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This paper investigates the distributed consensus-based robust adaptive formation control for nonholonomic mobile robots with
partially known dynamics. Firstly, multirobot formation control problem has been converted into a state consensus problem.
Secondly, the practical control strategies, which incorporate the distributed kinematic controllers and the robust adaptive torque
controllers, are designed for solving the formation control problem. Thirdly, the specified reference trajectory for the geometric
centroid of the formation is assumed as the trajectory of a virtual leader, whose information is available to only a subset of the
followers. Finally, numerical results are provided to illustrate the effectiveness of the proposed control approaches.

1. Introduction

In the past decades, cooperative control of multiple mobile
robots has been receiving significant attention owing to
many potential advantages of such systems over single robot.
In fact, multirobot cooperative control means a group of
mobile robots working cooperatively that can achieve great
benefits including low cost, greater flexibility, adaptability to
unknown environments, and robustness [1–4]. In the field of
cooperative control, formation control has received a lot of
attention from the researchers for its potential applications
such as surveillance-and-security, object transportation,
object manipulation, search-and-rescue, intelligent trans-
portation systems, and exploration. The formation control
means the problem of controlling the relative position and
orientation of mobile robots in a group according to some
desired pattern for executing a given task.

Various control approaches have been proposed in the
literature for mobile robot formations, including leader-
follower approach [5–10], behavior-based approach [11–
13], virtual-structure approach [14–18], artificial potential
approach [19–22], and graph theory [23, 24]. The main idea

behind these approaches is to find suitable velocity control
inputs to stabilize the closed-loop system. In the literature,
formation control for multiple nonholonomic mobile robots,
just simply consider the kinematic model by ignoring the
robot dynamics. To design the control inputs to guarantee the
stability of the closed-loop system, it is assumed that there is
“perfect velocity tracking.” Reference [25] proposed an error-
based tracking model and designed a stable kinematic track-
ing controller for the nonholonomic mobile robot. Reference
[26] presents a kinematic controller based on the receding-
horizon leader-follower (RH-LF) control framework to solve
the formation problem of multiple nonholonomic mobile
robots. Reference [27] studied the tracking control problem
for nonholonomic mobile robots with limited information of
a desired of trajectory. Reference [28] proposed a kinematic
controller for the distributed consensus-based formation
control. However, the perfect velocity tracking assumption
does not hold in practice, and the dynamics of robot should
not be ignored and practical control strategies account-
ing for both the kinematic and dynamic affect should be
implemented [29–31]. In [32], the decentralized cooperative
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robust controllers are proposed for the formation control
of a group of wheeled mobile robots with dynamics. In
[31], an adaptive tracking controller for the dynamic model
with unknown parameters was designed for a nonholonomic
mobile robot by using an adaptive backstepping approach.
Though these works consider the dynamics of the mobile
robot, the dynamics of the mobile robot do not have the
friction and bounded disturbance. It is well known that
friction plays a central, controlling role in a rich variety of
physical systems. Therefore, the friction term and bounded
disturbance term should not be ignored and practical control
strategies accounting for the friction term and bounded
disturbance term should be implemented in practice.

Motivated by the above discussions, this paper investi-
gates the distributed consensus-based robust adaptive for-
mation control for nonholonomic mobile robots with partial
known dynamics. The contribution of this paper is given
as follows. Firstly, a variable transformation is given to
convert the formation control problem into a state consensus
problem. Then, the distributed consensus-based kinematic
controllers are developed to make a group of robots asymp-
totically converge to a desired geometric pattern. In this
paper, the specified reference trajectory for the geometric
centroid of the formation is assumed as the trajectory of
a virtual leader whose information is available to only a
subset of the followers. Also the followers are assumed to
have only local interaction with their neighbors. It is well
known in practice that the perfect knowledge of dynamic
model of the wheeled mobile robot is unattainable, and it is
almost impossible to obtain exact values of the parameters
of the mobile robot. Therefore, this paper considers that the
dynamics of themobile robot is partial known, in which there
exist some unknown factors that will affect the robust trajec-
tory tracking of the system. Then the corresponding robust
adaptive torque controllers for mobile robots are developed
for guaranteeing the robust velocity tracking, and the cor-
responding sufficient conditions are obtained for a group of
nonholonomic mobile robots asymptotically converge to a
desired geometric pattern with its centroid moving along the
specified reference trajectory. The rigorous proofs are given
by using graph theory, matrix theory, and Lyapunov theory.
Finally, simulation examples illustrate the effectiveness of the
proposed controllers. Compared with existing works in the
literature, the current paper has the following advantages.
Firstly, the relative distance and angular for each robotwith its
leader are not required to be known that is different from the
traditional leader-follower approach [5, 6, 8, 9, 33]. Secondly,
in contrast to that only kinematic control models considered
in [26, 27, 34–36], the controllers designed in this paper are
based on both the kinematic and dynamic models of robots.
Moreover, the dynamics of wheeled mobile robots with
possible uncertainty are considered. Thirdly, in contrast to
that complete knowledge of the dynamics needed in [32, 37],
only partial knowledge of the dynamics is needed. Fourthly,
the control laws proposed in this paper are distributed. It
is not necessary to know the global information for each
robot. In fact, each robot can obtain information only from
its neighbors.
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Figure 1: Model of a differential wheeled mobile robot.

The remainder of this paper is organized as follows.
Section 2 introduces some preliminaries and gives the prob-
lem formulation. Section 3 and Section 4 present some new
results on distributed formation control problem for multiple
nonholonomic mobile robots. Simulations results are pro-
vided to verify the theoretical analysis in Section 5. Section 6
concludes this article.

2. Background

In this section, the model of nonholonomic wheeled mobile
robot is first briefly presented.Then some notations for graph
theory and nonsmooth analysis are introduced. Finally, the
problem description is given.

2.1. Dynamics of Nonholonomic Wheeled Mobile Robot. Con-
sider a multirobot system consisting of 𝑚 nonholonomic
wheeled mobile robots indexed by 1, 2, . . . , 𝑚. The nonholo-
nomic mobile robot is shown in Figure 1. The kinematic
model and dynamic model of the mobile robot 𝑗 can be
described as follows [38]:

̇𝑞𝑗 = 𝑆 (𝑞𝑗) V𝑗, 𝑗 = 1, . . . , 𝑚, (1)

𝑀𝑗 (𝑞𝑗) ̈𝑞𝑗 + 𝐶𝑗 (𝑞𝑗, ̇𝑞𝑗) ̇𝑞𝑗 + 𝐹𝑗 ( ̇𝑞𝑗) + 𝐺𝑗 (𝑞𝑗) + 𝜏𝑑𝑗

= 𝐵𝑗 (𝑞𝑗) 𝜏𝑗 − 𝐴
𝑇
𝑗 (𝑞𝑗) 𝜆𝑗,

(2)

where 𝑞𝑗 = [𝑥𝑗, 𝑦𝑗, 𝜃𝑗] is the coordinates of the mobile robot
𝑗, 𝑥𝑗, 𝑦𝑗, and 𝜃𝑗 are the position and orientation of the mobile
robot. V𝑗 and 𝑤𝑗 are the linear velocity and angular velocity,
respectively, and V𝑗 = [V𝑗, 𝑤𝑗]

𝑇. 𝑆(𝑞𝑗) is the Jacobian matrix,

and 𝑆(𝑞𝑗) = [

cos 𝜃𝑗 0
sin 𝜃𝑗 0
0 1

].𝑀𝑗(𝑞𝑗) ∈ R3×3 is a symmetric positive

definite inertia matrix, 𝐶𝑗(𝑞𝑗, ̇𝑞𝑗) ∈ R3×3 is the bounded
centripetal and coriolis matrix, 𝐹𝑗( ̇𝑞𝑗) ∈ R3×1 denotes sur-
face friction,𝐺𝑗(𝑞𝑗) ∈ R3×1 is the gravitational vector, and 𝜏𝑑𝑗
denotes bounded unknown disturbances including unstruc-
tured unmodeled dynamics. 𝐵𝑗(𝑞𝑗) ∈ R3×2 is the input
transformationmatrix, 𝜏𝑗 ∈ R2×1 is the control torque vector,
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𝐴𝑗(𝑞) ∈ R1×3 is the matrix associated with the constraints,
and 𝜆𝑗 ∈ R1×1 is the vector of constraint forces.

