrate specificity
towards other acyl groups attached to lysine residues. For example,
SIRTS preferentially hydrolyzes malonyl and succinyl lysine (Jiang
et al., 2013; Du et al., 2011; Peng et al., 2011), and SIRT6 can
remove long chain fatty acyl groups from lysine residues (Jiang
et al., 2013). More recently, SIRT1 to SIRT3 have been reported to
behave as decrotonylases, thus regulating histone crotonylation
dynamics and gene transcription (Bao et al., 2014).

A staining pattern compatible with histone crotonylation was also
observed in human kidney tissue, including diseased kidneys.
Although we were not able to study early stages of human AKI, this
observation supports the potential clinical relevance of the findings.

Fig. 8. Working hypothesis of histone lysine
crotonylation in kidney injury. (A) Kidney cell
stressors. Cell stressors, such as TWEAK, decrease
PGC-1a.and increase CCL2 expression. These changes
might contribute to tissue injury. We hypothesize that the
decreased PGC-1a. expression might contribute to
decreased expression of the crotonylase SIRT3 and,
this, in turn, limits the decrease in PGC-1a. and SIRT3
expression by promoting histone crotonylation at the
PGC-1a.and SIRT3 genes, as observed in cultured cells.
(B) Therapeutic response to crotonate. Crotonate

increased overall histone crotonylation and increased
the expression of PGC-1a. and SIRT3, and decreased
CCL2 expression. We hypothesize that these changes
might contribute to the observed nephroprotection
afforded by crotonate. The increased SIRT3 expression
could, in turn, limit histone crotonylation as a negative-
feedback mechanism.

Increased

| Kidney injury |
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In conclusion, for the first time we have shown that the pattern of
histone crotonylation changes during AKI and in cultured tubular
cells stressed by an inflammatory cytokine, suggesting a role of
histone crotonylation in kidney injury. Furthermore, we have shown
that the degree of kidney cell histone crotonylation might be
manipulated therapeutically by administering crotonate, and that
increasing overall histone crotonylation is nephroprotective.
Although the precise mechanisms for the protective effect of
crotonate remains to be further clarified, results reported here are
consistent with the hypothesis that histone-crotonylation-mediated
regulation of gene transcription plays a role. This is the first
observation of the in vivo potential of the therapeutic manipulation
of histone crotonylation in a disease state. Further studies are needed
to define the role of histone crotonylation in additional models of
kidney disease and in injury to other tissues.

MATERIALS AND METHODS

Cells and reagents

For in vitro experiments we used MCT murine proximal tubular epithelial
cells. This cell line was originated from the kidneys of SJL mice in the
University of Pennsylvania and obtained from Eric G. Neilson. Cells were
authenticated and tested for mycoplasma contamination before use. MCT
cells were cultured in RPMI 1640 with 10% fetal bovine serum (FBS),
2mM glutamine and antibiotics (100 U/ml penicillin and 100 pg/ml
streptomycin), in 5% CO, at 37°C. RPMI-1640, penicillin, streptomycin
and trypsin-EDTA were from BioWhittaker (Waltham, MA) and FBS from
Gibco (Carlsbad, CA) (Haverty et al., 1988). For experiments, cells were
serum-depleted for 24 h, and then stimulated. Recombinant human
TWEAK (Millipore, Billerica, MA) was used at 100 ng/ml unless
otherwise specified, based on previously reported dose-response
experiments in the same cells (Sanz et al., 2008b). Crotonate was used at
50 mM and 100 mM, based on previous studies on dynamics of histone
lysine crotonylation in response to crotonate (Tan et al., 2011). Crotonic acid
(Sigma) was dissolved in water at a concentration of 100 mg/ml to yield a
clear, colorless solution. A 1 M stock solution in double-distilled H,O was
adjusted to neutral pH (pH 7.5) with sodium chloride. From this stock
solution, the necessary dilutions were made in cell culture medium (RPMI-
1640, Sigma). Following the same protocol, we used mannitol (Sigma), at
concentrations equimolar to the crotonate concentrations used, as an
osmolarity control in experiments in vitro. Mannitol is an inert molecule
generally used as a osmolarity control for experimental conditions that
increase osmolarity (e.g. during the study of the effects of high glucose
concentration on cell biology). Cisplatin (Sigma) was used at concentrations
of 50 and 100 pM.

RNA extraction and real-time PCR

Total RNA was extracted by the TRI Reagent method (Sigma) and 1 pg of
RNA was reverse transcribed with the high capacity cDNA archive kit
(Applied Biosystems, Foster City, CA). TagMan Gene Expression Assays
were from Applied Biosystems. Quantitative PCR was performed in a 7500
Real Time PCR System with the Prism 7000 System SDS Software (Applied
Biosystems) and RNA expression was corrected to the GAPDH expression.

