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We study the project budget version of the stochastic discrete time/cost trade-off problem (SDTCTP-B) from the viewpoint of the
robustness in the scheduling. Given the project budget and a set of activity execution modes, each with uncertain activity time
and cost, the objective of the SDTCTP-B is to minimize the expected project makespan by determining each activity’s mode and
starting time. By modeling the activity time and cost using interval numbers, we propose a proactive project scheduling model
for the SDTCTP-B based on robust optimization theory. Our model can generate robust baseline schedules that enable a freely
adjustable level of robustness. We convert our model into its robust counterpart using a form of the mixed-integer programming
model. Extensive experiments are performed on a large number of randomly generated networks to validate our model. Moreover,
simulation is used to investigate the trade-off between the advantages and the disadvantages of our robust proactive project
scheduling model.

1. Introduction

In project management, the project duration can usually be
shortened by allocating more resources to critical activities.
The number of resources tends to be discrete, such as the
numbers of workers and machines. These resources are usu-
ally treated as nonrenewable resources and measured by cap-
ital (or cost), resulting in the discrete time/cost trade-off
problem (DTCTP) [1]; Harvey and Patterson [2] and Hin-
delang and Muth [3] first proposed the DTCTP, which is a
special case of the multimode resource-constrained project
scheduling problem [4].

In the deterministic DTCTP, each activity has multiple
execution modes that are characterized by specific time and
cost combinations. In terms of the types of the objective func-
tion, theDTCTP can be divided into three versions: the dead-
line problem (DTCTP-D), the budget problem (DTCTP-B),
and the time/cost trade-off curve problem (DTCTP-C). In the
DTCTP-D, given a set of modes and a project deadline, the
objective is tominimize the total project cost by specifying for
each activity an execution mode. In the DTCTP-B, a project
budget is given and the objective is to determine the modes

that minimize the project makespan. In the DTCTP-C, the
goal is to determine the Pareto curve that minimizes the
project cost and makespan simultaneously.

Once the mode of each activity is determined, we can
determine the baseline schedule 𝑆𝐵 = (𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑛
) by cal-

culating the earliest start time of each activity in accordance
with the critical path method (CPM).

However, during project execution, due to consider-
able uncertainties, the optimal baseline schedule which is
obtained based on a deterministic environment and complete
information may deviate from our expectations or even
become unfeasible. Possible sources of uncertainties may be
a shortage of machineries, a delayed delivery of materials, the
absence of workers, fluctuations in the exchange rates, and so
forth [5, 6]. As a consequence, issues such as schedule delays
and/or budget overruns may occur and project time and cost
objectives will be threatened. Therefore, there is a pressing
need for new procedures for the DTCTP under uncertainties
to obtain project schedules which are insensitive to disrup-
tion.

Recent studies have paid more attention to the stochastic
DTCTP (SDTCTP), which accounts for uncertainties by
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treating the time and cost of activities as stochastic vari-
ables, with the objective of optimizing the expected project
performance. As early researchers in the field, Gutjahr et al.
[7] presented a stochastic branch-and-bound procedure to
solve the DTCTP deadline problem based on the assumption
that the times of each activity are mutually independent ran-
dom variables. Laslo [8] used the fractal method to construct
time/cost curves for a single activity of stochastic duration.
Cohen et al. [9] implemented a robust optimization to solve
the time/cost trade-off problem. Ke et al. [10] used chance-
constrained programming and dependent-chance program-
ming to model the stochastic DTCTP; the authors designed
an intelligent algorithm to search the quasi-optimal schedules
while balancing the project duration and cost. Klerides and
Hadjiconstantinou [11] proposed a path-based two-stage sto-
chastic integer programming approach to decide how and
when to execute each activity to minimize the project dura-
tion or cost using realized activity durations. Ma et al. [12]
studied the stochastic time-cost-quality trade-off problem
where the activity durations are uncertain and developed a
hybrid genetic algorithm.

However, the above-mentioned research papers primarily
focused on optimizing the system performance in an average
sense and these prior approaches cannot guarantee the
performance of the baseline schedule during a single project
execution.Therefore, determining a robust baseline schedule
under uncertainty is increasingly attracting the attention of
scholars. To achieve a robust baseline schedule, the use of
robust optimization is a natural choice. Robust optimization
can determine a solution with certain robustness by opti-
mizing the worst-case performance of the system. Although
robust optimization has been used to solve some classic
project scheduling problems [13, 14], little effort has been
applied to the study of the SDTCTP. To the best of our knowl-
edge, Hazır et al. [6] is the only research article that combines
the SDTCTP and the robust optimization approach. Hazır et
al. propose three robust optimization models, in which cost
uncertainty ismodeled via intervals for the SDTCTPdeadline
problem. The aim of their model is to minimize the effect of
unexpected events on project performance. The limitations
of their models are that the activity cost is still assumed to be
deterministic and that only the parameters in the objective
function are subject to uncertainty (i.e., the parameters in the
constraints are deterministic).