The dynamic model (2) has the following properties [38].

Property 1. The inertia matrix 𝑀𝑗(𝑞𝑗) is symmetric positive
definite and satisfies the following inequality:

𝑚1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑞𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

2
≤ 𝑞
𝑇
𝑗𝑀𝑗 (𝑞𝑗) 𝑞𝑗 ≤ 𝑚2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑞𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

2
, 𝑞𝑗 ∈ R

3
, (3)

where𝑚1, 𝑚2 are positive constants, and ‖ ⋅ ‖ is the standard
Euclidean norm.

Property 2. 𝑀̇𝑗(𝑞𝑗) − 2𝐶𝑗(𝑞𝑗, ̇𝑞𝑗) is skew symmetric; that is to
say,

𝜉
𝑇
[

1

2

𝑀̇𝑗 (𝑞𝑗) − 𝐶𝑗 (𝑞𝑗, ̇𝑞𝑗)] 𝜉 = 0. ∀𝜉 ∈ R
3
. (4)

2.2. Graph Theory. The communication topology among
robots is presented by a weighted graph G = (V,E,A) with
a vertex set V = {]1, . . . , ]𝑚}, an edges set E ⊆ V × V,
and a weighted adjacency matrix A = (𝑎𝑖𝑗)𝑚×𝑚. Here, each
node ]𝑖 inV represents a robot 𝑖, and each edge (]𝑖, ]𝑗) ∈ E
in a weighted undirected graph represents an information
link from robot 𝑗 to robot 𝑖, which means that the robots 𝑖
and 𝑗 can receive information from each other. The weighted
adjacency matrix A of a digraph G is defined 𝑎𝑗𝑗 = 0 for
any V𝑗 ∈ V; that is, self-edges are not allowed, 𝑎𝑗𝑖 > 0 if
(]𝑗, ]𝑖) ∈ E, 𝑎𝑗𝑖 = 0 otherwise, where 𝑎𝑗𝑖 is the weight of the
link (]𝑗, ]𝑖). Note that here 𝑎𝑗𝑖 = 𝑎𝑖𝑗, ∀𝑗 ̸= 𝑖, since (]𝑗, ]𝑖) ∈ E
implies (]𝑖, ]𝑗) ∈ E. We can say that ]𝑗 is a neighbor vertex of
]𝑖, if (]𝑗, ]𝑖) ∈ E. The neighbor set of node 𝑗 is defined as

N𝑗 = {V𝑖 ∈ V : 𝑎𝑗𝑖 ̸= 0} = {V𝑖 ∈ V : (𝑗, 𝑖) ∈ E} . (5)

A path in the undirected graph G is a sequence of edges in
the form (V𝑖1 , V𝑖2), (V𝑖2 , V𝑖3), . . ., where V𝑖𝑗 ∈ V. We call an
undirected graph G connected if for any different nodes V𝑖
and V𝑗 inV there exists an undirected path.

The Laplacian matrix 𝐿 = (𝑙𝑗𝑖)𝑚×𝑚 associated with A
for graph G is defined as 𝑙𝑗𝑖 = −𝑎𝑗𝑖 for 𝑗 ̸= 𝑖, and 𝑙𝑗𝑗 =

∑
𝑚
𝑖=1,𝑖 ̸= 𝑗 𝑎𝑗𝑖, 𝑗, 𝑖 ∈ {1, . . . , 𝑚}. For an undirected graph, 𝐿 is

symmetric positive semidefinite.

Lemma 1 (Chung [39]). Assume that G is a weighted undi-
rected graph with Laplacian matrix 𝐿; then G is connected if
and only if thematrix𝐿 has an eigenvalue zerowithmultiplicity
1 and corresponding eigenvector 1, and all other eigenvalues are
positive.

2.3. Nonsmooth Analysis. In what follows, some elements
fromnonsmooth analysis will be presented. Consider a vector
differential equation with a discontinuous right-hand side as

𝑥̇ = 𝑓 (𝑡, 𝑥) , (6)

where 𝑓(𝑡, 𝑥) is measurable and essentially locally bounded.
The vector function 𝑥(⋅) is called a Filippov solution [40] of
(6) if 𝑥(⋅) is absolutely continuous and satisfies

𝑥̇ ∈ K [𝑓] (𝑡, 𝑥) (7)

almost everywhere where

K [𝑓] (𝑡, 𝑥) ≡ co { lim
𝑥𝑖→𝑥

𝑓 (𝑥𝑖) | 𝑥𝑖 ∉ ΩV} , (8)

where ΩV denotes the set of measure zero that contains the
set of points where 𝑓 is not differentiable and co denotes the
convex closure.

Lemma 2 (see [40]). The Filippov set-value map has the
following useful properties.

(1) Consistency: if 𝑓 : R𝑑 → R𝑚 is continuous at 𝑥 ∈ R𝑑,
then

K [𝑓] (𝑥) = {𝑓 (𝑥)} . (9)

(2) Sum Rule: if function 𝑓1, 𝑓2 : R𝑑 → R𝑚 are locally
bounded at 𝑥 ∈ R𝑑, then

K [𝑓1 + 𝑓2] (𝑥) ⊆ K [𝑓1] (𝑥) +K [𝑓2] (𝑥) . (10)

Moreover, if either 𝑓1 or 𝑓2 is continuous at 𝑥, then equality
holds.

Lyapunov theorems have been extended to nonsmooth
systems in [41]. The following chain rule provides a calculus
for the time derivative of the energy function in the nons-
mooth case.

Definition 3 (see [42]). Let 𝑉(𝑥) be a locally Lipschitz
continuous function. The generalized gradient of 𝑉(𝑥) is
given by

𝜕𝑉 (𝑥) ≜ co {lim∇𝑉 (𝑥) | 𝑥𝑖 󳨀→ 𝑥, 𝑥𝑖 ∈ ΩV ∩ 𝑁} , (11)

where co denotes the convex hull, ΩV is the set of Lebesgue
measure zero, where ∇𝑉 does not exist, and𝑁 is an arbitrary
set of zero measure.

In this paper, the candidate Lyapunov function 𝑉 we use
is smooth and hence regular, while its generalized gradient is
a singleton which is equal to its usual gradient everywhere in
the state space: 𝜕𝑉(𝑥) = {∇𝑉(𝑥)}.

Definition 4 (see [40]). Consider the vector differential equa-
tion (6), a set-valued mapK : R𝑑 → B(R), the set-valued
Lie derivative of 𝑉 with respect to (6) is defined as

̇
𝑉̃ ≜ ⋂

𝜉∈𝜕𝑉

𝜉
𝑇
K [𝑓] (𝑡, 𝑥) . (12)

In what follows, we introduce a Lyapunov stability theo-
rem in terms of the set-valued map ̇

𝑉̃.

