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This paper is concerned with the problem of designing H
∞

filters for a class of two-dimensional (2D) Markov jump systems
under asynchronous switching. The problem under consideration is primarily motivated by a realistic situation that the switching
of candidate filters may have a lag to the switching of system modes. Different from conventional techniques, by a suitable
augmentation, the jumping process of the error system is represented by a two-component Markov chain. Then, the extended
transition probabilities are provided for the error system. A stochastic Lyapunov function approach is proposed for the design of
desired filters that ensure a prescribed H

∞
performance for admissible asynchronous switching. Finally, a numerical example is

given to illustrate the effectiveness of the developed method.

1. Introduction

Networked systems have been an active topic that has
attracted increasing attention of researchers [1–3]. Recently,
2D systems have gained substantial research interests due
to their potential applications in many engineering fields,
especially in the areas of linear iterative circuit networks,
which have been extensively studied in encoding, decoding
networks for linear codes, and image processing, and so
forth, [4].The challenges associated with 2D systems are their
structural and dynamical complexities, and thus numerous
methods have been conducted for the analysis and synthesis
of such systems [5–7]. In the context of state estimation,
various filtering problems for 2D systems have been widely
investigated. According to the types of noise signals and
performance criteria, many important filtering approaches
have been proposed in the literature including the minimum
mean-square state estimation [8, 9],H

∞
filtering [10–17], and

𝑙
2
− 𝑙
∞

filtering [17].
As is well known, Markov jump linear systems, which

were first introduced in [18], have the ability to capture
the abrupt changes that appear in the system structure or

its parameters. Markov jump systems can be regarded as a
kind of multimodal systems in which the transitions among
different modes are governed by a Markov chain taking
values in a finite set. The past few decades have witnessed
a significant progress on various aspects of Markov jump
systems. The practical motivations as well as theoretical
results on analysis and design for such systems can be found
in several references, for example, in [19–22] for 1D case and
[7, 13] for 2D case.

In particular, a lot of efforts have been focused on the
filtering problem of Markov jump systems because of its
importance in theory and practice [13, 22, 23]. The existing
results can be broadly classified into two categories: mode-
dependent and mode-independent filtering. With an adap-
tation sense, the mode-dependent filter design has gained
popularity owing to its less conservatism. However, most
of the mode-dependent results are based on the critical
assumption that the switches of filters are strictly synchro-
nized with those of the system modes. In practical case, it
is inevitable that operations related to identifying the system
modes and specifying the matched filter will take time, and
thusmismatch of themodes between the filter and the system
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generally exists. Most recently, research results concerning
asynchronous filtering problems have been derived [16, 24].
In spite of these developments, the problems of asynchronous
filtering for 2D Markov jump systems are not fully resolved.

In this paper, we focus on 2D systems described by the
Roesser model subject to Markovian jump parameters. We
address the issue of designing filters such that an upper bound
on H

∞
norm of the estimation error system for admis-

sible asynchronous switching is minimized. By a suitable
augmentation, a novel approach is adopted to model the
jumping process of the error system. TheH

∞
analysis result

is derived, followed by a stochastic parameter-dependent
approach. The asynchronous filter is then designed such that
the error system ismean-square asymptotically stable and has
a prescribed H

∞
performance level. It is shown from the

derived results that the effect of the asynchronous behavior
in reality can be comprehensively understood for 2DMarkov
jump systems.

Notations. The notation used throughout the paper is fairly
standard. The superscript 𝑇 stands for matrix transposition,
R𝑛 denotes the 𝑛 dimensional Euclidean space, and 𝑃 > 0

means that 𝑃 is real symmetrical and positive definite. E{⋅}
stands for the expectation operation. 𝑙

2
{[0,∞), [0,∞)} is the

space of square summable sequences on {[0,∞), [0,∞)}. In
symmetrical block matrices expressions, we use an asterisk
(∗) to represent a term that is induced by symmetry and
stand diag{⋅ ⋅ ⋅ } for a block diagonal matrix. Matrices, if
their dimensions are not explicitly stated, are assumed to be
compatible for algebraic operations.