To the best of our knowledge, addressing both time- and
cost-uncertainty and applying robust optimization in solving
the SDTCTP-B have not been taken into account in both the
project scheduling and the robust optimization literature.The
contributions of this paper are as follows.

(1) We proposed a proactive scheduling model for the
SDTCTP budget problem (SDTCTP-B) based on
robust optimization theory. Our model uses interval
numbers to model the uncertain time and cost of
the activities that can follow any type of probability
distribution.The objective of our model is to generate
a stable baseline schedule that can account for some of
the uncertainties during project execution to ensure,

to the extent possible, that each activity begins at their
respective planned start time.

(2) We conducted a detailed experimental analysis for
our proposed model. We used experimental design
to randomly generate a large number of instances
to validate our model. In addition, robust optimiza-
tion improves the schedule stability at the cost of
prolonging the project duration. Therefore, we used
simulation to investigate the trade-off between the
advantages and the disadvantages of robust opti-
mization. Specifically, we analyzed the impact of the
number of activities, the network order strength, and
the number of modes on the schedule stability by
using discrete systems simulation.

This paper is organized as follows. Section 2 provides
a description of the SDTCTP. In Section 3, we use interval
numbers to model the uncertain parameters and present a
proactive model to solve the SDTCTP-B based on robust
optimization. Considering the nonlinear characteristics of
the proposed model, we converted our model into its robust
counterpart, which has the form of a mixed integer linear
programmingmodel, and used the branch-and-cut algorithm
to solve the model. In Section 4, we present the experimental
results. Finally, Section 5 concludes the paper.

2. Problem Description

The stochastic discrete time/cost trade-off problem can be
described as follows. A project network 𝐺 = (𝑁,𝐴) is
represented in the activity-on-node format, where the set of
nodes 𝑁 denotes the activities 𝑁 = {1, 2, . . . , 𝑛} and the
set of directed arcs 𝐴 represents the finish-start, zero-lag
precedence relations𝐴 ⊆ 𝑁×𝑁. The nodes are topologically
numbered from the single-start node 1 to the single-terminal
node 𝑛, 𝑛 = |𝑁|, where nodes 1 and 𝑛 represent two
dummy activities. The duration and cost of activity 𝑖 are
random variables, denoted as 𝑑

𝑖𝑚
and 𝑐
𝑖𝑚
, respectively. For

activity 𝑖, 𝑀
𝑖
represents the set of its modes. Each activity

𝑖 (𝑖 = 1, . . . , 𝑛) has |𝑀
𝑖
| modes, which are characterized by

a duration-cost pair (𝑑
𝑖𝑚
, 𝑐
𝑖𝑚
), 𝑚 = 1, . . . , |𝑀

𝑖
|. The duration

𝑑
𝑖𝑚

of an activity 𝑖 ∈ 𝑁 is a discrete, nonincreasing function
of the amount of the single nonrenewable resource (𝑐

𝑖𝑚
)

committed to it; that is, if 𝑘 < 𝑙 (𝑘, 𝑙 ∈ 𝑀
𝑖
), then, for the

expected duration and cost, we have 𝐸(𝑑
𝑖𝑙
) < 𝐸(𝑑

𝑖𝑘
) and

𝐸(𝑐
𝑖𝑙
) > 𝐸(𝑐

𝑖𝑘
). We assume that the dummy activities 1 and

𝑛 have only one execution mode of zero duration/cost.
Given the project budget𝑅, the objective of the SDTCTP-

B is to minimize the expected project makespan by assigning
a mode 𝑚

𝑗
(𝑗 = 1, . . . ,𝑀

𝑖
) to each activity and determining

the start time 𝑠
𝑖
of each activity. If we substitute the random

duration and cost of the activities by their most likely values
𝑑
𝑖𝑚

and 𝑐
𝑖𝑚
, respectively, for the above problem, the SDTCTP

will become the deterministic DTCTP. For DTCTP-B, we
have the following integer programming model:

minimize 𝑠
𝑛 (1)

subject to ∑

𝑚∈𝑀𝑖

𝑥
𝑖𝑚
= 1 ∀𝑖 ∈ 𝑁 (2)
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𝑠
𝑖
+ ∑

𝑚∈𝑀𝑖

𝑑
𝑖𝑚
𝑥
𝑖𝑚
≤ 𝑠
𝑗
∀ (𝑖, 𝑗) ∈ 𝐴 (3)

∑

𝑖∈𝑁

∑

𝑚∈𝑀𝑖

𝑐
𝑖𝑚
𝑥
𝑖𝑚
≤ 𝑅 (4)

𝑠
𝑖
≥ 0 ∀𝑖 ∈ 𝑁 (5)

𝑥
𝑖𝑚
∈ {0, 1} ∀𝑚 ∈ 𝑀

𝑗
, ∀𝑖 ∈ 𝑁, (6)

where 𝑠
𝑖
and 𝑥

𝑖𝑚
are decision variables. 𝑥

𝑖𝑚
are 0-1 variables

that determine whether a mode of an activity is selected.
The objective function (1) minimizes the start time of the
dummy end node 𝑛, which is equivalent to minimizing the
project makespan. Equation (2) ensures that for each activity
only one execution mode is selected. Equation (3) defines
the precedence relationship constraints for the activities.
Equation (4) ensures that the total project cost does not
exceed the budget 𝑅. Equation (5) ensures that the start
time of each activity is nonnegative. The budget problem of
DTCTP is strongly NP-hard [1, 15, 16].