Lemma 5 (see [41]). For (6), let 𝑓(𝑡, 𝑥) be locally essentially
bounded and 0 ∈ K[𝑓](𝑡, 0) in a region 𝑄 ⊃ {𝑡 | 𝑡0 ≤ 𝑡 ≤

∞} × {𝑥 ∈ R𝑑 | ‖𝑥‖ < 𝑟}, where 𝑟 > 0. Also, let 𝑉 : R𝑑 → R

be a regular function satisfying

𝑉 (𝑡, 0) = 0, 0 < 𝑉1 (‖𝑥‖) ≤ 𝑉 (𝑡, 𝑥) ≤ 𝑉2 (‖𝑥‖) ,

for 𝑥 ̸= 0,

(13)
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in 𝑄 for some 𝑉1 and 𝑉2 belonging to class K. If there exists
a class K function 𝑤(⋅) in 𝑄 such that the set-valued Lie
derivative of 𝑉(𝑥) satisfies

max ̇
𝑉̃ (𝑡, 𝑥) ≤ −𝑤 (𝑥) < 0, for𝑥 ̸= 0, (14)

then the solution 𝑥 ≡ 0 is asymptotically stable.

2.4. Problem Formulation. In this paper, the desired geo-
metric pattern F of 𝑚 mobile robots is described by the
orthogonal coordinates (𝑝𝑗𝑥, 𝑝𝑗𝑦) as follows:

𝑚

∑

𝑗=1

𝑝𝑗𝑥 = 𝑝0𝑥,

𝑚

∑

𝑗=1

𝑝𝑗𝑦 = 𝑝0𝑦, (15)

where (𝑝0𝑥, 𝑝0𝑦) denotes the center of F. Without loss of
generality, assume that 𝑝0𝑥 = 0, 𝑝0𝑦 = 0.

The objective of this paper is to design the control inputs
V𝑗 and𝑤𝑗 for thewheeled nonholonomicmobile robot 𝑗using
its states (𝑞𝑗, ̇𝑞𝑗) and (𝑝𝑗𝑥, 𝑝𝑗𝑦) as well as its neighbors’ states
(𝑞𝑖, ̇𝑞𝑖) and (𝑝𝑖𝑥, 𝑝𝑖𝑦) for 𝑖 ∈ N𝑗, such that

(a) the group of mobile robots converges to the desired
formationF;

(b) each robot in group converges to the desired orienta-
tion 𝜃0;

(c) the geometric centroid of the formation converges to
the desired reference trajectory (𝑥0, 𝑦0);

that is to say,

lim
𝑡→∞

[

𝑥𝑗 − 𝑥𝑖

𝑦𝑗 − 𝑦𝑖
] = [

𝑝𝑗𝑥 − 𝑝𝑖𝑥

𝑝𝑗𝑦 − 𝑝𝑖𝑦
] , (16)

lim
𝑡→∞

(𝜃𝑗 − 𝜃0) = 0, (17)

lim
𝑡→∞

(

𝑚

∑

𝑗=1

𝑥𝑗

𝑚

− 𝑥0) = 0, lim
𝑡→∞

(

𝑚

∑

𝑗=1

𝑦𝑗

𝑚

− 𝑦0) = 0,

(18)

where (𝑥0, 𝑦0, 𝜃0) can be considered as the posture of a virtual
leader 0, which does not have to be an actual robot but is
specified by

𝑥̇0 = V0 cos 𝜃0, ̇𝑦0 = V0 sin 𝜃0, ̇
𝜃0 = 𝑤0. (19)

Hereafter, the𝑚 robots in system (1) are called followers.
The connection weight between robot 𝑗 and the virtual

leader 0 is described by 𝐵 = diag{𝑏1, 𝑏2, . . . , 𝑏𝑚}, in which
𝑏𝑗 > 0 if robot 𝑗 can obtain information from the virtual
leader 0, 𝑏𝑗 = 0 otherwise. Note that if the undirected graph
G is connected, it then follows that the matrix 𝐿 + 𝐵 = 𝐿 +

diag{𝑏1, . . . , 𝑏𝑚} and the matrix M = diag{𝐿 + 𝐵, 𝐿 + 𝐵} are
symmetric positive definite.

In this paper, the following assumptions are needed for
achieving our control objective.

Assumption 6. The 𝜃𝑗 for (0 ≤ 𝑗 ≤ 𝑚) is bounded, 𝑤𝑗 for
(0 ≤ 𝑗 ≤ 𝑚) is persistently exciting, and |𝑤𝑗| ≤ 𝑤max.

Remark 7. 𝑤𝑗 is persistently exciting, which means that 𝑤𝑗
does not converge to 0. The assumption is because of the fact
that the wheeled mobile robot system is nonholonomic.

Assumption 8. There exists at least one follower which can
obtain information from the virtual leader.

Remark 9. Note from Assumption 8 that all follower robots
do not need to obtain the information from the virtual leader;
that is to say, the desired reference trajectory is not required
to available for each robot, which is different from the existing
works in [35, 43].

The following notations will be used throughout this
paper. Let 𝐼𝑚 denote the𝑚 ×𝑚 identity matrix, 0𝑚×𝑚 denote
the 𝑚 × 𝑚 zero matrix, and 1𝑚 = [1, 1, . . . , 1]

𝑇
∈ 𝑅
𝑚 (1 for

short, when there is no confusion). 𝜆min(M) and 𝜆max(M)

are the smallest and the largest eigenvalues of the matrixM,
respectively.

3. Distributed Control Algorithm

To achieve the control objective (16)–(18), the following
transformation is defined to convert the formation control
problem for multiple nonholonomic mobile robots into a
state consensus problem:

𝑧1𝑗 = 𝜃𝑗,

𝑧2𝑗 = (𝑥𝑗 − 𝑝𝑗𝑥) cos 𝜃𝑗 + (𝑦𝑗 − 𝑝𝑗𝑦) sin 𝜃𝑗

+ 𝑘0 sign (𝑢1𝑗) 𝑧3𝑗,

𝑧3𝑗 = (𝑥𝑗 − 𝑝𝑗𝑥) sin 𝜃𝑗 − (𝑦𝑗 − 𝑝𝑗𝑦) cos 𝜃𝑗,

𝑢1𝑗 = 𝑤𝑗,

𝑢2𝑗 = V𝑗 − (1 + 𝑘
2
0) 𝑢1𝑗𝑧3𝑗 + 𝑘0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢1𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑧2𝑗,

(20)

where 𝑢1𝑗 and 𝑢2𝑗 are control inputs, 0 ≤ 𝑗 ≤ 𝑚, 𝑘0 > 0, and
sign(⋅) is the signum function. The definitions in (20) yield
the following dynamic system as

𝑧̇1𝑗 = 𝑢1𝑗,

𝑧̇2𝑗 = 𝑢2𝑗,

𝑧̇3𝑗 = 𝑢1𝑗𝑧2𝑗 − 𝑘0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢1𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑧3𝑗.

(21)

Then the control objective is changed to design 𝑢1𝑗 and 𝑢2𝑗
such that the following equations are satisfied:

lim
𝑡→∞

(𝑧1𝑗 − 𝑧10) = 0, (22)

lim
𝑡→∞

(𝑧2𝑗 − 𝑧20) = 0, (23)

lim
𝑡→∞

(𝑧3𝑗 − 𝑧30) = 0, (24)

lim
𝑡→∞

(𝑢1𝑗 − 𝑢10) = 0. (25)
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Lemma 10. If (22)–(25) hold for 0 ≤ 𝑗 ≤ 𝑚, then the𝑚mobile
robots can converge to the formation pattern F; that is, (16)–
(18) can be satisfied.

Proof. Due to the fact that it is similar to the proof of Lemma
3.1 in [28], it is therefore omitted.