2. Problem Formulation

Consider the following class of 2D Markov jump systems:

[

[

𝑥
ℎ

𝑖+1,𝑗

𝑥
V
𝑖,𝑗+1

]

]

= 𝐴(𝑟
𝑖,𝑗
)
[

[

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

]

]

+ 𝐵 (𝑟
𝑖,𝑗
)𝑤
𝑖,𝑗
,

𝑦
𝑖,𝑗
= 𝐶 (𝑟

𝑖,𝑗
)
[

[

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

]

]

+ 𝐷(𝑟
𝑖,𝑗
)𝑤
𝑖,𝑗
,

𝑧
𝑖,𝑗
= 𝐻(𝑟

𝑖,𝑗
)
[

[

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

]

]

+ 𝐿 (𝑟
𝑖,𝑗
)𝑤
𝑖,𝑗
,

(1)

where 𝑥ℎ
𝑖,𝑗

∈ R𝑛1 , 𝑥V
𝑖,𝑗

∈ R𝑛2 represent the horizontal and
vertical states, respectively, 𝑦

𝑖,𝑗
∈ R𝑚 is the measured output,

𝑧
𝑖,𝑗
∈ R𝑝 is the objective signal to be estimated, and𝑤

𝑖,𝑗
∈ R𝑞

is the noise signal which belongs to 𝑙
2
{[0,∞), [0,∞)}.𝐴(𝑟

𝑖,𝑗
),

𝐵(𝑟
𝑖,𝑗
), 𝐶(𝑟

𝑖,𝑗
), 𝐷(𝑟

𝑖,𝑗
), 𝐻(𝑟

𝑖,𝑗
), and 𝐿(𝑟

𝑖,𝑗
) are appropriately

dimensioned real valued system matrices. These matrices
are functions of 𝑟

𝑖,𝑗
, which is a discrete-time, discrete-state

Markov chain taking values in a finite set T = {1, 2, . . . , 𝑔}

with transition probabilities

𝑝
𝑚𝑛

= Pr {𝑟
𝑖+1,𝑗

= 𝑛 | 𝑟
𝑖,𝑗
= 𝑚}

= Pr {𝑟
𝑖,𝑗+1

= 𝑛 | 𝑟
𝑖,𝑗
= 𝑚} ,

(2)

where 𝑝
𝑚𝑛

≥ 0 and ∑𝑔
𝑛=1

𝑝
𝑚𝑛

= 1, for all 𝑚 ∈ T. To simplify
the notation, the system matrices are denoted by S

𝑚
= (𝐴
𝑚
,

𝐵
𝑚
, 𝐶
𝑚
,𝐷
𝑚
,𝐻
𝑚
, 𝐿
𝑚
), when 𝑟

𝑖,𝑗
= 𝑚 ∈ T.

For the asynchronous phenomenon under consideration,
that is, the switches of filter gains may not coincide precisely
with those of system modes, we are interested in estimating
the objective signal 𝑧

𝑖,𝑗
by a filter with the structure as follows:

[

[

𝑥
ℎ

𝑖+1,𝑗

𝑥
V
𝑖,𝑗+1

]

]

= [𝜏
𝑘
𝐴
𝑓𝑧
+ (1 − 𝜏

𝑘
) 𝐴
𝑓𝑚
]
[

[

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

]

]

+ [𝜏
𝑘
𝐵
𝑓𝑧
+ (1 − 𝜏

𝑘
) 𝐵
𝑓𝑚
] 𝑦
𝑖,𝑗
,

𝑧̂
𝑖,𝑗
= [𝜏
𝑘
𝐶
𝑓𝑧
+ (1 − 𝜏

𝑘
) 𝐶
𝑓𝑚
]
[

[

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

]

]

+ [𝜏
𝑘
𝐷
𝑓𝑧
+ (1 − 𝜏

𝑘
)𝐷
𝑓𝑚
] 𝑦
𝑖,𝑗
,

(3)

where 𝑥ℎ
𝑖,𝑗
∈ R𝑛1 , 𝑥V

𝑖,𝑗
∈ R𝑛2 are the filter states, 𝑧̂

𝑖,𝑗
∈ R𝑝 is

the estimation of 𝑧
𝑖,𝑗
,F
𝑚
= (𝐴
𝑓𝑚

, 𝐵
𝑓𝑚

,𝐶
𝑓𝑚

,𝐷
𝑓𝑚
) andF

𝑧
=

(𝐴
𝑓𝑧
, 𝐵
𝑓𝑧
, 𝐶
𝑓𝑧
, 𝐷
𝑓𝑧
) are the filter gains corresponding to the

current and previous stage, respectively, for all𝑚, 𝑧 ∈ T, and
𝜏
𝑘
is a Bernoulli distributed white sequence specified by

Pr {𝜏
𝑘
= 1} = E {𝜏

𝑘
} = 𝜙,

Pr {𝜏
𝑘
= 0} = 1 − E {𝜏

𝑘
} = 1 − 𝜙.

