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The point x for which the limit lim, _, ,(log (B (x,7)) /logr) does not exist is called divergence point. Recently, multifractal
structure of the divergence points of self-similar measures has been investigated by many authors. This paper is devoted to the
study of some Moran measures with the support on the homogeneous Moran fractals associated with the sequences of which the
frequency of the letter exists; the Moran measures associated with this kind of structure are neither Gibbs nor self-similar and
than complex. Such measures possess singular features because of the existence of so-called divergence points. By the box-counting
principle, we analyze multifractal structure of the divergence points of some homogeneous Moran measures and show that the
Hausdorff dimension of the set of divergence points is the same as the dimension of the whole Moran set.

1. Introduction and Statement of Results

1.1. Moran Set. Let {n},-, be a sequence of positive integers
and let {r } be a sequence of positive real number with n, r; <
1 for any k € N. Define D, = ¢, and for any k > 1,set D, ; =

{Gs g1+ > i)s 1 <y <mjy m < j <k}, Dy = Dy, and
D= U Dk' (1)
k=0

Ifo = (0,,0,...
O*T =0 »006T- >
oll=(0y...,00).

’Gk) € Dk’ T = (Tl""> m—k) € Dk+l,m’ let
mi)- And for 1 < [ < k, remark

Definition 1. Suppose J is a closed interval of length 1. The
collection & = {J,; 0 € D} of closed subintervals of ] is
said to have a homogeneous Moran structure, if it satisfies the
following conditions (MSC):

(i) Jy =i

(ii) for all k > 0 and 0 € Dy, Jyu1>Jsuns--
are subintervals of ], and satisfy that J7,;(1J;,; =
¢ (i # j), where A° denotes the interior of A;

° ]a*nk+1

(iii) foranyk > lando € D;_;,1 < j <y,

I

where |A| denotes the diameter of A.

=1k (2)

Suppose that F is a collection of closed subintervals of ]
having homogeneous Moran structure, and set

Ec=|JJ, E=[)E 3)
o€Dy k=0
It is ready to see that E is a nonempty compact set. The set
E := E(¥) is called the homogeneous Moran set associated
with the collection #.

Let #, = {J;0 € Dy}, and let F = oy Fi. The
elements of &, are called the basic elements of order k of the
homogeneous Moran set E and the elements of F are called
the basic elements of the homogeneous Moran set E.

Remark 2. If lim,_, sup,.p |J;| > 0, then E contains
interior points. Thus, the measure and dimension properties
will be trivial. We assume therefore that

lim s J,| =0.
i, sup [Jo| (4)



Proposition 3 (see [1, Proposition 3.1]). For a homogeneous
Moran set E defined as above, suppose furthermore that

1
im — 28Tk _ (5)
k—oo logr ity - 1,
Then we have
dimg E = liminf s,
1My 1]321013) Sk (6)

where s, satisfies the equation ¥, 15* =1 for each k.

Let A = {a;,a,,...,a,}, and let w = s;5,---5s;.--- bea
sequence over A, s; € A. For k > 1, write w, = w|, =
518, - S then |w| = k. We denote by |w,|, the number

of occurrences of the letter g; in wy. If for any a; € A,
limy _, o (lwyl, /) = 1; > 0, then we say that the sequence w
has the frequency vector § = (1,75, . .., 1,,)- It is easy to see

that 3.7, layl, = kand Y72, n; = L. Forn = (71,1, > ),
let
AN =Jw= ss €A, i el _ '
p =10 = {scherssi € > Jim — =npl<i<mp.
™)

For1 < i < m,letm; € N and let ¢; be a positive real
number with m,c, < 1. For w € A", in the homogeneous
Moran construction above, for any k > 1 if s, = g; take
n, = my, 1. = ¢;. Then we construct the homogeneous Moran
set relating to w € A'}; and denote it by E(w) = {J, {n}, {r:}}-

Remark 4. In this paper, we assume that J, € F; (k > 1), let
Jos15Jgu2> -+ -5 Jgun,,, D€ the m, basic intervals of order k + 1
contained in ], arranged from left to right. Forall 1 < j <
M —L1etdUss s Jou(jen) = AilJol, where {A }isa sequence
of positive real number. Let A = inf,.;A . In this paper we
suppose A > 0.