In practice, it is well known that the dynamics model
of the wheel mobile robot may have unknown dynamical
parameters and bounded unknown disturbances, which will
affect the robust trajectory tracking of the system; that is to
say, the “perfect velocity tracking” for robot may not hold.
Hence, the following desired control inputs for the mobile
robot 𝑗 are proposed in this paper as

𝑢1𝑗𝑟 = 𝑢10 − 𝛼 ∑

𝑖∈N𝑗

𝑎𝑗𝑖 (𝑧1𝑗 − 𝑧1𝑖) − 𝛼𝑏𝑗 (𝑧1𝑗 − 𝑧10)

− 𝛽 sign(∑

𝑖∈N𝑗

𝑎𝑗𝑖 (𝑧1𝑗 − 𝑧1𝑖) + 𝑏𝑗 (𝑧1𝑗 − 𝑧10)) ,

(26)

𝑢2𝑗𝑟 = − 𝛼 ∑

𝑖∈N𝑗

𝑎𝑗𝑖 (𝑧2𝑗 − 𝑧2𝑖) − 𝛼𝑏𝑗 (𝑧2𝑗 − 𝑧20)

− 𝛽 sign(∑

𝑖∈N𝑗

𝑎𝑗𝑖 (𝑧2𝑗 − 𝑧2𝑖) + 𝑏𝑗 (𝑧2𝑗 − 𝑧20)) ,

(27)

where 𝑗 = 1, . . . , 𝑚, 𝑏𝑗 is a positive constant if the virtual
leader’s position is available to the follower 𝑗, and 𝑏𝑗 =

0 otherwise, |𝑧̇20| ≤ 𝜅, 𝜅 is a positive constant, 𝛼 is
a nonnegative constant, and 𝛽 is a positive constant and
satisfies 𝛽 > 𝜅.

Define the auxiliary velocity tracking error as

𝑢̃𝑗 = [

𝑢̃𝑤𝑗

𝑢̃V𝑗
] = 𝑢𝑗𝑟 − 𝑢𝑗 = [

𝑢1𝑗𝑟

𝑢2𝑗𝑟
] − [

𝑢1𝑗

𝑢2𝑗
] , (28)

where 𝑢𝑗𝑟 = [𝑢1𝑗𝑟, 𝑢2𝑗𝑟]
𝑇 and 𝑢𝑗 = [𝑢1𝑗, 𝑢2𝑗]

𝑇. Then the
dynamic system (21) becomes in the following form:

𝑧̇1𝑗 = 𝑢1𝑗𝑟 − 𝑢̃𝑤𝑗, (29)

𝑧̇2𝑗 = 𝑢2𝑗𝑟 − 𝑢̃V𝑗, (30)

𝑧̇3𝑗 = (𝑢1𝑗𝑟 − 𝑢̃𝑤𝑗) 𝑧2𝑗 − 𝑘0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢1𝑗𝑟 − 𝑢̃𝑤𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑧3𝑗. (31)

Substitute (26) into the dynamic system (29) and (30).
Then the closed-loop system (29) and (30) can be written as

𝑧̇1∗ = − 𝛼 (𝐿 + 𝐵) 𝑧1∗ + 𝛼𝐵1𝑚𝑧10

− 𝛽 sign ((𝐿 + 𝐵) 𝑧1∗ − 𝐵1𝑚𝑧10) + 1𝑚𝑢10 − 𝑢̂𝑤,

𝑧̇2∗ = − 𝛼 (𝐿 + 𝐵) 𝑧2∗ + 𝛼𝐵1𝑚𝑧20

− 𝛽 sign ((𝐿 + 𝐵) 𝑧2∗ − 𝐵1𝑚𝑧20) − 𝑢̂V,

(32)

where 𝑧1∗ = [𝑧11, . . . , 𝑧1𝑚]
𝑇 and 𝑧2∗ = [𝑧21, . . . , 𝑧2𝑚]

𝑇, 𝑢̂𝑤 =
[𝑢̃𝑤1, . . . , 𝑢̃𝑤𝑚]

𝑇, and 𝑢̂V = [𝑢̃V1, . . . , 𝑢̃V𝑚]
𝑇. Let 𝑧̃1∗ = 𝑧1∗ −

1𝑚𝑧10 and 𝑧̃2∗ = 𝑧2∗ − 1𝑚𝑧20. Then

̇
𝑧̃1∗ = − 𝛼 (𝐿 + 𝐵) 𝑧̃1∗ − 𝛽 sign ((𝐿 + 𝐵) 𝑧̃1∗) − 𝑢̂𝑤,

̇
𝑧̃2∗ = − 𝛼 (𝐿 + 𝐵) 𝑧̃1∗ − 𝛽 sign ((𝐿 + 𝐵) 𝑧̃2∗) − 1𝑚𝑧̇20 − 𝑢̂V,

(33)

where the fact that 𝐿1𝑚𝑧10 = 0 has been applied. Let
𝑍 = [𝑧1∗, 𝑧2∗]

𝑇
= [𝑍1, . . . , 𝑍2𝑚]

𝑇, ̃𝑍 = [𝑧̃1∗, 𝑧̃2∗]
𝑇

=

[
̃
𝑍1, . . . ,

̃
𝑍2𝑚]
𝑇, and f0 = [0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚

, 𝑧20, . . . , 𝑧20⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚

]
𝑇. Hence, the

error dynamic system (33) can be rewritten in a vector form
as

̇
̃
𝑍 = −𝛼M̃

𝑍 − 𝛽 sign (M̃
𝑍) −

̇f0 − 𝑢̂, (34)

where 𝑢̂ = [𝑢̂𝑤, 𝑢̂V]
𝑇
= [𝑢̃𝑤1, . . . , 𝑢̃𝑤𝑚, 𝑢̃V1, . . . , 𝑢̃V𝑚]

𝑇.

4. Adaptive Dynamic Controller Design

4.1. RobotModel and Its Properties. According to (20) and the
definition of V𝑗 in Section 2.2, it is easy to obtain that

V𝑗 = [

1 0

𝐴 1
] 𝑢𝑗, (35)

where𝐴 = (1+ 𝑘
2
0) − 𝑘0 sign(𝑢1𝑗)𝑧2𝑗. Then, it follows from (1)

that we have

̇𝑞𝑗 = 𝑠(𝑞)
𝑗
V𝑗 = 𝑆 (𝑞𝑗) [

1 0

𝐴 1
] 𝑢𝑗 = 𝑆 (𝑞𝑗) 𝑢𝑗, (36)

where

𝑆 =

[

[

[

[

(1 + 𝑘
2
0) 𝑧3𝑗 cos 𝜃𝑗 + 𝑘0 sign (𝑢1𝑗) 𝑧2𝑗 cos 𝜃𝑗

(1 + 𝑘
2
0) 𝑧3𝑗 cos 𝜃𝑗 + 𝑘0 sign (𝑢1𝑗) 𝑧2𝑗 cos 𝜃𝑗

1 0

]

]

]

]

.

(37)

Hence, the dynamics (2) of the mobile robot can be rewritten
as follows:

𝑆
𝑇
𝑀𝑗𝑆𝑢̇𝑗 + 𝑆

𝑇
(𝑀𝑗

̇
𝑆̂ + 𝐶𝑗𝑆) 𝑢𝑗 + 𝑆

𝑇
𝐹𝑗 + 𝑆

𝑇
𝐺𝑗

= 𝑆
𝑇
𝐵𝜏𝑗 − 𝑆

𝑇
𝜏𝑑𝑗, 𝑗 = 1, . . . , 𝑚;

(38)

that is,

𝑀𝑗𝑢̇𝑗 + 𝐶𝑗𝑢𝑗 + 𝐹𝑗 + 𝐺𝑗 = 𝜏𝑗 − 𝜏𝑑𝑗, 𝑗 = 1, . . . , 𝑚, (39)

where 𝑀𝑗 = 𝑆
𝑇
𝑀𝑗𝑆 is a symmetric positive definite inertia

matrix. 𝐶𝑗 = 𝑆
𝑇
(𝑀𝑗

̇
𝑆̂ + 𝐶𝑗𝑆) is the centripetal and coriolis

matrix,𝐺𝑗 = 𝑆
𝑇
𝐺𝑗 is the gravitation vector,𝐺𝑗 = 0. 𝐹𝑗 = 𝑆

𝑇
𝐹𝑗

is the surface friction, 𝜏𝑑𝑗 = 𝑆
𝑇
𝜏𝑑𝑗 denotes the bounded

unknown disturbances including unstructured unmodeled
dynamics, and 𝜏𝑗 = 𝑆

𝑇
𝐵𝜏𝑗 is the input vector.