Faced with the uncertainty in the duration and cost
of each activity, the baseline schedule generated by the
above deterministic model is not expected to be executed as
determined, thereby resulting in failure to achieve the desired
project objective. When the uncertainty is considered, we
notice that the uncertain parametersmainly affect constraints
(3) and (4). Therefore, in the following section, we model
the uncertain parameters as interval numbers and develop
a proactive scheduling model for the SDTCTP-B based on
robust optimization, thereby obtaining a robust baseline
schedule.

3. The Proactive Scheduling
Model for SDTCTP-B

3.1. Modeling Uncertain Parameters as Interval Numbers. In
practice, it is usually easier for decision-makers to estimate
the range and themost likely value of the duration and cost of
activities rather than their probability distribution.Therefore,
we use interval numbers to model the uncertain duration
and cost of the activity. For mode 𝑚, let 𝑑

𝑖𝑚
and 𝑐
𝑖𝑚

be the
most likely value of the activity duration 𝑑

𝑖𝑚
and cost 𝑐

𝑖𝑚
,

respectively; 𝑑
𝑖𝑚

and 𝑐
𝑖𝑚

take a value in the interval [𝑑
𝑖𝑚
, 𝑑
𝑖𝑚
]

and [𝑐
𝑖𝑚
, 𝑐
𝑖𝑚
], respectively (i.e., 𝑑

𝑖𝑚
< 𝑑
𝑖𝑚
< 𝑑
𝑖𝑚
, 𝑐
𝑖𝑚
<

𝑐
𝑖𝑚
< 𝑐
𝑖𝑚
). We define the maximum deviation of the activity

duration and cost as 𝑑
𝑖𝑚
= max{𝑑

𝑖𝑚
− 𝑑
𝑖𝑚
, 𝑑
𝑖𝑚
− 𝑑
𝑖𝑚
} and

𝑐
𝑖𝑚
= max{𝑐

𝑖𝑚
−𝑐
𝑖𝑚
, 𝑐
𝑖𝑚
−𝑐
𝑖𝑚
}, respectively, which represent the

maximum difference between the planned activity duration
and cost and the actual activity duration and cost that can be
tolerated by the decision-makers.

3.2. The Proactive Scheduling Model. For each activity 𝑖, we
introduce a parameter Γ

𝑖
, which is not necessarily an integer,

that takes on a value in the interval [0, |𝑀
𝑖
|]. Γ
𝑖
is used

to adjust the robustness of our model (i.e., the level of
conservatism of the solutions). For each activity 𝑖, we assume
that ⌊Γ

𝑖
⌋ modes take on the values at their upper bounds of

𝑑
𝑖𝑚
, 𝑐
𝑖𝑚
, the value for one mode can deviate (Γ

𝑖
−⌊Γ
𝑖
⌋)𝑑
𝑖𝑚

and
(Γ
𝑖
− ⌊Γ
𝑖
⌋)𝑐
𝑖𝑚
, and the remaining |𝑀

𝑖
| − ⌊Γ
𝑖
⌋modes are set to

their most likely values of 𝑑
𝑖𝑚
, 𝑐
𝑖𝑚
.

Our proactive scheduling model for SDTCTP-B based on
robust optimization [17, 18] is as follows:

(Model 1) minimize 𝑠
𝑛 (7)

subject to 𝑠
𝑖
+ ∑

𝑚∈𝑀𝑖

𝑑
𝑖𝑚
𝑥
𝑖𝑚

+ max
{𝑆𝑖∪{𝑡𝑖}|𝑆𝑖⊆𝑀𝑖 ,|𝑆𝑖|=⌊Γ𝑖⌋,𝑡𝑖∈𝑀𝑖\𝑆𝑖}

{

{

{

∑

𝑘∈𝑆𝑖

𝑑
𝑖𝑘
𝑥
𝑖𝑘
+ (Γ
𝑖
− ⌊Γ
𝑖
⌋) 𝑑
𝑖𝑡𝑖
𝑥
𝑖𝑡𝑖

}

}

}

≤ 𝑠
𝑗
∀ (𝑖, 𝑗) ∈ 𝐴

(8)

∑

𝑖∈𝑁

∑

𝑚∈𝑀𝑖

𝑐
𝑖𝑚
𝑥
𝑖𝑚
+ ∑

𝑖∈𝑁

max
{𝑆𝑖∪{𝑡𝑖}|𝑆𝑖⊆𝑀𝑖 ,|𝑆𝑖|=⌊Γ𝑖⌋,𝑡𝑖∈𝑀𝑖\𝑆𝑖}

{

{

{

∑

𝑘∈𝑆𝑖

𝑐
𝑖𝑘
𝑥
𝑖𝑘
+ (Γ
𝑖
− ⌊Γ
𝑖
⌋) 𝑐
𝑖𝑡𝑖
𝑥
𝑖𝑡𝑖

}

}

}

≤ 𝑅

(2) , (5) , (6) .