(4)

In addition, 𝜏
𝑘
and 𝑟
𝑖,𝑗
are mutually independent.

In view of (1) and (3), the estimation error 𝑧
𝑖,𝑗
= 𝑧
𝑖,𝑗
− 𝑧̂
𝑖,𝑗

can be represented by the following model:

[

[

𝑥
ℎ

𝑖+1,𝑗

𝑥
V
𝑖,𝑗+1

]

]

= 𝐴
𝑚,𝑙

[

[

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

]

]

+ 𝐵
𝑚,𝑙
𝑤
𝑖,𝑗
,

𝑧
𝑖,𝑗
= 𝐶
𝑚,𝑙

[

[

𝑥
ℎ

𝑖,𝑗

𝑥
V
𝑖,𝑗

]

]

+ 𝐷
𝑚,𝑙
𝑤
𝑖,𝑗
,

(5)

where 𝑥ℎ
𝑖,𝑗
= [𝑥
ℎ𝑇

𝑖,𝑗
𝑥
ℎ𝑇

𝑖,𝑗
]

𝑇

, 𝑥
V
𝑖,𝑗
= [𝑥

V𝑇
𝑖,𝑗

𝑥
V𝑇
𝑖,𝑗
]

𝑇 and

𝐴
𝑚,𝑙

= Ω
𝑇

[

𝐴
𝑚

0

𝐵
𝑓𝑙
𝐶
𝑚

𝐴
𝑓𝑙

]Ω, 𝐵
𝑚,𝑙

= Ω
𝑇

[

𝐵
𝑚

𝐵
𝑓𝑙
𝐷
𝑚

] ,

𝐶
𝑚,𝑙

= [𝐻
𝑚
− 𝐷
𝑓𝑙
𝐶
𝑚

− 𝐶
𝑓𝑙
]Ω, 𝐷

𝑚,𝑙
= 𝐿
𝑚
− 𝐷
𝑓𝑙
𝐷
𝑚
,

Ω =

[

[

[

[

𝐼 0 0 0

0 0 𝐼 0

0 𝐼 0 0

0 0 0 𝐼

]

]

]

]

, ∀𝑚, 𝑙 ∈ T.

(6)

Accordingly, the jumping process {S
𝑚
,F
𝑙
} in the error

system (5) forms a two-component Markov chain 𝑟
𝑖,𝑗

on
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T ×T with the extended transition probabilities 𝑝
(𝑚,𝑙)(𝑛,𝑢)

=

Pr{S
𝑛
,F
𝑢
| S
𝑚
,F
𝑙
} given by

𝑝
(𝑚,𝑙)(𝑛,𝑢)

=

{
{
{
{
{

{
{
{
{
{

{

𝑝
𝑚𝑛
, 𝑢 = 𝑛, 𝑢 = 𝑙

𝜙𝑝
𝑚𝑛
, 𝑢 ̸= 𝑛, 𝑢 = 𝑙

(1 − 𝜙) 𝑝
𝑚𝑛
, 𝑢 = 𝑛, 𝑢 ̸= 𝑙

0, 𝑢 ̸= 𝑛, 𝑢 ̸= 𝑙.

(7)

Remark 1. An important feature of the augmented system
(5) lies in the fact that a two-component Markov chain
with 𝑔2 modes is considered for the jumping process, which
constitutes the most significant distinction from previous
results on asynchronous switching. The scalar 𝜙 in extended
transition probabilities (7) indicates the mismatch degree of
the modes between the filter and the system.

The following definitions are needed in formulating the
considered problem. For more details refer to [13] and the
references therein.

Definition 2. The system (5) is said to be mean-square
asymptotically stable if for 𝑤

𝑖,𝑗
= 0 and bounded boundary

conditions, the following holds:

lim
𝑖+𝑗→∞

E {
󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑖,𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

2

} = 0, (8)

where 𝑥
𝑖,𝑗
= [𝑥
ℎ𝑇

𝑖,𝑗
𝑥
V𝑇
𝑖,𝑗
]

𝑇

.

