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The efficacy and the safety of the administration of multipotent mesenchymal stromal cells (MMSCs) for acute graft-versus-
host disease (aGVHD) prophylaxis following allogeneic hematopoietic cell transplantation (HSCT) were studied. This prospective
clinical trial was based on the random patient allocation to the following two groups receiving (1) standard GVHD prophylaxis and
(2) standard GVHD prophylaxis combined with MMSCs infusion. Bone marrow MMSCs from hematopoietic stem cell donors
were cultured and administered to the recipients at doses of 0.9–1.3×106/kg when the blood counts indicated recovery. aGVHD of
stage II–IV developed in 38.9% and 5.3% of patients in group 1 and group 2, respectively, (P = 0.002). There were no differences
in the graft rejection rates, chronic GVHD development, or infectious complications. Overall mortality was 16.7% for patients
in group 1 and 5.3% for patients in group 2. The efficacy and the safety of MMSC administration for aGVHD prophylaxis were
demonstrated in this study.

1. Introduction

Severe graft-versus-host disease (GVHD) is a life-threatening
complication following allogeneic hematopoietic stem cell
transplantation (allo-HSCT) [1, 2]. Steroids are the first-
line treatment for established GVHD and have a response
rate of 30–50%. However, the outcome for patients with
severe, steroid-resistant acute GVHD is poor, and overall
survival is low [3]. A large variety of drugs, such as corti-
costeroids, methotrexate, cyclosporine, and mycophenolate
mofetil, are used for GVHD prophylaxis, but, nevertheless,
approximately 20–80% of patients develop GVHD after allo-
HSCT [4, 5]. Therefore, it is very important to develop new,
effective methods for GVHD prevention.

Multiple immune processes underlie the condition that is
clinically expressed as GVHD after allo-HSCT [6]. The recip-
ient’s antigen-presenting cells play an essential role in GVHD
development. Host dendritic cells (DCs) have been iden-
tified as crucial for the priming of the CD4+ and CD8+

donor T-cells that lead to GVHD onset [7] (“direct” allor-
ecognition), while donor DC also participate through “indi-
rect” allorecognition [8].

Bone-marrow-derived multipotent mesenchymal stro-
mal cells (MMSCs) are able to differentiate in vitro into cells
of mesenchymal origin [9, 10]. MMSCs are immunosup-
pressive, which has been demonstrated by in vitro coculture
experiments with allogeneic lymphocytes. These cells do not
induce lymphocyte proliferation, interferon-γ production,
or the upregulation of activation markers [11, 12]. Several
key mechanisms have been described that contribute to the
MMSCs’ direct or indirect alteration of T-, NK, B- and
dendritic cell function.

The development of GVHD is mainly mediated by T-
cells, and MMSCs can inhibit T-cell function. MMSCs down-
regulate the responses of naive and memory antigen-specific
T-cells to their cognate peptides, and this is an effect that is
contact dependent and does not appear to be mediated by
DCs [13]. MMSCs are able to attenuate T-cell production
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of IL-2, which results in decreased formation of cytotoxic
CD8+ T-cells [11] and directly inhibits NK cell proliferation
and cytotoxic activity [14]. MMSCs cause the arrest of T-
cell division, but they have no effect on early activation
[15]. MMSCs induce apoptosis in activated T-cells but have
no effect on resting T-cell proliferation [16]. Moreover,
MMSCs promote the formation of Th1 and Th3 regulatory
T-cells as well as IL-10 production, which both prevent
GVHD development [17]. Studies of the interaction between
MMSCs and B-cells have demonstrated that MMSCs can
inhibit B-cell proliferation, differentiation, and chemotaxis
[18, 19]. It is worth noting that MMSCs inhibit the
production of antibodies, which makes MMSCs useful for
treating autoimmune diseases, such as diabetes, arthritis,
multiple sclerosis, and Crohn’s disease [20].

MMSCs affect DCs, and this can alter their role as me-
diators of GVHD. MMSCs are capable of blocking the dif-
ferentiation of monocytes and bone marrow precursors
into DCs [21–23] and inhibiting the upregulation of CD1a,
CD40, CD80, CD86, and HLA-DR expression during DC
maturation, which maintains DCs in an immature state
[24]. Moreover, MMSCs downregulate the secretion of the
Th1-promoting cytokine IL-12 [24]. The generation of
regulatory DCs may be mediated by soluble factors such
as IL6 and prostaglandin E2 [25–27]. MMSCs also produce
the “tolerogenic” cytokine IL-10 [28]. Thus, MMSCs help to
prevent GVHD.