(9)

The above model introduces the uncertain parameters into
the deterministic DTCTP model and is able to generate
robust solutions. 𝑆

𝑖
is a subset of𝑀

𝑖
, and themodes belonging

to 𝑆
𝑖
take on the worst case values. The cardinality of 𝑆

𝑖
is

determined by Γ
𝑖
: |𝑆
𝑖
| = ⌊Γ

𝑖
⌋. In addition, the objective

function (7) is a deterministic function rather than an expec-
tation function. Therefore, the time-consuming expectation
calculation is avoided.

Our model has two primary advantages. The first advan-
tage is that the robustness level of the obtained schedule can
be freely adjusted. The greater the value of the parameter
Γ
𝑖
, the higher the level of robustness is. If Γ

𝑖
= 0, the

model will become the deterministic DTCTP model. The
second advantage is that, although the proposed model is
nonlinear, it can be easily reformulated as an equivalent linear
mixed-integer programming (MIP) model according to
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the robust optimization theory [17, 18]. To obtain the
equivalent MIP model, we first let 𝑔(x, Γ

𝑖
) =

max
{𝑆𝑖∪{𝑡𝑖}|𝑆𝑖⊆𝑀𝑖 ,|𝑆𝑖|=⌊Γ𝑖⌋,𝑡𝑖∈𝑀𝑖\𝑆𝑖}

{∑
𝑘∈𝑠𝑖
𝑑
𝑖𝑘
𝑥
𝑖𝑘
+ (Γ
𝑖
− ⌊Γ
𝑖
⌋)𝑑
𝑖𝑡𝑖
𝑥
𝑖𝑡
}.

𝑔(x, Γ
𝑖
) means that we need to determine a subset {𝑆

𝑖
∪

{𝑡
𝑖
} | 𝑆

𝑖
⊆ 𝑀

𝑖
, |𝑆
𝑖
| = ⌊Γ

𝑖
⌋, 𝑡
𝑖
∈ 𝑀
𝑖
\ 𝑆
𝑖
} that includes

⌊Γ
𝑖
⌋ + 1 elements, such that ∑

𝑘∈𝑠𝑖
𝑑
𝑖𝑘
𝑥
𝑖𝑘
+ (Γ
𝑖
− ⌊Γ
𝑖
⌋)𝑑
𝑖𝑡𝑖
𝑥
𝑖𝑡
is

maximized.Therefore, we introduce ⌊Γ
𝑖
⌋+1decision variables

𝑧
𝑖𝑘
, 0 ≤ 𝑧

𝑖𝑘
≤ 1, 𝑘 ∈ 𝑀

𝑖
. Given a vector x∗, 𝑔(x∗, Γ

𝑖
) equals the

objective function value of the following linear programming:

𝑔 (x∗, Γ
𝑖
) = maximize ∑

𝑘∈𝑀𝑖

𝑑
𝑖𝑘
𝑥
∗

𝑖𝑘
𝑧
𝑖𝑘

subject to ∑

𝑘∈𝑀𝑖

𝑧
𝑖𝑘
≤ Γ
𝑖

0 ≤ 𝑧
𝑖𝑘
≤ 1 ∀𝑘 ∈ 𝑀

𝑖
.

(10)

The constraints of problem (10) ensue that the resulting
optimal objective function value is equivalent to 𝑔(x∗, Γ

𝑖
).

It is clear that the linear programming problem (10) has an
optimal solution with ⌊Γ

𝑖
⌋ of decision variables taking on the

value of 1 and the remaining Γ
𝑖
− ⌊Γ
𝑖
⌋ taking on the value 0.

The dual of problem (10) is

minimize Γ
𝑖
𝑧
𝑖
+ ∑

𝑘∈𝑀𝑖

𝑝
𝑖𝑘

subject to 𝑧
𝑖
+ 𝑝
𝑖𝑘
≥ 𝑑
𝑖𝑘
𝑥
∗

𝑖𝑘
∀𝑘 ∈ 𝑀

𝑖
, ∀𝑖 ∈ 𝑁

𝑝
𝑖𝑘
≥ 0 ∀𝑘 ∈ 𝑀

𝑖

𝑧
𝑖
≥ 0 ∀𝑖 ∈ 𝑁,

(11)

where 𝑧
𝑖
and 𝑝

𝑖𝑘
are dual variables. According to strong

duality, because problem (10) has an optimal solution, then
problem (11) also has an optimal solution, and their optimal
values are the same. In addition, 𝑔(x∗, Γ