Definition 3. Given a scalar 𝛾 > 0, the system in (5) is said
to be mean-square asymptotically stable with anH

∞
distur-

bance attenuation level 𝛾, if it is mean-square asymptotically
stable, and under zero initial conditions satisfies

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑖,𝑗

󵄩
󵄩
󵄩
󵄩
󵄩𝐸

< 𝛾

󵄩
󵄩
󵄩
󵄩
󵄩
𝑤
𝑖,𝑗

󵄩
󵄩
󵄩
󵄩
󵄩2
, (9)

for all nonzero 𝑤
𝑖,𝑗
, where

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑖,𝑗

󵄩
󵄩
󵄩
󵄩
󵄩𝐸

= √E
{

{

{

∞

∑

𝑖=0

∞

∑

𝑗=0

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑖,𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

2}

}

}

,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑤
𝑖,𝑗

󵄩
󵄩
󵄩
󵄩
󵄩2
= √

∞

∑

𝑖=0

∞

∑

𝑗=0

󵄩
󵄩
󵄩
󵄩
󵄩
𝑤
𝑖,𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

2

.

(10)

Then, the estimation problem of interest is stated as
follows: given 𝛾 > 0, design a filter of the form in (3) such that
the error system in (5) with extended transition probabilities
(7) is mean-square asymptotically stable and has a prescribed
H
∞

disturbance attenuation level 𝛾.

3. Main Results

In this section, wewill show the procedure to design the asyn-
chronous H

∞
filter, which guarantees that the error system

is mean-square asymptotically stable and has a prescribed
H
∞

disturbance attenuation level 𝛾. We first provide a new
analysis result to check if the H

∞
norm of the error system

is bounded by the asynchronous filter. The corresponding
analysis result is formulated in the following theorem.

Theorem 4. Consider the system (5) with extended transition
probabilities (7), and let 𝛾 > 0 be a given constant. If there exist
matrices 𝑃

𝑚,𝑙
= diag{𝑃ℎ

𝑚,𝑙
, 𝑃

V
𝑚,𝑙
} > 0, for all (𝑚, 𝑙) ∈ T × T,

such that

[

[

[

[

−P
𝑛,𝑢

0 P
𝑛,𝑢
𝐴
𝑚,𝑙

P
𝑛,𝑢
𝐵
𝑚,𝑙

∗ −𝐼 𝐶
𝑚,𝑙

𝐷
𝑚,𝑙

∗ ∗ −𝑃
𝑚,𝑙

0

∗ ∗ ∗ −𝛾
2

𝐼

]

]

]

]

< 0, (11)

where P
𝑛,𝑢

= ∑
(𝑛,𝑢)∈T×T 𝑝

(𝑚,𝑙)(𝑛,𝑢)
𝑃
𝑛,𝑢
, then the system in (5)

is mean-square asymptotically stable and has a prescribedH
∞

performance index 𝛾.

Proof. First, we handle the stochastic stability of the system
in (5) with 𝑤

𝑖,𝑗
≡ 0. Construct the following index:

L
𝑖,𝑗
= E {𝑥

ℎ𝑇

𝑖+1,𝑗
𝑃
ℎ

(𝑟
𝑖+1,𝑗

) 𝑥
ℎ

𝑖+1,𝑗
+ 𝑥

V𝑇
𝑖,𝑗+1

𝑃
V
(𝑟
𝑖,𝑗+1

) 𝑥
V
𝑖,𝑗+1

−𝑥
𝑇

𝑖,𝑗
𝑃 (𝑟
𝑖,𝑗
) 𝑥
𝑖,𝑗
| 𝑥
𝑖,𝑗
, 𝑟
𝑖,𝑗
= (𝑚, 𝑙)} ,

(12)

where𝑃(𝑟
𝑖,𝑗
) = diag{𝑃ℎ(𝑟

𝑖,𝑗
), 𝑃

V
(𝑟
𝑖,𝑗
)}, which is represented as

𝑃
𝑚,𝑙

when 𝑟
𝑖,𝑗
= (𝑚, 𝑙).Then, along the evolution of the system

(5) with 𝑤
𝑖,𝑗
≡ 0, it follows that

L
𝑖,𝑗
= 𝑥
𝑇

𝑖,𝑗
{𝐴

𝑇

𝑚,𝑙
∑

(𝑛,𝑢)∈T×T

𝑝
(𝑚,𝑙)(𝑛,𝑢)

𝑃
𝑛,𝑢
𝐴
𝑚,𝑙

− 𝑃
𝑚,𝑙
}𝑥
𝑖,𝑗
.