Similar to the Properties 1 and 2 in Section 2.2, (39) has
the following properties.
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Property 3. The inertia matrix 𝑀𝑗(𝑞𝑗) is symmetric positive
definite.

Proof. It is easy to verify the result, and it is therefore omitted
here.

Property 4. Thematrix ̇
𝑀𝑗 − 2𝐶𝑗 is skew symmetric.

Proof. The derivative of the inertia matrix and the centripetal
and coriolis matrix are given by

̇
𝑀𝑗 (𝑞𝑗) =

̇
𝑆̂

𝑇

𝑀𝑗 + 𝑆
𝑇
𝑀̇𝑗𝑆 + 𝑆

𝑇
𝑀𝑗

̇
𝑆̂,

2𝐶𝑗 = 2𝑆
𝑇
(𝑀𝑗

̇
𝑆̂ + 𝐶𝑗𝑆) .

(40)

Since 𝑀̇𝑗 − 2𝐶𝑗 is skew symmetric and 𝑀𝑗 is symmetric
positive definite, it follows that

̇
𝑀𝑗 − 2𝐶𝑗 =

̇
𝑆̂

𝑇

𝑀𝑗𝑆 + 𝑆
𝑇
𝑀̇𝑗𝑆 + 𝑆

𝑇
𝑀𝑗

̇
𝑆̂ − 2𝑆

𝑇
(𝑀𝑗

̇
𝑆̂ + 𝐶𝑗𝑆)

=
̇
𝑆̂

𝑇

𝑀𝑗𝑆 − 𝑆
𝑇
𝑀𝑗

̇
𝑆̂ + 𝑆
𝑇
(𝑀̇𝑗 − 2𝐶𝑗) 𝑆

= 𝑆
𝑇
(𝑀̇𝑗 − 2𝐶𝑗) 𝑆.

(41)

Hence, the matrix ̇
𝑀𝑗 − 2𝐶𝑗 is skew symmetric.

4.2. Controller Design. Taking the derivative of (28) and
multiplying by the inertiamatrix𝑀𝑗 to both sides of (28) give

𝑀𝑗
̇
𝑢̃𝑗 = 𝑀𝑗𝑢̇𝑗𝑟 −𝑀𝑗𝑢̇𝑗

= −𝐶𝑗𝑢̃𝑗 − 𝜏𝑗 + 𝑓𝑗 (𝑢𝑗𝑟, 𝑢̇𝑗𝑟) + 𝑤𝑗 (𝑡) , 𝑗 = 1, . . . , 𝑚,

(42)

where 𝑓𝑗(𝑢𝑗𝑟, 𝑢̇𝑗𝑟) = 𝑀𝑗𝑢̇𝑗𝑟 + 𝐶𝑗𝑢𝑗𝑟 is composed of known
quantities and the disturbance term is

𝑤𝑗 (𝑡) = Δ 𝑗 + 𝜏𝑑𝑗, 𝑗 = 1, . . . , 𝑚, (43)

with Δ 𝑗 representing any model uncertainties and unmod-
eled dynamics and 𝜏𝑑𝑗 being the unknown bounded dis-
turbance which could represent any inaccurately modeled
dynamics.

Lemma 11 (bounds on the disturbance term, [30]). The
disturbance term 𝑤𝑗(𝑡) is bounded according to

󵄩
󵄩
󵄩
󵄩
󵄩
𝑤𝑗 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝐶0 + 𝐶1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢̃𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
+ 𝐶2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢̃𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

2
= 𝑌𝑗Θ𝑗,

(44)

with 𝐶0, 𝐶1, 𝐶2 depending on the terms like the disturbance
bound, the changes in the mass of the robot due to payload, and
friction coefficients with 𝑌𝑗 being a known regression vector.

When the robot dynamics are partially known, the torque
control algorithm for the dynamics system (42) is designed to
be

𝜏𝑗 = 𝐾𝑗𝑢̃𝑗 + 𝑓𝑗 (𝑢𝑗𝑟, 𝑢̇𝑗𝑟) + 𝜇𝑗𝑟, (45)

where 𝐾𝑗 is a symmetric positive-definite matrix defined by
𝐾𝑗 = 𝑘𝑗𝐼2 with 𝑘𝑗 being a positive gain constant and 𝐼2 ∈

R2×2 being the identity matrix. The nonlinear term 𝜇𝑗𝑟 is an
adaptive robustifying term and is defined as [44]

𝜇𝑗𝑟 =

𝑢̃𝑗(𝑌𝑗Θ̂𝑗)
2

(𝑌𝑗Θ̂𝑗)
󵄩
󵄩
󵄩
󵄩
󵄩
𝑢̃𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
+ 𝛿𝑗

̇
𝛿𝑗 = −𝛾𝑗𝛿𝑗, 𝛿𝑗 (0) = 𝐶𝛿 > 0,

(46)

where 𝛾𝑗 and 𝐶𝛿 are positive design constants, 𝑌𝑗Θ̂𝑗 is the
adaptive estimate of the known function 𝑌𝑗Θ𝑗, Θ̂𝑗 is the
estimate ofΘ𝑗, and the parameter turning law for the estimate
Θ̂𝑗 is defined as

̇
Θ̂𝑗 = Γ𝑗𝑌𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢̃𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
, (47)

with Γ𝑗 being a symmetric and positive definite matrix. Let
Θ̃𝑗 be the estimation error of the parameter turning law, and
Θ̃𝑗 = Θ𝑗 − Θ̂𝑗. It then follows that ̇

Θ̂𝑗 = −
̇

Θ̃𝑗.
Substituting (45) into (42) and writing it in a vector form

give

𝑀(𝑞)
̇
𝑢̃ + 𝐶 (𝑞, ̇𝑞) 𝑢̃ = −𝐾𝑢̃ − 𝜇𝑟 + 𝑤 (𝑡) , (48)

where𝑀(𝑞),𝐶(𝑞, ̇𝑞), and𝐾 are the block diagonalmatrices of
𝑀𝑗(𝑞𝑗),𝐶𝑗(𝑞𝑗, ̇𝑞𝑗), and 𝐾𝑗, respectively, 𝜇𝑟 = [𝜇1𝑟, . . . , 𝜇𝑚𝑟]

𝑇,
𝑤(𝑡) = [𝑤1, . . . , 𝑤𝑚]

𝑇 with 𝜏𝑑 = [𝜏𝑑1, . . . , 𝜏𝑑𝑚]
𝑇 and Δ =

[Δ 1, . . . , Δ𝑚]
𝑇 under (43).

Theorem 12. Suppose that the communication graph G is
connected, Assumption 8 is satisfied, the velocity controllers
for (29) and (30) are, respectively, designed by (26) and (27),
and the torque control input for the dynamics system (42)
is designed by (45), if the control gains are chosen as 𝛼 >

1/2𝜆max(M), 𝛽 > 𝜅, and 𝑘max > 𝜆max(M)/2, where 𝑘max =
max{𝑘1, 𝑘2, . . . , 𝑘𝑚}; then, for 1 ≤ 𝑗 ≤ 𝑚, the errors 𝑧̃1𝑗 = 0,
𝑧̃2𝑗 = 0, 𝑢̃𝑤𝑗 = 0, and 𝑢̃V𝑗 = 0 are globally asymptotically stable.