𝑖
) equals the objective

function value of problem (11).
Similarly, the “max” part of (9) can be converted to the

following linear programming model:

minimize Γ
𝑖
𝑦
𝑖
+ ∑

𝑘∈𝑀𝑖

𝑞
𝑖𝑘

subject to 𝑦
𝑖
+ 𝑞
𝑖𝑘
≥ 𝑐
𝑖𝑘
𝑥
∗

𝑖𝑘
∀𝑘 ∈ 𝑀

𝑖
, ∀𝑖 ∈ 𝑁

𝑞
𝑖𝑘
≥ 0 ∀𝑘 ∈ 𝑀

𝑖

𝑦
𝑖
≥ 0 ∀𝑖 ∈ 𝑁.

(12)

Then we can obtain the equivalent mixed-integer linear
optimization model of Model 1 by substituting (11) and (12)
into it:

minimize 𝑠
𝑛

subject to ∑

𝑚∈𝑀𝑖

𝑥
𝑖𝑚
= 1 ∀𝑖 ∈ 𝑁

𝑠
𝑖
+ ∑

𝑚∈𝑀𝑖

𝑑
𝑖𝑚
𝑥
𝑖𝑚
+ Γ
𝑖
𝑧
𝑖
+ ∑

𝑘∈𝑀𝑖

𝑝
𝑖𝑘
≤ 𝑠
𝑗

∀ (𝑖, 𝑗) ∈ 𝐴

𝑧
𝑖
+ 𝑝
𝑖𝑘
≥ 𝑑
𝑖𝑘
𝑥
𝑖𝑘
∀𝑘 ∈ 𝑀

𝑖
, ∀𝑖 ∈ 𝑁

∑

𝑖∈𝑁

∑

𝑚∈𝑀𝑖

𝑐
𝑖𝑚
𝑥
𝑖𝑚
+ ∑

𝑖∈𝑁

(Γ
𝑖
𝑦
𝑖
+ ∑

𝑘∈𝑀𝑖

𝑞
𝑖𝑘
) ≤ 𝑅

𝑦
𝑖
+ 𝑞
𝑖𝑘
≥ 𝑐
𝑖𝑘
𝑥
𝑖𝑘
∀𝑘 ∈ 𝑀

𝑖
, ∀𝑖 ∈ 𝑁

𝑝
𝑖𝑘
≥ 0 ∀𝑘 ∈ 𝑀

𝑖

𝑧
𝑖
≥ 0 ∀𝑖 ∈ 𝑁

𝑞
𝑖𝑘
≥ 0 ∀𝑘 ∈ 𝑀

𝑖

𝑦
𝑖
≥ 0 ∀𝑖 ∈ 𝑁

𝑠
𝑖
≥ 0 ∀𝑖 ∈ 𝑁

𝑥
𝑖𝑚
∈ {0, 1} ∀𝑚 ∈ 𝑀

𝑗
, ∀𝑖 ∈ 𝑁.

(13)

3.3. Example. We use an example project network in Figure 1
to illustrate our model. Activities 0 and 5 are dummy activi-
ties. Activities 1 and 2 have only one mode. Activities 3 and 4
have twomodes.We assume that the project budget is𝑅 = 75.

Table 1 lists all the possible mode combinations for the
different values of Γ. The first column lists the Γ values. The
second and third columns indicate the selected modes for
activities 3 and 4. The column labeled “Total cost” shows
the total project cost given the chosen activities modes. The
column labeled “Makespan” represents the objective function
value (i.e., the project makespan).The column labeled “Feasi-
ble” reveals whether the given mode combination is feasible,
given the budget constraint of 75.

As shown in Table 1, when Γ = 0, all the modes use
their most likely values and we have two solutions with the
makespan of 13. When Γ = 1, the model is a robust model
and we have three solutions with the makespan of 13. Among
the three solutions, two of them are the same as the case of
Γ = 1 and the third one (the corresponding row in Table 1
is bold) can be regarded as a robust solution. For the robust
solution, because the duration of activity 4 takes on theworst-
case value, thiswill result in a lower probability of delaying the
project if activity 4 is disrupted by uncertain factors. When
Γ = 2, all modes use their worst-case values and we have one
solution with the makespan of 15.Themaximum Γmakes the
project schedulemost robust, at the price of accepting a larger
project makespan.

4. Computational Experiments

We have randomly generated a large number of problem
instances to validate our model. Section 4.1 describes how
to generate these instances. Next, the optimization results
with different parameters settings are reported in Section 4.2.
Section 4.3 describes the use of simulation to investigate
the impact of different project network parameters on the
schedule stability.The experiments were conducted inMatlab
version R2010b and run on an Intel Core i5 2.40GHz portable
computer underWindows 7.We usedMatlab to call the built-
in branch-and-cut algorithm of CPLEX 12.4 to solve the MIP.
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Figure 1: The example project network.