(13)

By Schur’s complement, (11) guarantees L
𝑖,𝑗

< 0, which
implies that

lim
𝑖+𝑗→∞

E {
󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑖,𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

2

} = 0. (14)

Thus, the system is mean-square asymptotically stable; see
[13] for more details.

Next, to establish theH
∞
performance for the system, we

consider the following index:

J
𝑖,𝑗
= E {𝑥

ℎ𝑇

𝑖+1,𝑗
𝑃
ℎ

(𝑟
𝑖+1,𝑗

) 𝑥
ℎ

𝑖+1,𝑗
+ 𝑥

V𝑇
𝑖,𝑗+1

𝑃
V
(𝑟
𝑖,𝑗+1

) 𝑥
V
𝑖,𝑗+1

− 𝑥
𝑇

𝑖,𝑗
𝑃 (𝑟
𝑖,𝑗
) 𝑥
𝑖,𝑗
+ 𝑧
𝑇

𝑖,𝑗
𝑧
𝑖,𝑗
− 𝛾
2

𝑤
𝑇

𝑖,𝑗
𝑤
𝑖,𝑗
|

𝑥
𝑖,𝑗
, 𝑟
𝑖,𝑗
= (𝑚, 𝑙) } .

(15)

It is inferred from (15) that

J
𝑖,𝑗
= 𝜁
𝑇

𝑖,𝑗
Φ
𝑚,𝑙
𝜁
𝑖,𝑗
, (16)

where 𝜁
𝑖,𝑗
= [𝑥
𝑇

𝑖,𝑗
𝑤
𝑇

𝑖,𝑗
]

𝑇

and

Φ
𝑚,𝑙

=
[

[

[

𝐴

𝑇

𝑚,𝑙

𝐵

𝑇

𝑚,𝑙

]

]

]

∑

(𝑛,𝑢)∈T×T

𝑝
(𝑚,𝑙)(𝑛,𝑢)

𝑃
𝑛,𝑢
[𝐴
𝑚,𝑙

𝐵
𝑚,𝑙
]

+
[

[

[

𝐶

𝑇

𝑚,𝑙

𝐷

𝑇

𝑚,𝑙

]

]

]

[𝐶
𝑚,𝑙

𝐷
𝑚,𝑙
] − [

𝑃
𝑚,𝑙

0

0 𝛾
2

𝐼

] .

(17)
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Applying Schur’s complement again, (11) yields J
𝑖,𝑗

< 0,
which means that ‖𝑧

𝑖,𝑗
‖
𝐸

< 𝛾‖𝑤
𝑖,𝑗
‖
2

. Hence, the system
is mean-square asymptotically stable and has a prescribed
H
∞

disturbance attenuation performance. The proof is
completed.

Remark 5. It is worth stressing that the two-component
Markov chain adopted in (5) makes the analysis criterion
more concise and clear. It is shown that only condition (11)
is necessary to test whether the system (5) has a prescribed
disturbance attenuation level in the H

∞
sense for a given

asynchronous filter. The analysis result can be used to clarify
the relationship between the asynchronous switching and the
H
∞

performance level.

The developments, in the above, lead to the asynchronous
filter design result in the next theorem.

Theorem 6. The system in (5) with extended transition prob-
abilities (7) is mean-square asymptotically stable and has a
prescribedH