Western blotting

Cell samples were homogenized in lysis buffer (50 mM Tris-HCI, 150 mM
NaCl, 2mM EDTA, 2 mM EGTA, 0.2% Triton X-100, 0.3% NP-40,
0.1 mM PMSF and 1 pg/ml pepstatin A) then separated by 10% SDS-PAGE
under reducing conditions. After electrophoresis, samples were transferred
to nitrocellulose membranes (Bio-Rad), blocked with 5% skimmed milk in
PBS with 0.5% (v/v) Tween 20 for 1 h, washed with PBS with Tween,
and incubated with mouse polyclonal anti-PGC-la (1:1000, ST1202,
Calbiochem) or rabbit polyclonal anti-SIRT3 (1:1000, #5490, Cell
Signaling). Anti-PGC-lo was diluted in 5% milk PBS with Tween and
anti-SIRT3 in 5% BSA in PBS with Tween. Blots were washed with PBS
containing Tween and incubated with the appropriate horseradish
peroxidase (HRP)-conjugated secondary antibody (1:2000, Amersham,

Aylesbury, UK). After washing with PBS containing Tween, blots were
developed with the chemiluminescence method (ECL) (Amersham) using
an ImageQuant LAS 400 system (GE Healthcare). Then, the images were
analyzed with Quantity One software (Bio-Rad). Blots were then probed
with mouse monoclonal anti-a-tubulin antibody (1:10,000, Sigma) and the
levels of expression were corrected for differences in loading.

Histones were isolated using the epiQuik Total histone Extraction kit
(Epigentek), and then separated by 10% SDS-PAGE under reducing
conditions. After electrophoresis, samples were transferred to PVDF
membranes (Millipore), blocked with 5% BSA in PBS with 0.5% (v/v)
Tween 20 for 1 h, washed with PBS containing Tween, and incubated with
rabbit polyclonal pan anti-crotonyl-lysine antibody (1:1000, PTM-501, PTM
Biolabs) and anti-crotonyl-Histone H3 (Lys9) antibody (anti-H3K9, 1:1000,
PTM-516, PTM Biolabs). Both antibodies were diluted in 5% BSA in PBS
with Tween. Blots were then probed with rabbit polyclonal anti-histone H3
antibody (1:2000, #9715, Cell Signaling) after stripping with a buffer that
removes primary and secondary antibodies from membranes (Yeung and
Stanley, 2009). Anti-Kcr staining was normalized to anti-Histone H3 or
Ponceau staining for each sample to correct for differences in loading. Then,
the mean of the normalized control values was set at 100% and the normalized
expression levels in other samples was expressed as a percentage change over
control.

Animal models

All procedures were conducted in accordance with the NIH Guide for the
Care and Use of Laboratory Animals and were approved by the Animal
Ethics Committee of IIS-FJD. Folic acid nephropathy is a classical model of
AKI (Sanz et al., 2008a; Ortega et al., 2006; Fang et al., 2005; Doi et al.,
2006), which has been described in humans (Metz-Kurschel et al., 1990).
Mice received a single intraperitoneal injection of 250 mg/kg body weight
folic acid (Sigma) in 0.3 mol/l sodium bicarbonate or vehicle control and
were killed at days 1, 3 or 7 (n=5 per day and group).

As a second model of AKI another set of mice (n=5 per group) was
injected intraperitoneally with 20 mg/kg body weight cisplatin (Sigma) or
vehicle (saline control) (Zhang et al., 2008). Mice were killed at 72 h.
Nephrotoxicity is the dose-limiting side effect of the chemotherapeutic
agent cisplatin in humans.

A further set of mice was injected intraperitoneally with crotonate. For
dose-response experiments, mice received 3, 6 or 12 mmol/kg body
weight crotonate (Sigma) or vehicle (saline control) and were killed at 48 h.
For timecourse experiments, mice were injected intraperitoneally with
12 mmol/kg body weight crotonate or vehicle (saline control) (Hawkins
etal., 1973; Lemieux et al., 1979; Lemieux et al., 1977) and killed at 24, 48
or 72 h (n=4 per group and time-point). Crotonate dose was calculated based
on in vitro experiments for an extracellular volume of 6.5 ml/mouse and
further refined by the dose-response studies. In another set of experiments,
mice were pretreated with 12 mmol/kg body weight crotonate and 24 h later
AKI was induced by folic acid injection and mice were killed at 72 h.

Kidneys were perfused in situ with cold saline before removal. One
kidney was snap-frozen in liquid nitrogen for RNA and protein studies, and
the other was fixed and embedded in paraffin. Blood was collected from the
femoral vein before perfusion of the kidneys. For all the experiments, C57/
BL6 mice of 12 to 14 weeks old were used.

For histological assessment, PAS-stained kidney sections were evaluated
by an experienced pathologist blinded as to the nature of the samples, using a
semiquantitative histological score on a 0 (normal) to 3 scale (severely
affected) evaluating the following items: tubular cell injury, tubular cell
regeneration, tubular atrophy, calcification, tubule dilatation, leukocyte casts
and hyaline casts. For each mouse, the sum of the individual score for each
item yielded the total score.