Table 1: Computations for the example problem.

Γ
Mode Total cost Makespan Feasible

Activity 3 Activity 4

0

1 1 86 7 No
1 2 77 9 No
2 1 74 13 Yes
2 2 65 13 Yes

1

1 1 86 7 No
1 1∗ 89 7 No
1 2 77 9 No
1 2∗ 80 10 No
1∗ 1 90 9 No
1∗ 1∗ 93 9 No
1∗ 2 81 9 No
1∗ 2∗ 84 10 No
2 1 74 13 Yes
2 1∗ 77 13 No
2 2 65 13 Yes
2 2∗ 68 13 Yes
2∗ 1 78 15 No
2∗ 1∗ 81 15 No
2∗ 2 69 15 Yes
2∗ 2∗ 72 15 Yes

2

1∗ 1∗ 93 9 No
1∗ 2∗ 84 10 No
2∗ 1∗ 81 15 No
2∗ 2∗ 72 15 Yes

∗This mode uses the worst-case value.

4.1. Data Generation and Settings. RanGen [19], which can
generate strongly random networks in the activity-on-the-
node format, was used to construct 180 test instances using
the parameter settings in Table 2. RanGen mainly uses two
parameters to define the network structure: network size (𝑁)
and order strength (OS).Network size𝑁 specifies the number
of activities in the project network. Order strength OS is

Table 2: Parameter settings.

Parameters Value
Number of activities (|𝑁|) 10; 20; 30
Order strength (OS) 0.3; 0.5; 0.7
Number of modes (|𝑀

𝑖
|) 4; 8

Most likely activity duration Uniformly drawn from [1, 50]
Most likely smallest activity cost Uniformly drawn from [1, 10]
Activity cost slope Uniformly drawn from [1, 8]
Ψ Uniformly drawn from [0.1, 1]
𝜃 0.5

the number of precedence relations divided by the theoret-
ical maximum number of the precedence relations in the
network. Order strength describes the network density. The
larger theOS value, the higher the network density.Herroelen
and De Reyck [20] demonstrated that OS is better than other
commonly used measures (e.g., network complexity, which
is adopted in PSPLIB [21]) when describing the network
topology.

Specifying 3 settings for the number of activities, 2
settings for the number of execution modes, and 3 settings
for OS, we generated 10 problem instances for each of the 3 ×
2 × 3 parameter settings, resulting in 180 instances in total.

We also need to generate themost likely value of duration
and cost for each activity. In DTCTP, the types of cost func-
tions can be linear, convex, concave, or random. We study
the random case, which is more general. Following Demeule-
meester et al. [19], the modes of an activity were generated in
the following way. First, the number of modes |𝑀

𝑖
|was deter-

mined according to the modes parameter listed in Table 2.
Next, |𝑀

𝑖
| different numbers were randomly chosen from the

discrete uniform distribution [1, 50] to form the durations
that are sorted in ascending order (𝑑

𝑖𝑚
, 𝑑
𝑖(𝑚−1)

, . . . , 𝑑
𝑖1
). To

determine the costs, starting with the normal duration mode
𝑑
𝑖𝑚
, its corresponding cost 𝑐

𝑖𝑚
is randomly chosen from the

discrete uniform distribution [1, 10]. By randomly choosing
a slope 𝑠 from the discrete uniform distribution [1, 8],
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we can calculate the cost of the next mode as 𝑐
𝑖(𝑚−1)

= 𝑐
𝑖𝑚
+

𝑠(𝑑
𝑖𝑚
−𝑑
𝑖(𝑚−1)

), and we repeated this stepwise procedure until
the mode of maximum cost was reached.

Ourmodel deals with uncertain data, so we generated the
maximum deviation of activity duration and cost by letting
𝑑
𝑖𝑚
= 𝜓𝑑
𝑖𝑚

and 𝑐
𝑖𝑚
= 𝜓𝑐
𝑖𝑚
, where 𝜓 ∼ 𝑈[0.1, 1]. In addition,

the project budget was calculated by 𝑅 = 𝑅min + 𝜃(𝑅max −
𝑅min), where𝑅min = ∑𝑖min

𝑚
{𝑐
𝑖𝑚
},𝑅max = ∑𝑖max

𝑚
{𝑐
𝑖𝑚
}, and

𝜃 = 0.5.

4.2. Experimental Results. The parameter Γ
𝑖
represents the

level of robustness of our model. To study the impact of
different Γ

𝑖
on solutions, we set 5 different values for Γ

𝑖
:

Γ
(𝑗)
= 𝜂
𝑗
/(|𝑁| × |𝑀

𝑖
|), where 𝜂

𝑗
= 0, 0.25, 0.5, 0.75, 1 and

𝑗 = 0, 1, 2, 3, 4.We see that the value of Γ
𝑖
is quite small, which

is because we find that even a slight deviation of Γ
𝑖
has a high

impact on the schedule stability (see next section). Note that
our model becomes the deterministic DTCTP model when
Γ
(0)
= 0. We solved the 180 problem instances for each Γ

𝑖

with a CPU time limit of 300 seconds; the results are listed in
Table 3.The column “|𝑁|” represents the number of activities,
“OS” represents the order strength, and “|𝑀|” represents the
number of modes. Columns “Avg,” “Min,” and “Max” provide
the average, minimum, and maximum objective function
values, respectively.The column “%” shows the percentage of
problems solved optimally.