Proof. Choose the Lyapunov candidate as

𝑉 = 𝑉1 + 𝑉2, (49)

where 𝑉1 and 𝑉2 are chosen as

𝑉1 =
1

2

̃
𝑍
𝑇
M̃
𝑍,

𝑉2 =
1

2

𝑢̃
𝑇
𝑀𝑢̃ +

1

2

Θ̃
𝑇
Γ
−1
Θ̃ +

𝛿1

𝛾1

,

(50)

with Θ̃ = [Θ̃1, . . . , Θ̃𝑚]
𝑇 and Γ being the block diagonal

matrices of Γ𝑗. Using the properties of K[⋅], the set-valued
Lie derivative of 𝑉 can be obtained as follows:

̇
𝑉̃ = K [𝑉1 + 𝑉2] ⊆ K [𝑉1] +K [𝑉2]

=
̇
𝑉̃1 +

̇
𝑉̃2.

(51)
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Since 𝑉2 is continuous, it follows from Lemma 2 that the
equality (51) holds.

According toDefinition 4, the set-valued Lie derivative of
𝑉1 is given as

̇
𝑉̃ ≜ ⋂

𝜉∈𝜕𝑉(𝑍)

𝜉
𝑇
K [−𝛼M̃

𝑍 − 𝛽 sign (M̃
𝑍) −

̇f0 − 𝑢̂] , (52)

where 𝜕𝑉(̃𝑍) is the generalized gradient of 𝑉 at ̃𝑍. Because
𝑉 is continuously differentiable with respect to ̃

𝑍, 𝜕𝑉(̃𝑍) =
{𝑀

̃
𝑍}, which is a singleton. Therefore, it follows that

̇
𝑉̃ (

̃
𝑍) = K [−𝛼

̃
𝑍
𝑇
M
2
̃
𝑍 − 𝛽

̃
𝑍
𝑇
M sgn (M̃

𝑍)

−
̃
𝑍
𝑇
M ̇f0 − ̃

𝑍
𝑇
M𝑢̂]

= {−𝛼
̃
𝑍
𝑇
M
2
̃
𝑍 − 𝛽

̃
𝑍
𝑇
M sgn (M̃

𝑍)

−
̃
𝑍
𝑇
M ̇f0 − ̃

𝑍
𝑇
M𝑢̂} ,

(53)

where the fact that 𝑥𝑇 sign(𝑥) = ‖𝑥‖1 has been used. By
Lemma 2 and [42], if𝑓 is continuous, thenK[𝑓] = {𝑓}. Note
that the set-valued Lie derivative ̇

𝑉̃ is a singleton, whose only
element is actually 𝑉̇. Therefore, it follows that

max ̇
𝑉̃ = 𝑉̇ ≤ −𝛼

̃
𝑍
𝑇
M
2
̃
𝑍 − (𝛽 − 𝜅)

󵄩
󵄩
󵄩
󵄩
󵄩

̃
𝑍
𝑇
M
󵄩
󵄩
󵄩
󵄩
󵄩1
−
̃
𝑍
𝑇
M𝑢̂

≤ −𝛼
̃
𝑍
𝑇
M
2
̃
𝑍 − (𝛽 − 𝜅)

󵄩
󵄩
󵄩
󵄩
󵄩

̃
𝑍
𝑇
M
󵄩
󵄩
󵄩
󵄩
󵄩1

+

𝜆max (M)

2

(

󵄩
󵄩
󵄩
󵄩
󵄩

̃
𝑍

󵄩
󵄩
󵄩
󵄩
󵄩

2

2
+ ‖𝑢̂‖
2
2) ,

(54)

where 𝛽 ≥ 𝜅 and 𝛼 is positive. It is easy to verify that M2 is
symmetric positive definite.

Since 𝑉2 is continuous, it follows that the set-valued Lie
derivative of 𝑉2 satisfies max ̇

𝑉̃2 = 𝑉̇2. Hence, we have

𝑉̇2 = 𝑢̃
𝑇
𝑀

̇
𝑢̃ +

1

2

𝑢̃
𝑇 ̇
𝑀𝑢̃ + Θ̃

𝑇
Γ
−1 ̇
Θ̃ +

̇
𝛿1

𝛾1

= 𝑢̃
𝑇
{−𝐶𝑢̃ − 𝐾𝑢̃ − 𝜇𝑟 + 𝑤 (𝑡)}

+

1

2

𝑢̃
𝑇 ̇
𝑀𝑢̃ + Θ̃

𝑇
Γ
−1 ̇
Θ̃ − 𝛿1

= −𝑢̃
𝑇
𝐾𝑢̃ + 𝑢̃

𝑇
(

1

2

̇
𝑀 − 𝐶) 𝑢̃ − 𝑢̃

𝑇
𝜇𝑟

+ 𝑢̃
𝑇
𝑤 (𝑡) +

̇
Θ̃

𝑇

Γ
−1
Θ̃ − 𝛿1.

(55)

Since the matrix ( ̇
𝑀𝑗 − 2𝐶𝑗) is skew symmetric, we have

𝑢̃
𝑇
𝑗 [

1

2

̇
𝑀𝑗 (𝑞) − 𝐶𝑗 (𝑞, ̇𝑞)] 𝑢̃𝑗 = 0. (56)

Let 𝑔𝑗 = −𝛿𝑗 − 𝑢̃
𝑇
𝑗 𝜇𝑟𝑗 +

̇
Θ̃

𝑇

Γ
−1
Θ̃ + 𝑢̃

𝑇
𝑗𝑤𝑗(𝑡), (1 ≤ 𝑗 ≤ 𝑚).

Substituting the robustifying term (46) and the disturbance
(43) into 𝑔𝑗 gives

𝑔𝑗 ≤ −𝛿𝑗 −

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢̃𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

2
(𝑌𝑗Θ̂𝑗)

2

(𝑌𝑗Θ̂𝑗)
󵄩
󵄩
󵄩
󵄩
󵄩
𝑢̃𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
+ 𝛿𝑗

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢̃𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
𝑌𝑗Θ̂𝑗

≤ −𝛿𝑗 +

𝛿𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢̃𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑌𝑗Θ̂𝑗)

(𝑌𝑗Θ̂𝑗)
󵄩
󵄩
󵄩
󵄩
󵄩
𝑢̃𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
+ 𝛿𝑗

≤ −𝛿𝑗(1 −

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢̃𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑌𝑗Θ̂𝑗)

(𝑌𝑗Θ̂𝑗)
󵄩
󵄩
󵄩
󵄩
󵄩
𝑢̃𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
+ 𝛿𝑗

)

≤ 0.

(57)

Hence, it can be obtained that

𝑢̃
𝑇
𝜇𝑟 + 𝑢̃

𝑇
(𝜖 + 𝜏𝑑) +

̇
Θ̃

𝑇

ΓΘ̃ +

̇
𝛿1

𝛾1

≤ 0. (58)

Substituting (58) into (55) gives the following inequality:

𝑉̇2 ≤ −𝑢̃
𝑇
𝐾𝑢̃ + 𝑢̃

𝑇
𝑤 (𝑡) − 𝑢̃

𝑇
𝜇𝑟 − ‖𝑢̃‖ 𝑌Θ̃ − 𝛿1

≤ −𝑢̃
𝑇
𝐾𝑢̃.