∞
performance index 𝛾 > 0, if there exist matrices

𝑃
1𝑚,𝑙

= diag{𝑃ℎ
1𝑚,𝑙

, 𝑃
V
1𝑚,𝑙

} > 0, 𝑃
3𝑚,𝑙

= diag{𝑃ℎ
3𝑚,𝑙

, 𝑃
V
3𝑚,𝑙

} > 0,
𝑃
2𝑚,𝑙

= diag{𝑃ℎ
2𝑚,𝑙

, 𝑃
V
2𝑚,𝑙

}, 𝑋
𝑙
, 𝑆
𝑙
, 𝑈
𝑙
, and 𝐴

𝑓𝑙
, 𝐵
𝑓𝑙
, 𝐶
𝑓𝑙
, 𝐷
𝑓𝑙
, for

all (𝑚, 𝑙) ∈ T ×T, such that

[

[

[

[

[

[

[

[

Σ
1

𝑚,𝑙
Σ
2

𝑚,𝑙
0 Σ
4

𝑚,𝑙
𝑋
𝑇

𝑙
𝐵
𝑚
+ 𝐵
𝑓𝑙
𝐷
𝑚

∗ Σ
3

𝑚,𝑙
0 Σ
5

𝑚,𝑙
𝑆
𝑇

𝑙
𝐵
𝑚
+ 𝐵
𝑓𝑙
𝐷
𝑚

∗ ∗ −𝐼 Σ
6

𝑚,𝑙
𝐿
𝑚
− 𝐷
𝑓𝑙
𝐷
𝑚

∗ ∗ ∗ Σ
7

𝑚,𝑙
0

∗ ∗ ∗ ∗ −𝛾
2

𝐼

]

]

]

]

]

]

]

]

< 0, (18)

where

Σ
1

𝑚,𝑙
= ∑

(𝑛,𝑢)∈T×T

𝑝
(𝑚,𝑙)(𝑛,𝑢)

𝑃
1𝑛,𝑢

− 𝑋
𝑇

𝑙
− 𝑋
𝑙
,

Σ
2

𝑚,𝑙
= ∑

(𝑛,𝑢)∈T×T

𝑝
(𝑚,𝑙)(𝑛,𝑢)

𝑃
2𝑛,𝑢

− 𝑈
𝑇

𝑙
− 𝑆
𝑙
,

Σ
3

𝑚,𝑙
= ∑

(𝑛,𝑢)∈T×T

𝑝
(𝑚,𝑙)(𝑛,𝑢)

𝑃
3𝑛,𝑢

− 𝑈
𝑇

𝑙
− 𝑈
𝑙
,

Σ
4

𝑚,𝑙
= [𝑋
𝑇

𝑙
𝐴
𝑚
+ 𝐵
𝑓𝑙
𝐶
𝑚

𝐴
𝑓𝑙
] ,

Σ
5

𝑚,𝑙
= [𝑆
𝑇

𝑙
𝐴
𝑚
+ 𝐵
𝑓𝑙
𝐶
𝑚

𝐴
𝑓𝑙
] ,

Σ
6

𝑚,𝑙
= [𝐻
𝑚
− 𝐷
𝑓𝑙
𝐶
𝑚

− 𝐶
𝑓𝑙
] ,

Σ
7

𝑚,𝑙
= [

−𝑃
1𝑚,𝑙

−𝑃
2𝑚,𝑙

∗ −𝑃
3𝑚,𝑙

] .

(19)

In this case, the admissible filter gains are given by

𝐴
𝑓𝑙
= 𝑈
−𝑇

𝑙
𝐴
𝑓𝑙
, 𝐵
𝑓𝑙
= 𝑈
−𝑇

𝑙
𝐵
𝑓𝑙
, 𝐶
𝑓𝑙
= 𝐶
𝑓𝑙
, 𝐷
𝑓𝑙
= 𝐷
𝑓𝑙
.

(20)

Proof. First, for amatrix𝐺
𝑙
, for all 𝑙 ∈ T, it is verified from the

fact (𝐺
𝑙
−P
𝑛,𝑢
)
𝑇

(P
𝑛,𝑢
)
−1

(𝐺
𝑙
−P
𝑛,𝑢
) ≥ 0 thatP

𝑛,𝑢
−𝐺
𝑇

𝑙
−𝐺
𝑙
≥

−𝐺
𝑇

𝑙
(P
𝑛,𝑢
)
−1

𝐺
𝑙
. Then, we know that

[

[

[

[

[

[

[

[

[

P
𝑛,𝑢

− 𝐺
𝑇

𝑙
− 𝐺
𝑙
0 𝐺
𝑇

𝑙
𝐴
𝑚,𝑙

𝐺
𝑇

𝑙
𝐵
𝑚,𝑙

∗ −𝐼 𝐶
𝑚,𝑙

𝐷
𝑚,𝑙

∗ ∗ −𝑃
𝑚,𝑙

0

∗ ∗ ∗ −𝛾
2

𝐼

]