The ability of MMSCs to inhibit the development of
GVHD requires not only cell-contact-dependent signals but
also contact-independent signals, including prostaglandin
E2, IL-6, IL-10, indoleamine 2,3-dioxygenase (IDO1), and
transforming growth factor-β [28–31]. Of these, IDO1 in
particular has been identified as a key mediator of MMSCs-
based immunosuppression [32–34]. MMSCs inhibit com-
plement activation by their production of factor H, and
this may be an additional mechanism underlying the broad
immunosuppressive capabilities of MMSCs [35].

Thus, there is sufficient in vitro evidence to support
the use of MMSCs in the prevention and treatment of
GVHD. Furthermore, a number of patient cohorts treated
with MMSCs have been reported, and the results have been
promising to date [36, 37]. No patients have had side effects
during or immediately after the infusions of MMSCs [38].

It has been shown that umbilical cord blood-derived
MMSCs were very effective for GVHD prevention but not
for treatment in the xenogenic model of NOD/SCID mice
[39, 40].

However, there are no clear published data regarding
the preferred dose, the timing, and the frequency of MMSC
infusion. A phase III, randomized controlled trial on the use
of MMSCs in acute GVHD in humans is currently underway,
and the first results are promising [41]. Importantly, neither
acute nor long-term adverse events have been reported
following the infusion of MMSCs, so it is possible to use these
cells for aGVHD prevention.

The aim of this study was to investigate the safety and
the efficacy of MMSC administration for GVHD prophylaxis.
The randomized, prospective clinical trial was approved
by the local ethics committee and was begun in October

2008. It was based on the random allocation of patients
to the following two groups: (1) the group receiving the
standard GVHD prophylaxis and (2) the group receiving
the standard GVHD prophylaxis combined with the infusion
of the hematopoietic stem cell donors’ MMSCs. The data
obtained demonstrated a significantly reduced development
of aGVHD in patients who received MMSCs.

2. Materials and Methods

2.1. Patients. Thirty-seven patients who had received allo-
HSCT from related donors were eligible for the study be-
tween October 2008 and May 2011. They were randomly
allocated to the following two groups: (1) a group receiving
the standard GVHD prophylaxis and (2) a group receiving
the same prophylaxis combined with MMSC infusion. For
each case, the MMSCs were derived from the corresponding
hematopoietic stem cell donor. The patients’ characteristics
are presented in Table 1. All work was conducted in ac-
cordance with the Declaration of Helsinki (1964). This study
was approved by the local ethics committee, and the donors
and patients provided written informed consent.

2.2. Procedures and Definitions. The patients received either
myeloablative or reduced-intensity conditioning (Table 1).
Conditioning was myeloablative in 27 patients and included
cyclophosphamide (60 mg/kg/day for 2 days) combined
mainly with busulfan (4 mg/kg/day for 4 days). Ten patients
had low-intensity conditioning regimens with either fludara-
bine phosphate (30 mg/m2/day for 6 days) combined with
busulfan (4 mg/kg/day for 2 days) and antithymocitic glob-
ulin (ATG) (10 mg/kg/day for 4 days) or fludarabine phos-
phate (30 mg/m2/day for 5 days) combined with BCNU
(200 mg/m2/day for 2 days), melphalan (140 mg/m2/day for
1 day), and ATG (20 mg/kg/day for 2 days).

As GVHD prophylaxis patients received cyclosporine
combined with methotrexate, some patients additionally re-
ceived mycophenolate mofetil or prednisolone.

Acute GVHD was graded according to internationally ac-
cepted criteria [42].

2.3. Laboratory Methods. The characteristics of the donors
and the grafts are shown in Table 2.

MMSCs were derived from 25–30 mL of the stem cell
donors’ bone marrow. For mononuclear cells, the bone
marrow was mixed with an equal volume of alfa-MEM (ICN)
media containing 0.2% methylcellulose (1500 cP, Sigma-Al-
drich). After 40 min, most erythrocytes and granulocytes
had precipitated, while the mononuclear cells remained in
suspension. The suspended (upper) fraction was aspirated
and centrifuged for 10 minutes at 450 g.