(59)

Now, substituting (54) and (59) into the set-valued Lie
derivative ̇

𝑉̃ reveals

max ̇
𝑉̃ = 𝑉̇ ≤ − 𝛼

̃
𝑍
𝑇
M
2
̃
𝑍 − (𝛽 − 𝜅)

󵄩
󵄩
󵄩
󵄩
󵄩

̃
𝑍
𝑇
M
󵄩
󵄩
󵄩
󵄩
󵄩1

+

𝜆max (M)

2

(

󵄩
󵄩
󵄩
󵄩
󵄩

̃
𝑍

󵄩
󵄩
󵄩
󵄩
󵄩

2

2
+ ‖𝑢̂‖
2
2) − 𝑢̃

𝑇
𝐾𝑢̃

= − 𝛼
̃
𝑍
𝑇
M
2
̃
𝑍 − (𝛽 − 𝜅)

󵄩
󵄩
󵄩
󵄩
󵄩

̃
𝑍
𝑇
M
󵄩
󵄩
󵄩
󵄩
󵄩1

+

𝜆max (M)

2

(

󵄩
󵄩
󵄩
󵄩
󵄩

̃
𝑍

󵄩
󵄩
󵄩
󵄩
󵄩

2

2
+ ‖𝑢̃‖
2
2) − 𝑢̃

𝑇
𝐾𝑢̃

≤ − 𝛼𝜆
2
max (M)

󵄩
󵄩
󵄩
󵄩
󵄩

̃
𝑍

󵄩
󵄩
󵄩
󵄩
󵄩

2

2
− (𝛽 − 𝜅)

󵄩
󵄩
󵄩
󵄩
󵄩

̃
𝑍
𝑇
M
󵄩
󵄩
󵄩
󵄩
󵄩1

+

𝜆max (M)

2

(

󵄩
󵄩
󵄩
󵄩
󵄩

̃
𝑍

󵄩
󵄩
󵄩
󵄩
󵄩

2

2
+ ‖𝑢̃‖
2
2) − 𝑘max‖𝑢̃‖

2
2

≤ − (𝛼𝜆
2
max (M) −

𝜆max (M)

2

)

󵄩
󵄩
󵄩
󵄩
󵄩

̃
𝑍

󵄩
󵄩
󵄩
󵄩
󵄩

2

2
− (𝛽 − 𝜅)

×

󵄩
󵄩
󵄩
󵄩
󵄩

̃
𝑍
𝑇
M
󵄩
󵄩
󵄩
󵄩
󵄩1
− (𝑘max −

𝜆max (M)

2

) ‖𝑢̃‖
2
2.

(60)

Therefore, max ̇
𝑉̃ ≤ 0 as 𝑧̇20 ≤ 𝜅, 𝛼 > 1/2𝜆max(M), 𝛽 > 𝜅 and

𝑘max > 𝜆max(M)/2. It then follows from Lemma 5 that 𝑢̃ →

0 and ̃𝑍 → 0 as 𝑡 → ∞; that is, 𝑧̃1𝑗 → 0, 𝑧̃2𝑗 → 0, 𝑢̃𝑤𝑗 →
0, and 𝑢̃V𝑗 → 0 as 𝑡 → ∞. Therefore, the errors 𝑧̃1𝑗 = 0,
𝑧̃2𝑗 = 0, 𝑢̃𝑤𝑗 = 0, and 𝑢̃V𝑗 = 0 are globally asymptotically
stable. This proof is completed.



8 Mathematical Problems in Engineering

Remark 13. From Theorem 12, we have proved that the
variables 𝑧1𝑗 (1 ≤ 𝑗 ≤ 𝑚) and 𝑧2𝑗 (1 ≤ 𝑗 ≤ 𝑚), respectively,
converge to 𝑧10 and 𝑧20 globally asymptotically under the
proposed control laws (26), (27), and (45). InTheorem 14, we
will prove that 𝑧3𝑗 asymptotically converges to 𝑧30 under the
control laws (26), (27), and (45).

Theorem 14. Suppose that the communication graph G is
connected, Assumption 8 is satisfied, the velocity controllers
for (29) and (30) are, respectively, designed by (26) and (27),
and the torque control input for the dynamics system (42) is
designed by (45). If 𝑧1𝑗 and 𝑧2𝑗 asymptotically converge to 𝑧10
and 𝑧20, then 𝑧3𝑗 also asymptotically converges to 𝑧30.

Proof. Let 𝑧̃3𝑗 = 𝑧3𝑗 − 𝑧30. Take the derivative of 𝑧̃3𝑗 as

̇
𝑧̃3𝑗 = 𝑧̇3𝑗 − 𝑧̇30

= −𝑘0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢1𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑧̃3𝑗 + 𝑢1𝑗𝑧̃2𝑗 + (𝑢1𝑗 − 𝑢10) 𝑧20

− 𝑘0 (
󵄨
󵄨
󵄨
󵄨
󵄨
𝑢1𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
−
󵄨
󵄨
󵄨
󵄨
𝑢10

󵄨
󵄨
󵄨
󵄨
) 𝑧30

= −𝑘0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢1𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑧̃3𝑗 + 𝑥2 (𝑡) ,

(61)

where 𝑥2(𝑡) = 𝑢1𝑗𝑧̃2𝑗+(𝑢1𝑗−𝑢10)𝑧20−𝑘0(|𝑢1𝑗|− |𝑢10|)𝑧30.The
solution of the differential equation (61) is given as follows:

𝑧̃3𝑗 (𝑡) = 𝑒
∫
𝑡

0
−𝑘0|𝑢1𝑗|𝑑𝜏

𝑧̃3𝑗 (0) + ∫

𝑡

0

𝑒
∫
𝑡

𝜏
−𝑘0|𝑢1𝑗|𝑑]

𝑥2 (𝜏) 𝑑𝜏. (62)

According to Theorem 12, 𝑧̃2𝑗 asymptotically converges
to zero, and 𝑢1𝑗 asymptotically converges to 𝑢10. It then
follows from the definition of 𝑥2(𝑡) that 𝑥2(𝑡) also asymptoti-
cally converges to zero. Hence, according to the definition of
asymptotic stable, for an arbitrary positive value 𝜎 > 0, 𝑜 > 0

exists; when the |𝑥2(0)| < 𝑜, it has |𝑥2(𝑡)| < 𝜎.
From Assumption 6, the 𝑢1𝑗 is bounded, and 𝑢1𝑗 = 𝑤𝑗,

Hence, |𝑢1𝑗| ≤ 𝑤max.
The solution of the differential equation (62) satisfies the

inequality

𝑧̃3𝑗 (𝑡) = 𝑒
∫
𝑡

0
−𝑘0|𝑢1𝑗|𝑑𝜏

𝑧̃3𝑗 (0) + ∫

𝑡

0

𝑒
∫
𝑡

𝜏
−𝑘0|𝑢1𝑗|𝑑]

𝑥2 (𝜏) 𝑑𝜏

≤ 𝑒
−𝑘0𝑤max𝑡

𝑧̃3𝑗 (0) + ∫

𝑡

0

𝑒
−𝑘0𝑤max(𝑡−𝜏)

𝑥2 (𝜏) 𝑑𝜏

≤ 𝑒
−𝑘0𝑤max𝑡

𝑧̃3𝑗 (0) + 𝑒
−𝑘0𝑤max𝑡

∫

𝑡

0

𝑒
𝑘0𝑤max𝜏

𝑥2 (𝜏) 𝑑𝜏

≤ 𝑒
−𝑘0𝑤max𝑡

𝑧̃3𝑗 (0) +
𝜎𝑘0𝑤max − 𝜎𝑘0𝑤max𝑒

−𝑘0𝑤max𝑡

𝑘𝑗𝑤max

= 𝜎 + 𝑒
−𝑘0𝑤max𝑡

(𝑧̃3𝑗 (0) − 𝜎) .