]

]

]

]

]

]

]

]

< 0 (21)

leads to (11).Thus, consider the system in (5), and assume that
the matrices 𝑃ℎ

𝑚,𝑙
, 𝑃V
𝑚,𝑙
, 𝐺
𝑙
in (21) have the following forms:

𝑃
ℎ

𝑚,𝑙
=
[

[

𝑃
ℎ

1𝑚,𝑙
𝑃
ℎ

2𝑚,𝑙

∗ 𝑃
ℎ

3𝑚,𝑙

]

]

, 𝑃
V
𝑚,𝑙

=
[

[

𝑃
V
1𝑚,𝑙

𝑃
V
2𝑚,𝑙

∗ 𝑃
V
3𝑚,𝑙

]

]

,

𝐺
𝑙
= [

𝐺
1𝑙

𝐺
2𝑙

𝐺
4𝑙

𝐺
3𝑙

] , 𝐺
𝑖𝑙
= [

𝑋
𝑖𝑙
𝑆
𝑖𝑙

𝑈
𝑖𝑙
𝑈
𝑖𝑙

] , 𝑖 = 1, . . . , 4.

(22)

Notice that

Ω𝑃
𝑚,𝑙
Ω
𝑇

= [

𝑃
1𝑚,𝑙

𝑃
2𝑚,𝑙

∗ 𝑃
3𝑚,𝑙

] , Ω𝐺
𝑙
Ω
𝑇

= [

𝑋
𝑙
𝑆
𝑙

𝑈
𝑙
𝑈
𝑙

] ,

Ω𝐺
𝑇

𝑙
𝐴
𝑚,𝑙
Ω
𝑇

=
[

[

𝑋
𝑇

𝑙
𝐴
𝑚
+ 𝐵
𝑓𝑙
𝐶
𝑚

𝐴
𝑓𝑙

𝑆
𝑇

𝑙
𝐴
𝑚
+ 𝐵
𝑓𝑙
𝐶
𝑚

𝐴
𝑓𝑙

]

]

,

Ω𝐺
𝑇

𝑙
𝐵
𝑚,𝑙

=
[

[

𝑋
𝑇

𝑙
𝐵
𝑚
+ 𝐵
𝑓𝑙
𝐷
𝑚

𝑆
𝑇

𝑙
𝐵
𝑚
+ 𝐵
𝑓𝑙
𝐷
𝑚

]

]

,

𝐶
𝑚,𝑙
Ω
𝑇

= [𝐻
𝑚
− 𝐷
𝑓𝑙
𝐶
𝑚

− 𝐶
𝑓𝑙
] ,

𝐷
𝑚,𝑙

= 𝐿
𝑚
− 𝐷
𝑓𝑙
𝐷
𝑚
.

(23)

Furthermore, define matrix variables as

𝐴
𝑓𝑙
= 𝑈
𝑇

𝑙
𝐴
𝑓𝑙
, 𝐵

𝑓𝑙
= 𝑈
𝑇

𝑙
𝐵
𝑓𝑙
,

𝐶
𝑓𝑙
= 𝐶
𝑓𝑙
, 𝐷

𝑓𝑙
= 𝐷
𝑓𝑙
.

(24)

It is obvious from the inequality in (18) that (11) inTheorem 4
is satisfied with the filter matrices as in (24) and 𝐴

𝑚,𝑙
, 𝐵
𝑚,𝑙
,

𝐶
𝑚,𝑙
, 𝐷
𝑚,𝑙

in (5). Hence, it follows from Theorem 4 that
the system (5) with extended transition probabilities (7)
is mean-square asymptotically stable and has a prescribed
H
∞

performance. Meanwhile, the filter gains in (20) follow
immediately from (24). This completes the proof.

Remark 7. Theorem 6 provides a sufficient condition for
designing an admissible H

∞
filter of the form in (3) for

the system (1) under asynchronous switching. Compared
with the well-known H

∞
filtering results of 1D Markov

jump systems, such as [23], the structure of matrix variables
in Theorem 6 is slightly involved due to the structural
complexity of the 2D system (1).
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Remark 8. By solving the convex problem formulated in
Theorem6, theH

∞
performance 𝛾 can be optimized in terms

of the feasibility of the corresponding condition.The result in
Theorem 6 indicates that the different 𝜙 in (7) brings about
the different optimal 𝛾 achieved for the system (5). Thus,
the effect of asynchronous switching can be readily known
by comparing the H

∞
performance indexes, which will be

shown in the next section.