The cells from the sediment were resuspended in a stan-
dard cultivation medium that was composed of alfa-MEM
supplemented with 4% platelet lysate obtained from the
donors’ thrombocyte concentrates, as previously described
[43], 2 mM L-glutamine (ICN), 100 U/mL penicillin (Fer-
ein), and 50 μg/mL streptomycin (Ferein). The cells were
cultured at 27 × 106 cells per T175 cm2 culture flask
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Table 1: Characteristics of the patients and treatments.

Group characteristics
First group (1) Second group (2)

Standard GVHD prophylaxis Standard GVHD prophylaxis + MMSCs

Sex of patient, male/female 7/11 8/11

Median age, years (range) 29 (19–60) 34 (20–63)

Diagnosis, n

AML/MDS 10 14

ALL 4 2

CML 3 3

CLL 1

Disease stage, n

complete remission 15 19

non-complete remission 3 0

Conditioning regimen, n

RIC 4 6

MAC 14 13

Observation time, months 3.5–30.5 2.5–32

AML: acute myeloid leukemia, MDS: myelodysplastic syndrome, ALL: acute lymphoid leukemia, CML: chronic myeloid leukemia, CLL: chronic lymphoid
leukemia, RIC: reduced intensity conditioning, MAC: myeloablative conditioning.

Table 2: MMSC donor and graft characteristics.

Donors Values

Sex of donors, M/F 19/18

Median age, years (range) 34 (13–68)

MMSCs

Culture passage at MMSCs harvest 0–3

Immunophenotype

CD105 (Endoglin) 98,6 ± 0,2%

CD73 (SH3, SH4) 98,1 ± 0,5%

CD90 (Thy-1) 98 ± 0,5%

CD59 98,8 ± 0,1%

Fibroblast Surface Protein (FSP) 97 ± 0,4%

CD31 (PECAM-1) 2,5 ± 0,7%

HLA-DR 3,7 ± 0,7%

CD34 0,00%

CD45 4,5 ± 0,8%

CD14 2,0 ± 0,6%

Proportion of viable cells, % 95.3± 1.3%

Median MMSCs cell dose (×106/kg, range) 1.1 (0.9–1.3)

Relative expression level of several genes in
MMSCs on passage 2

IL-6 2.57± 0.98

Ptges 10.07± 3.16

CSF1 2.04± 0.39

IDO1 0.36± 0.132

IL-10 2.73± 0.6

CFH 1.98± 0.36

(Corning-Costar). When a confluent monolayer of cells had
formed, the cells were washed with 0.02% EDTA (ICN) in
a physiologic solution (Sigma-Aldrich) and then trypsinised

(ICN). The cells were seeded at 4 × 103 cells per cm2 of flask
area. The cultures were maintained in a hypoxic atmosphere
at 37◦C in 5% CO2 and 5% O2. The number of harvested
cells was counted directly; cell viability was checked by
trypan blue dye exclusion staining. MMSCs were harvested
in 6% polyglucin (public corporation Biochimik) and were
either cryopreserved in 10% dimethyl sulphoxide (ROTH)
or resuspended at a final concentration of 3–7 × 106 cells
per mL polyglucin, according to local guidelines, and infused
intravenously into the patient at target dose 106 per kg of
body weight.

All MMSCs were immunophenotyped with following
markers: CD105, CD73, CD45, CD34, CD14, and HLA-DR
using standard protocols. Antibodies were purchased at BD
Pharmingen (CD105, CD59, CD73, CD90, CD31, CD34, and
CD14), Sigma (CD45, FSP), and DAKO (HLA-DR).

Total RNA was extracted from MMSCs by the standard
method [44] and cDNA was synthesized using oligo(dT)
primers. The gene expression level was quantified by real-
time quantitative PCR using hydrolysis probes (Taqman) and
ABI Prism 7000 (Applied Biosystems). Gene-specific primers
were designed by the authors and synthesized by Syntol R&D.
All primers and probes could be provided upon request. The
relative gene expression level was determined by normalizing
the expression of each target gene to that of β-actin and
GAPDH and was calculated using the ΔΔCt method [45] for
each MMSCs sample.

The criteria for the admission of MMSCs for clinical use
included a spindle-shape morphology, the absence of visible
clumps or contamination by pathogens, standard immune
phenotyping [46] for the expression of surface molecules
[47] and data on the in vitro differentiation of the cells
into osteoblasts or adipocytes [48]. The cells were given as
intravenous infusions when the blood counts were indicative
of recovery following allo-HSCT (more than 1 × 109/L
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leukocytes). The MMSC dose varied from 0.9 to 1.3× 106/kg.
Cells for 7 of the infusions were harvested fresh from cultures
and were given to the patients. For the other 11 cases, frozen
cells were thawed and infused.