(63)

Hence, when 𝑡 → +∞, |𝑧̃3𝑗(𝑡)| ≤ 𝜎. Since 𝜎 is an arbitrary
positive value, from the definition of asymptotic stable, the
𝑧̃3𝑗(𝑡) is asymptotic stable at the neighborhood of origin.This
proof is completed.
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Figure 2: Communication graph among mobile robots.
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Figure 3: Path of the six robots’ centroid (blue line), the desired
trajectory of the centroid of the robots (black line), and the
formation of the six robots at several moments under the distributed
kinematic controller (26), (27), and the torque controller (45).

Remark 15. From Theorems 12 and 14, our control objec-
tives (22)–(25) hold under the distributed kinematic con-
troller (26) and the torque controller (45). Therefore, from
Lemma 10, the 𝑚 mobile robots converge to the formation
patternF; that is, (16)–(18) are satisfied.

5. Simulation

In this section, some simulations results will be provided
to demonstrate the effectiveness of some theoretical results
of the previous sections. Consider a multiple mobile robot
system with six followers denoted by 𝐹1–𝐹6 and one virtual
leader denoted by 𝐿, respectively. The communication graph
of the multiple mobile robot system is shown in Figure 2.

For simplicity, in this simulation we suppose that 𝑎𝑖𝑗 = 1

if robot 𝑖 can receive information from robot 𝑗, 𝑎𝑖𝑗 =

0 otherwise; 𝑏𝑗 = 1 if the virtual leader’s information
is available to the follower 𝑗, and 𝑏𝑗 = 0 otherwise, where
𝑖 ∈ {1, . . . , 𝑚} and 𝑗 ∈ {1, . . . , 𝑚}.
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Figure 4: (a)The trajectories of 𝑥0 (blue line) and the centroid of 𝑥𝑖 (1 ≤ 𝑖 ≤ 6) (red line); (b) the position error between 𝑥0 and the centroid
of 𝑥𝑖.
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Figure 5: (a) The trajectories of 𝑦0 (blue line) and the centroid of 𝑦𝑖 (1 ≤ 𝑖 ≤ 6) (red line); (b) the position error between 𝑦0 and the centroid
of 𝑦𝑖.

The desired formation geometric patternF is defined by
orthogonal coordinates as (𝑝1𝑥, 𝑝1𝑦) = (2, 0), (𝑝2𝑥, 𝑝2𝑦) =

(1, √3), (𝑝3𝑥, 𝑝3𝑦) = (−1,√3), (𝑝4𝑥, 𝑝4𝑦) = (−2, 0), (𝑝5𝑥,
𝑝5𝑦) = (−1, −√3), and (𝑝6𝑥, 𝑝6𝑦) = (1, −√3). The reference
trajectory of the virtual leader is chosen as

𝑥0 = 10 sin( 𝑡
2

) ,

𝑦0 = −10 cos( 𝑡
2

) .

(64)

The control gain parameters are chosen as 𝛼 = 10, 𝛽 =

0.99, 𝑘0 = 2. For 1 ≤ 𝑗 ≤ 6, 𝛿𝑗(0) = 30, 𝛾𝑗 = 0.5, Γ𝑗 =
[
0.001 0
0 0.001 ], 𝐾𝑗 = [

1 0
0 1 ]. The parameters for each robot are

considered as the mass 𝑚̂ = 5 kg and the moment of inertia
𝐼 = 3 kg⋅m2. The unmodeled dynamics are introduced in the
form of friction as

𝐹𝑗 = [

𝑎𝑗1 sign (𝑢2𝑗) + 𝑎𝑗2𝑢2𝑗
𝑎𝑗3 sign (𝑢1𝑗) + 𝑎𝑗4𝑢1𝑗

] . (65)

The disturbance is introduced as 𝜏𝑑𝑗 = 2 sin(2𝑡) cos(5𝑡).

5.1. Verification of Formation Control Based on Robust Adap-
tive Techniques. In this simulation, Figure 3 shows the tra-
jectory of virtual leader (black line), the trajectory of the six
followers’ centroid (blue line), and the formation positions
and pattern of the six followers at several moments.We could
see from Figure 3 that the six robots converge to the desired
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Figure 6: (a) The tracking error 𝑢̃𝑤𝑖 for (1 ≤ 𝑖 ≤ 6) using the torque controller (45); (b) the tracking error 𝑢̃V𝑖 for (1 ≤ 𝑖 ≤ 6) using the torque
controller (45).
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Figure 7: (a) Response of the centroid of 𝑤𝑖 − 𝑤0 for 1 ≤ 𝑖 ≤ 6; (b) response of the centroid of 𝜃𝑖 − 𝜃0 for 1 ≤ 𝑖 ≤ 6.

geometry pattern under the proposed controllers (27), (26),
and (45); that is to say, (16) has been verified.

Figure 4(a) shows the trajectories of 𝑥0 (blue line) and
the centroid of 𝑥𝑖 (1 ≤ 𝑖 ≤ 6) (red line), and Figure 4(b)
shows the position error between 𝑥0 and the centroid of
𝑥𝑖. Figure 5(a) shows the trajectories of 𝑦0 (blue line) and
the centroid of 𝑦𝑖 (1 ≤ 𝑖 ≤ 6) (red line), and Figure 5(b)
shows the position error between 𝑦0 and the centroid of 𝑦𝑖.
We could see, from Figures 4 and 5, the trajectory of the

formation geometric centroid converges to the trajectory of
virtual leader; that is to say, (18) has been verified. Figure 6
shows the tracking error 𝑢̃𝑤𝑖 for (1 ≤ 𝑖 ≤ 6) and 𝑢̃V𝑖 for (1 ≤ 𝑖 ≤

6) under the torque controller (45). From Figure 6, 𝑢̃𝑤𝑖 and
𝑢̃V𝑖, respectively, converge to zeros. The perfect tracking of
velocity and angular velocity has been guaranteed. Figure 7,
respectively, shows the angular velocity tracking errors𝑤𝑖−𝑤0
and the orientation tracking errors 𝜃𝑖 − 𝜃0 between follower
𝐹𝑖 (1 ≤ 𝑖 ≤ 6) and virtual leader. It can be seen from Figure 7



Mathematical Problems in Engineering 11

that 𝑤𝑖 − 𝑤0 and 𝜃𝑖 − 𝜃0 converge to zero over time; that is,
(17) and (25) have been verified.

6. Conclusion

In this paper, the distributed consensus-based robust adaptive
formation control problem for nonholonomic mobile robots
with partial known dynamics has been investigated, in which
the dynamics model of the wheeled mobile robot has the
friction term and bounded disturbance term in the dynamic
model. The partial knowledge of the mobile robot dynamics
has been assumed to be available. Then an asymptotically
stable torque controller has been proposed by using robust
adaptive control techniques to account for unmolded dynam-
ics and bounded disturbances.

As further extensions of this study, there still exist a
number of topics for future works. In practice, formations
have to avoid obstacles and need to admit changes in the
formation speed and strong deformations in formation shape.
The obstacles avoidance problem for formation control of
nonholonomic mobile robots will be considered. In addition,
the formation control is assumed to be noiseless in this paper.
However, it is inevitable in reality. Hence, in the future it
is necessary to investigate the formation control problem
with measurement noise. Finally, it is well known that most
operations in mobile robots systems are naturally delayed.
Moreover, it has been observed from numerical experiments
that formation control algorithms without considering time
delaysmay lead to unexpected instability.Hence, in future, we
may consider the formation control with time-varying delays.
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