The results in Table 3 demonstrate that, with the increase
of order strength, the objective function value (i.e., the project
makespan) increases, while the number of modes exhibits
a contrary behavior. The reason for this behavior is that a
higher order strength value means that more precedence
relationships are involved, resulting in a longer project
duration.Moremodes providemore choices for the durations
of the activities, thusmaking it possible to shorten the project
duration.

Small problem instances (|𝑁| = 10) can be solved
optimally within 300 seconds. An increase of the number
of activities decreases the percentage of problem instances
solved optimally. We also observed that the larger the value
of Γ
𝑖
, the lower the percentage of problem instances solved

optimally. Γ
𝑖
reflects the trade-off between the robustness and

the optimality of the solution. A larger Γ
𝑖
results in a more

stable schedule at the cost of a prolonged project duration. In
addition, compared with the deterministic model (Γ(0) = 0),
due to the introduction of many auxiliary variables, solving
the robust optimization model takes more time, thereby
resulting in less optimal solutions. Accordingly, a smaller Γ

𝑖

is accompanied by a lower computational requirement.

4.3. Impact of Different Factors on the Schedule Stability.
Robust optimization improves the schedule robustness at the
expense of prolonging the project duration.Therefore, we are
interested in the trade-off between the advantages (improved
schedule stability) and the disadvantages (increased project
duration) of robust optimization. Specifically, from the view-
point of stability cost, we use simulation to investigate the
impact of project network structure parameters (i.e., the
number of activities, the order strength, and the number of
modes) on the schedule stability.

4.3.1. Simulation Design. We use the stability cost 𝐶
𝑅
to

measure the schedule stability. 𝐶
𝑅
is defined as the weighted

sum of the expected absolute difference between the planned
and the actually realized activity start times [22, 23]:

𝐶
𝑅
= ∑

𝑖

𝑤
𝑖
𝐸 (s
𝑖
− 𝑠
𝐵

𝑖
) , (14)

where 𝑠𝐵
𝑖
is the planned start time of activity 𝑖 in the baseline

schedule, s
𝑖
is a random variable indicating the actual start

time of activity 𝑖, and 𝑤
𝑖
represents the cost-per-time unit

incurred by the situation that the actual start time is later than
the planned time for activity 𝑖, with 𝑤

𝑖
> 0. The value of 𝑤

𝑖

reflects how difficult it is to change a baseline schedule or how
important it is to start an activity on time. The more robust a
schedule, the smaller the corresponding stability cost.

It is not realistic to use a full factorial experiment to ana-
lyze the impact of different factors on the schedule stability
[24]. Instead, we focus on the main effect of different factors.
When we study the impact of one factor on the average
stability cost, we keep the other factors fixed at a certain level.

The simulation strategy is as follows. (1) The weights
𝑤
𝑖
are drawn from a uniform distribution 𝑈[1, 4]. (2) The

activity mode is determined by the solutions of our proactive
scheduling model. (3) The activity duration is drawn from
the triangular distribution TRIA(𝑎, 𝑚, 𝑏), where 𝑎 = 𝑑

𝑖𝑚
,

𝑚 = 𝑑
𝑖𝑚
, and 𝑏 = 𝑑

𝑖𝑚
. Note that because our model

can deal with any kind of distribution, we can also draw
the activity duration from other distributions. (4) We use a
railway scheduling policy to determine the activity of actual
start time s

𝑖
. In railway scheduling, the actual start time is

always later than or equal to the planned start time (as is the
case with train timetable, flight scheduling, etc.). Therefore,
on the condition that the precedence relationship is already
satisfied, s

𝑖
is calculated according to

s
𝑖
= {

s
𝑖

if s
𝑖
≥ 𝑠
𝐵

𝑖

𝑠
𝐵

𝑖
otherwise,

(15)

where 𝑠𝐵
𝑖
is the start time of activity 𝑖 obtained by solving our

proactive scheduling model.
For each instance in our data set, the number of simu-

lation replications is set to 100. Note that the stability costs
mentioned in the following are always the average value.

4.3.2. Impact of the Number of Activities. Figure 2 shows the
impact of the number of activities on the average schedule
stability cost, while the other two factors are fixed (OS = 0.5,
|𝑀| = 4). In Figure 2, the 𝑥-axis represents Γ. There are two
𝑦-axes. The 𝑦-axis on the left shows the stability cost and
the one on the right indicates the objective function value
(i.e., project makespan). For the legend in Figure 2, the letters
“s” and “o” in brackets mean that the corresponding lines
correspond to the stability cost and the objective function
value, respectively. Note that since we cannot find optimal
solutions for most instances with |𝑁| = 30 within our time
limit, the results for data set |𝑁| = 30 will not be included in
this subsection to ensure the validity of the analysis.
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Figure 2: Impact of the number of activities on the schedule stability
(OS = 0.5, |𝑀| = 4).