4. A Numerical Example

In this section, an example is provided to demonstrate the
merits of ourmain result. Consider a 2DMarkov jump system
with three operation modes as follows:

𝐴
1
= [

0.2 0

1 0.1
] , 𝐴

2
= [

0.8 0

1 0.6
] ,

𝐴
3
= [

0.5 0

1 0.9
] , 𝐶

1
= [0.2 1] ,

𝐶
2
= [0.8 1] , 𝐶

3
= [0.5 1] ,

𝐵
1
= 𝐵
2
= 𝐵
3
= [

1 0

0 0
] ,

𝐷
1
= 𝐷
2
= 𝐷
3
= [0 1] ,

𝐻
1
= 𝐻
2
= 𝐻
3
= [0 1] .

(25)

The transition probability matrix is given by

𝑝 =
[

[

𝑝
11

𝑝
12

𝑝
13

𝑝
21

𝑝
22

𝑝
23

𝑝
31

𝑝
32

𝑝
33

]

]

=
[

[

0.5 0.3 0.2

0.6 0.1 0.3

0.1 0.2 0.7

]

]

. (26)

Moreover, 𝜙 is set as 0.35.
For this system, the optimized H

∞
performance level

is 2.8202 via the method in [16]. By using the filter design
method in Theorem 6, the minimum H

∞
cost is obtained

𝛾
∗

= 2.1694 as well as the resulting filter gain matrices

𝐴
𝑓1
= [

0.4496 −0.2009

0.4245 0.0413
] , 𝐵

𝑓1
= [

−0.2091

−0.1126
] ,

𝐶
𝑓1
= [−0.1020 −0.8002] ,

𝐴
𝑓2
= [

0.3607 0.0281

0.8642 −0.0670
] , 𝐵

𝑓2
= [

−0.0999

−0.6389
] ,

𝐶
𝑓2
= [−0.0442 −0.9759] ,

𝐴
𝑓3
= [

0.2914 0.0082

0.5848 −0.0314
] , 𝐵

𝑓3
= [

−0.1127

−0.8919
] ,

𝐶
𝑓3
= [−0.0234 −1.0341] .

(27)
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Figure 1: Filtering error 𝑧
𝑖,𝑗
in Case I.
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Figure 2: Filtering error 𝑧
𝑖,𝑗
in Case II.

In addition, let the system initial condition 𝑥V
𝑖,0
= 0.8, 0 ≤ 𝑖 ≤

15, and select the following noise signals:

Case I:𝑤
𝑖,𝑗
= {

0.1, 1 ≤ 𝑖, 𝑗 ≤ 5,

0, otherwise,

Case II:𝑤
𝑖,𝑗
= {

0.5𝑒
−0.25𝑗 sin (0.5𝜋𝑗) , 1 ≤ 𝑖 ≤ 10, 𝑗 ≥ 1,

0, otherwise.
(28)

By applying the obtainedfilter, the filtering errors are depicted
in Figures 1 and 2, respectively, from which we can see that
𝑧
𝑖,𝑗
converge to zero.The effectiveness of the designed filter is

apparent.
Figure 3 shows the minimum 𝛾 versus 𝜙 for the design

method inTheorem 6. It is observed from the curve’s trend of
the asynchronous design that the lower the probability 𝜙 is,
the better the performance 𝛾 is. In this sense, the proposed
method reveals a compromise between the asynchronous
switching and the performance benefit. Thus, by compar-
ing the H

∞
performance indexes achieved in Figure 3,
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Figure 3: OptimizedH
∞
performance.

the effect of the asynchronous switching can be comprehen-
sively understood just as mentioned before.

5. Conclusion

This paper is dedicated to the problem of H
∞

estimation
for a class of 2D Markov jump systems under asynchronous
switching. A novel method has been proposed to model the
process of the error system. The existence condition of asyn-
chronousH

∞
filters has been derived to ensure the stochastic

stability and H
∞

disturbance attenuation level of the error
system. It is also shown from the obtained conditions that the
effect of the asynchronous phenomenon can be easily known
for 2D Markov jump systems. A numerical example is given
to demonstrate the validity and the merits of the proposed
theoretical results.
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