2.4. Statistical Analysis. Data were analyzed using Student’s
t-test, with the last data collection in June 2011.

3. Results and Discussion

The MMSCs were expanded using the platelet lysate obtained
from the donors’ thrombocyte concentrates to avoid the
transmission of zoonoses and the immune reactions possible
if fetal calf serum were used [49]. All of the human com-
ponents used for MMSC cultivation were from hematopoi-
etic stem cell donors. It was assumed that MMSCs were
transplantable across major histocompatibility complex class
1 barriers [41, 50]. However, it was recently shown that
MMSCs are weakly immunogenic in vivo when transplanted
across major histocompatibility complex class 1 barriers
[51]. Thus, only MMSCs derived from the stem cell donors
were used in this trial. The MMSC characteristics are pre-
sented in Table 2. Nineteen patients received MMSCs for
GVHD prophylaxis. The exact date of infusion of MMSCs
after transplantation, the MMSCs dose, and the exact
pharmacologic immunosuppression applied in each patient
are presented in the Table 3.

MMSCs were administered when the blood counts were
indicative of leukocytes’ recovery (leukocytes more than 1
× 109 per liter). The time of administration was chosen at
the time of graft activation and thus also at the time of
GVHD manifestation. The median day of administration
was day +28 after HSCT (19–54 days). Most of the patients
had moderate fever and chills for 24 hours after MMSC
administration, but there were no other complications.

In the group receiving the MMSCs, acute GVHD of
grade II developed in only one case (5.3%) (Tables 3 and
4). This case was a 59-year-old patient with CML, who
had received a transplant in the 1st chronic phase from an
HLA identical related donor. The blood counts were re-
covered at day +17 after allo-HSCT. The acute GVHD
manifested at day +25 with skin involvement prior to
MMSC injection. The MMSCs were administered only at
day +30, as the required cell dose was not ready at day
+17 due to the slow growth of the donor’s MMSCs. The
GVHD prophylaxis included cyclosporin, methotrexate, and
prednisolone. The hematopoietic stem cell donor was 56-
year-old, and his MMSCs grew slower than the MMSCs from
other donors. Moreover, the relative expression level of the
immunomodulatory factors expressed by his MMSCs was
altered compared with the others (Table 2), the IL-6 level
increased 2.7-fold, and the CSF1 level increased 1.8-fold,
while the expression level of IL-10 decreased 1.7-fold, the
CFH level decreased 12-fold, and the Ptges level decreased
11-fold. It is possible that the increased level of IL-6 led to the
activation of the donor T-cells and B-cells [52]. Additionally,
the increased level of CSF1 in the donors’ MMSCs could
have further enhanced macrophage activation, which would

result in GVHD progression instead of inhibition. Moreover,
the decreased production of factors that inhibit GVHD
[26, 28–30] by MMSCs from this donor did not permit
GVHD prevention. However, this single case of ineffective
prophylaxis did not allow clear conclusions to be made about
the significance of these factors expressed by MMSCs in vitro
in the efficiency of GVHD prophylaxis. Nevertheless, clinical
improvement was registered following MMSCs infusion, but,
in one month, GVHD progression to grades III-IV and
involving the skin, gut, and liver occurred.

In the control group, 6 out of 19 patients had acute
GVHD of grades II–IV (33.3%), which corresponded to the
data from other investigators [2]. The outcomes of patients
in each group are depicted in Table 4.

Though the groups of patients are not great, yet there is
a significant difference in the development of acute GVHD
in patients who received MMSCs prophylaxis compared
with the control group (P = 0.009). Despite the high
statistical differences between these groups, the data could
not provide solid evidence for the efficacy of the approach
due to limited number of patients included in the trial.
MMSC injection did not influence the development of
chronic GVHD (Tables 3 and 4). The diagnosis of chronic
GVHD is usually made earlier than 100 days after allo-HSCT
[53]. The MMSCs injected at 28 days after allo-HSCT have
only a small influence on chronic GVHD development likely
due to their short life span and improper homing in the
host [54, 55]. Clinical studies have shown that patients who
develop GVHD have a lower risk of relapse [56]; moreover,
it was shown that cotransplantation of mesenchymal stromal
cells and hematopoietic stem cells may prevent GVHD, but
the relapse rate was obviously higher than the control group
[57], although we found no difference in the relapse rates of
both groups of patients. It deserves to note that in this study
MMSCs were not cotransplanted with hematopoietic stem
cells but infused after transplant activation.