For each robustness level Γ, with the increase in the num-
ber of activities, the stability cost increases. In other words,
the larger the number of activities, the more unstable the
schedule.

We see that although the actual difference between Γ(0)

and Γ(4) is small, it is already sufficient to heavily reduce the
stability cost when Γ changes from Γ(0) to Γ(4). For |𝑁| = 10,
it is interesting that the impact of Γ on the schedule stability
cost becomes very weak when Γ is equal to or greater than
Γ
(2). However, the impact of Γ on the objective function value

is still positive. This means that for small scale project, it is
not necessary to use a high value for Γ, as this will not reduce
the schedule stability cost significantly. Instead, a high value
for Γ will prolong the project duration in this case.

4.3.3. Impact of the Order Strength. Figure 3 indicates the
impact of the order strength on the average schedule stability
cost, while the other two factors are fixed (|𝑁| = 20, |𝑀| =
4). The impact of the order strength on the stability cost is
dependent on the robustness level Γ. When Γ is low, the order
strength has a positive impact on the stability cost. However,
this impact becomes weak with the increase of Γ. We may
conclude that whenwe choose a relatively high value for Γ, we
could pay little attention to the density of the project prece-
dence relations due to the weak impact of the order strength.

An interesting finding is that when Γ increases, the
magnitude of increase in the objective function value (i.e.,
project duration) for different order strength is basically the
same. However, the magnitude of the corresponding changes
in the schedule stability cost is much greater, especially when
the level of the order strength is high (i.e., OS = 0.7). In other
words, when the density of the project is high, the stability
of a schedule can be heavily enhanced by using our proactive
model and the corresponding loss in the project duration is
quite small.

4.3.4. Impact of the Number of Modes. Figure 4 gives the
impact of the number of modes on the average schedule
stability cost, while the other two factors are fixed (|𝑁| = 20,
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Figure 3: Impact of the order strength on the schedule stability
(|𝑁| = 20, |𝑀| = 4).

0
20
40
60
80
100
120
140
160
180

0
20
40
60
80

100
120
140
160
180
200

O
bj

ec
tiv

e v
al

ue
 

St
ab

ili
ty

 co
st 

|M| = 4 (s)
|M| = 8 (s)

|M| = 4 (o)
|M| = 8 (o)

Γ
(0)

Γ
(1)

Γ
(2)

Γ
(3)

Γ
(4)

Figure 4: Impact of the number of modes on the schedule stability
(|𝑁| = 20, OS = 0.5).

OS = 0.5). The results shown in Figure 4 are not uncommon.
For each robustness level Γ, with the increase in the number of
modes, the stability cost increases. In other words, the more
modes an activity can choose, themore unstable the schedule
becomes.

Moreover, in most cases, for any factor (the number
of activities, the order strength, or the number of modes),
Figures 2, 3, and 4 also reveal that a larger robustness level
Γ results in a smaller stability cost and this is at the cost of
prolonged project duration.This further confirms our results
of Section 4.2 that the greater the robustness level Γ is, the
more stable the baseline schedule is.

5. Conclusions

In this paper, we presented a proactive scheduling model for
the project budget version of the stochastic discrete time/cost
trade-offproblembased on robust optimization theory. Com-
putational experience on the randomly generated problem
dataset validated our model. We also used simulation to
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analyze the impact of different project network parameters
on the schedule stability.

From the experiments in the stochastic time/cost trade-
off environment, we conclude that (1) a larger value of the
robustness level parameter Γ leads to a more stable baseline
schedule. However, the schedule robustness is improved at
the expense of prolonging the project duration. Therefore,
whether or not to adopt robust optimization depends on the
decision-makers’ preference. However, we recommend to use
our approach when the density of the project precedence
relations is high (i.e., the order strength is high). Because
in this case, the loss on the project duration for obtaining a
robust schedule is quite small. (2) Both the project duration
and the schedule robustness are very sensitive to Γ. Even
a slight increase in Γ is already sufficient to obtain an
enough robust schedule. (3) In our proactivemodel, the order
strength has a positive impact on the projectmakespan, while
the number of modes has a negative impact. (4) In most
cases, with the increase in the number of activities, the order
strength, and the number of modes, the schedule stability
decreases. However, when Γ is relatively high, the impact
of the order strength on the schedule stability cost becomes
weak. This means that we can ignore the factor of the order
strength when we use a high value for Γ. (5) For small scale
projects, it is easy to generate a quite stable schedule with a
small Γ. However, for relatively large scale projects, we have
to increase Γ to make the resulting schedule robust enough.
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