ChiP-seq

ChIP-seq for histone lysine crotonylation was carried out as previously
described with 100 pg fractionated cell or kidney tissue chromatin and 5 pg
anti-crotonyl-lysine antibody (Tan et al., 2011). ChIP-seq libraries for
sequencing were prepared following Illumina protocols (Illumina, San Diego,
CA) with minor modifications. Libraries for input samples were generated
using 20 ng of corresponding input chromatin. Briefly, ChIPed DNA was first
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blunted with an END-IT DNA repair kit (Epicenter Biotechnology, Madison,
WI) and then incubated with Klenow fragment (3'—=5’ exo) (New England
Biolabs, MA) and dATP to generate a single-base 3’-dA overhang. Illumina
sequencing adapter was then ligated to the resulting DNA, followed by size
selection (180400 bp) on an 8% acrylamide gel. This size-selection step was
repeated after PCR amplification with DNA primers (Illumina). Libraries were
sequenced using I[llumina GAII or HiSeq machine as per the manufacturer’s
protocols. Following sequencing cluster imaging, base calling was conducted
using the [llumina pipeline. Reads were mapped to the mouse mm10 genome
build with a bowtie software package. Total mapped tags were paired down to
unique, monoclonal tags. These are tags that mapped to one location in the
genome and each sequence is represented once.

Flow cytometry

A total of 10,000 cells were seeded in 12-well plates (Costar, Cambridge,
MA) in RPMI with 10% FBS overnight and rested in serum-free medium
for 24 h before crotonate addition. Thereafter, stimuli were added to
subconfluent cells. For assessment of apoptosis by flow cytometry
adherent cells were pooled with spontaneously detached cells, and
incubated in 100 pg/ml propidium iodide, 0.05% NP-40 and 10 pg/ml
RNAse A in PBS at 4°C for >1 h. This assay permeabilizes the cells,
thus the propidium iodide stains both living and dead cells. The
percentage of apoptotic cells with decreased DNA staining (hypodiploid
cells) was assessed by counting after flow cytometry using BD CellQuest
Software (BD Biosciences) (Sanz et al., 2009; Justo et al., 2006; Lorz
et al., 2000).

Immunohistochemistry and immunofluorescence

Kidney tissue immunohistochemistry was performed as previously
described (Hazzouri et al., 2000) in 3-um thick sections of paraffin-
embedded tissue using a PT-link device (with a low pH solution, 95°C,
20 min). Sections were washed with wash buffer for 5 min and blocked by
incubation with PBS containing 5% milk for 30 min. For immunostaining,
sections were incubated with anti-crotonyl-lysine antibody (PTM Biolabs)
diluted at 1:250 in TBS 0.5% milk for 2 h, washed in TBS three times,
incubated with biotinylated secondary antibody (1:2000 in PBS containing
0.5% milk) for 30 min, and washed and incubated with AB streptavidin
complex. Then the slides were washed with TBS and final detection was
performed using DAB (Dako Diagnostics) according to the manufacturer’s
instructions. Sections were counterstained with Carazzi’s hematoxylin.
Negative  controls  included incubation with isotype IgG.
Immunohistochemistry was performed in five human kidney samples
from the IIS-FJD Biobank, corresponding to males, aged 56 to 80 years,
serum creatinine 0.7 to 1.7 mg/dl. Informed consent was obtained for all
tissue donors and all clinical investigations have been conducted according
to principles expressed in the Declaration of Helsinki.

For immunofluorescence, 10° cells were seeded on coverslips in RPMI
medium supplemented with 10% FBS and were serum starved for 24 h prior to
experiments. Cells were washed with ice-cold PBS three times and fixed in
neutral buffered 10% formalin (Sigma) in PBS for 20 min at room temperature.
After three brief PBS rinses, cells were permeabilized with 0.2% Triton X-100
in PBS for 10 min on ice followed by PBS rinses. Permeabilized cells were
then blocked with 5% BSA in PBS for 30 min at room temperature and then
incubated with pan anti-crotonyl-lysine antibody (PTM Biolabs) at 1:500 in
PBS with 5% BSA at 4°C overnight, followed by incubation with Alexa-Fluor-
488-conjugated goat anti-rabbit-IgG (1:300 in PBS with 5% BSA, Invitrogen)
for 1 h at 37°C. Then cells were incubated with Alexa-Fluor-555—phalloidin
(1:1500 in PBS with 5% BSA; Life Technologies) for 30 min at room
temperature, counterstained with DAPI and mounted.

Statistics

Statistical analysis was performed using the SPSS 11.0 statistical software
(Chicago, IL). Results are expressed as mean=s.e.m. Significant differences
between mean values were determined with the Mann—Whitney U-test for
comparison of two groups or paired Student’s #-test if appropriate (normal
distribution and n>5). Two-tailed test values of P<0.05 were considered
significant. For small samples sizes (#<5), a nonparametric Mann—Whitney
U-test was assessed.
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