There were no differences in the graft rejection rates
or the infectious complications. The overall mortality was
22.2% in the standard prophylaxis group and 5.3% in the
MMSC-treated group.

4. Conclusions

The current study is the first clinical trial to evaluate the
feasibility and the safety of platelet lysate in vitro expanded
stem-cell donor MMSCs for the prevention of acute GVHD.
A high efficacy of MMSCs in GVHD prophylaxis was clearly
demonstrated even on such limited number of patients, and
no adverse events could be directly attributed to MMSC
administration. In order to make a MMSC administration
in the prevention of acute GVHD a candidate for inclusion
in the standard protocols for GVHD prophylaxis, further
investigations on the enlarged groups of patients should
be performed. The data obtained support the development
of new trials focused on the use of this approach in hap-
loidentical and unrelated HSCT.



Stem Cells International 5

T
a

bl
e

3:
Pa

ti
en

ts
tr

ea
tm

en
t.

Pa
ti

en
t

A
ge

D
ia

gn
os

is
C

on
di

ti
on

in
g

re
gi

m
en

M
M

SC
s

in
fu

si
on

G
V

H
D

pr
op

hy
la

xi
s

G
V

H
D

st
ag

e
(d

ay
s

af
te

r
al

lo
-H

SC
T

)
C

h
ro

n
ic

G
V

H
D

D
ay

s
af

te
r

al
lo

-H
SC

T
Pa

ss
ag

e
n

u
m

be
r

(P
)

D
os

e
p

er
kg

C
ry

op
re

se
rv

at
io

n
Fi

rs
t

gr
ou

p
(1

)
st

an
da

rd
G

V
H

D
pr

op
hy

la
xi

s
K

O
38

C
M

L
M

A
C

C
SA

+
M

tx
+

pr
II

(1
5)

Ye
s

IV
27

A
L

L
M

A
C

C
SA

+
M

tx
+

II
(6

2)
Ye

s
T

B
19

A
M

L
M

A
C

C
SA

+
M

tx
+

II
(2

0)
Ye

s
C

T
59

A
M

L
R

IC
1

C
SA

+
M

tx
+

M
M

II
II

–I
V

(1
00

)
Ye

s
SV

25
A

M
L

M
A

C
C

SA
+

M
tx

+
N

o
N

o
Z

L
34

C
M

L
M

A
C

C
SA

+
M

tx
+

pr
N

o
N

o
R

A
19

A
LL

M
A

C
C

SA
+

M
tx

+
I

(2
3)

N
o

K
L

38
M

D
S

M
A

C
C

SA
+

M
tx

+
N

o
N

o
A

D
38

A
M

L
M

A
C

C
SA

+
M

tx
+

M
M

+
pr

N
o

N
o

SO
24

A
M

L
M

A
C

C
SA

+
M

tx
+

I
(2

6)
N

o
SE

51
A

M
L

R
IC

2
C

SA
+

M
tx

+
II

(3
9)

Ye
s

SI
20

A
M

L
M

A
C

C
SA

+
M

tx
II

(1
0)

Ye
s

Z
C

24
C

M
L

M
A

C
C

SA
+

M
tx

N
o

N
o

R
A

31
A

M
L

M
A

C
C

SA
+

M
tx

I
(3

6)
N

o
G

N
60

A
M

L
R

IC
2

C
SA

+
M

tx
N

o
N

o
G

J
24

M
D

S
R

IC
2

C
SA

+
M

tx
N

o
N

o
SN

36
A

LL
M

A
C

C
SA

+
M

tx
I

(1
9)

N
o

P
E

22
C

LL
M

A
C

C
SA

+
M

tx
N

o
N

o
Se

co
n

d
gr

ou
p

(2
)

st
an

da
rd

G
V

H
D

pr
op

hy
la

xi
s

+
M

M
SC

s
A

N
34

A
M

L
M

A
C

+
31

P
2

1
N

o
C

SA
+

M
tx

N
o

Ye
s

B
T

20
C

M
L

M
A

C
+

28
P

1
1,

25
Ye

s
C

SA
+

M
tx

+
pr

N
o

N
o

K
A

22
A

LL
M

A
C

+
29

P
1

1,
1

Ye
s

C
SA

+
M

tx
N

o
N

o
P

S
29

A
M

L
M

A
C

+
31

P
0

+
P

1
1

N
o

C
SA

+
M

tx
N

o
N

o
P

N
46

A
M

L
M

A
C

+
54

P
3

1,
08

Ye
s

C
SA

+
M

tx
N

o
N

o
K

S
37

M
D

S
R

IC
1

+
28

P
1

1,
1

N
o

C
SA

+
M

tx
+

M
M

I
(2

1)
N

o
SE

54
A

M
L

R
IC

1
+

50
P

3
1,

05
N

o
C

SA
+

M
tx

+
M

M
N

o
N

o
R

S
47

M
D

S
R

IC
1

+
34

P
1

0,
93

Ye
s

C
SA

+
M

tx
+

M
M

N
o

Ye
s

C
A

44
A

M
L

M
A

C
+

32
P

1
1,

18
Ye

s
C

SA
+

M
tx

N
o

N
o

T
M

28
A

M
L

M
A

C
+

28
P

2
1,

05
Ye

s
C

SA
+

M
tx

N
o

N
o

IL
63

A
M

L
R

IC
1

+
25

P
1

0,
9

N
o

C
SA

+
M

tx
+

M
M

N
o

N
o

C
M

50
A

M
L

R
IC

1
+

26
P

1
1,

07
Ye

s
C

SA
+

M
tx

+
M

M
I

(4
8)

N
o

B
P

33
A

M
L

M
A

C
+

29
P

1
1,

15
N

o
C

SA
+

M
tx

N
o

Ye
s

M
K

33
A

M
L

M
A

C
+

22
P

1
+

P
2

1,
12

Ye
s

C
SA

+
M

tx
I

(1
7)

Ye
s

FE
39

C
M

L
M

A
C

+
24

P
1

+
P

2
1,

3
Ye

s
C

SA
+

M
tx

+
pr

I
(1

8)
N

o
T

V
40

C
M

L
M

A
C

+
30

P
1

+
P

2
1,

26
Ye

s
C

SA
+

M
tx

+
pr

II
(2

5)
Ye

s
A

I
22

A
LL

M
A

C
+

19
P

0
+

P
1

1,
25

N
o

C
SA

+
M

tx
I

(7
3)

N
o

D
E

31
A

M
L

R
IC

1
+

28
P

1
0,

96
Ye

s
C

SA
+

M
tx

+
M

M
N

o
N

o
SS

34
A

M
L

M
A

C
+

24
P

1
+

P
2

1,
39

Ye
s

C
SA

+
M

tx
N

o
N

o

A
M

L:
ac

u
te

m
ye

lo
id

le
u

ke
m

ia
,

M
D

S:
m

ye
lo

dy
sp

la
st

ic
sy

n
dr

om
e,

A
LL

:
ac

u
te

ly
m

ph
oi

d
le

u
ke

m
ia

,
C

M
L:

ch
ro

n
ic

m
ye

lo
id

le
u

ke
m

ia
,

C
LL

:
ch

ro
n

ic
ly

m
ph

oi
d

le
u

ke
m

ia
,

R
IC

:
re

du
ce

d
in

te
n

si
ty

co
n

di
ti

on
in

g
((

1)
fl

u
da

ra
bi

n
e

ph
os

ph
at

e
+

bu
su

lf
an

+
A

T
G

,(
2)

fl
u

da
ra

bi
n

e
ph

os
ph

at
e

+
B

C
N

U
+

m
el

ph
al

an
+

A
T

G
),

M
A

C
:m

ye
lo

ab
la

ti
ve

co
n

di
ti

on
in

g,
C

SA
:c

yc
lo

sp
or

in
e,

M
tx

:m
et

h
ot

re
xa

te
,p

r:
pr

ed
n

is
ol

on
e,

M
M

:m
yc

op
h

en
ol

at
e

m
of

et
il.



6 Stem Cells International

Table 4: Patients’ outcome.

Group characteristics
First group (1) Second group (2)

Standard GVHD prophylaxis (n = 18) Standard GVHD prophylaxis + MMSC (n = 19)

Death at +100 days, n, % 1 (10%) 0

aGVHD (II–IV grade), n, % 6 (33.3%) 1 (5.3%)

cGVHD (lim + ext), n, % 6/17 (35.3%) 5/18 (27.8%)

Relapse rate, n, % 5/18 (27.7%) 4/19 (21.1%)

Alive, n, % 14 (77.7%) 18 (94.7%)

cGVHD form: lim-limited, ext-extensive.
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