1.2. Moran Measure. Let P, = (pjpp - Pim,) (1 < i < m)
be probability vectors; that is, p;; > 0 and Z;il py=10c<
i < m).Forany k > 1,0 € Dy, from Section 1.1, we know
0 = 0,0, -0, € D, whereoy, € {1,2,...,m}, if s, = a,.
For o = 0,0, - 0}, define 0(g;) as follows: let wy, = s, -+ s,
er <€ < ey be the occurrences of the letter a; in wy;

then o(a;) = o, 0, ---0, . For convenience we will write

Clagl,

o'(ai) =0. 0 +-0;

1.0, i1 _,whereaij ef{l,2,....m} (1 <i<m).

i

In fact, 0y ) * 0(,,) * -+ * 0(, ) is a rearrangement of 0 =
0} - - - 0. We make the convention that o,y = ¢ if |w|, = 0.
Now define

pa(ai) = Pia,-l e p

1<i<m. (8)

io.: >
Hlwg la;

Itis obvious that ¥, [Ti2) Po(s) = 1foranyk > 1. We make
the convention that p,,) = 1ifo(a;) = ¢.

Let u be a mass distribution on E(w), such that for any
], € F, 0 € Dy,

u (]0) = pa(al)Pa(aQ) e pa(am)’ (9)
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and p(},ep, J,) = 1. Since u is related to w, we denote it
by p(w). Here p(w) is a homogeneous Moran measure on
E(w), and it is an extension of the self-similar measure by
Hutchinson [2].

1.3. Main Results. From now on, we assume that E(w) is
a homogeneous Moran fractal defined in Section 1.1, and
p(w) is a probability measure introduced in Section 1.2. The
notationa D, Dy, J,, p(J,;), P, (1 < i < m) are as above; in
the following, if 0 € Dy, T € Dy, gy letry = ol p, = u(J,)

and 7, = |J5. /sl pr = uUgir)/u(J;). Now we define an
auxiliary function f(g) as follows. For each g € Rand k > 1,
there is a unique number f;(g) such that

Z pzrfk(q) =1. (10)

o€Dy;
By simple calculation, we get
Y2 n;log (ZZZ PZ’)
X% nilog

Proposition 5 (see 3, Proposition 2.3]). Forall q € R, 5(q)
defined by (10) satisfies the following:

(i) B(0) = dim E;
(ii) B(q) is strictly decreasing, and lim _, z, B(q) = +00;

Y

Jim Bi(q) = Bq) =

(iil) B(q) is convex in q, and B(q) is strictly convex if and
only if log p;;/log; is not the same for all 1 < j < m;,
i=12,...,m

Let 1 be a Borel probability measure on R%; let

O (gq;r) = sup Z‘u(B (xpr)L >0, geR, (12)

where the supremum is taken over all families of
disjoint closed balls {B(x;,r)}; with x; € suppu. If
lim, _, ,(log ®(g; r)/ log r) exists, we call that the L-spectrum
7(g) of u exists; that is,

(13)

Peres and Solomyak [4] give alternative definition of
L1-spectrum. Let u be a Borel probability measure on R?. Let
D, be the partition of R? into grid boxes Hil[kiZ_", (k; +
1)27") with k; € Z. For g > 0, denote Tr(lq)(y) = ZQGD" (pQ)1.
If lim,_,,(log Tr(lq)(y) / — nlog2) exists, we call that the
Li-spectrum 7,(g) of u exists; that is,

log 7, ()
= lim =>%* >~ 14
()= s "

Peres and Solomyak [4] prove that 7(q) = 7,(g).

Proposition 6 (see [5]). Let u be a Moran measure supported
on the homogeneous Moran fractals E; then

7(q) =7 (q) = B(q)- (15)
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The Legendre transform of f3 is the function f*
(@ pin> Omax) — R defined by

max

B’ (o) = inf {f(q) + aq}, (16)

where Xpin = inqu[R JBI(q)’ Xpax = SupqeR ﬁ’(q)

Let X be a complete separable metric space and y a
finite Borel measure on X. In the multifractal analysis one is
interested in the size of the following level sets:

Xa:{xeX:limM:a},

r—0 log r 17)
—00 < o0 £ +00.
The space X has the following natural decomposition:
x= |J X,ux’ (18)

—00<a<+00

where

X% = {x €X: limM does not exist} . (19
r—0 logr

The set X° is called the set of divergence points and the
point x for which the limit lim, _, ,(log u(B(x, 1))/ logr) does
not exist is called divergence point. Recently, multifractal
structure of the divergence points of self-similar measures
has been investigated by a large number of authors. Barreira
and Schmeling [6] and Chen and Xiong [7] have shown
that for self-similar measures satisfying the SSC the set of
divergence points typically has the Hausdorff dimension as
the support K. Furthermore, Olsen and Winter [8] analyse
its structure and give a decomposition of this set for the
case that the SSC satisfies. However, with only the OSC
satisfied, we cannot do most of the work on a symbolic space
and then transfer the results to the subsets of R?, which
makes things more difficult. By the box-counting principle
we (2011) [9] show that the set of divergence point has still
the same Hausdorftf dimension as the support K for self-
similar measures satisfying the OSC. Li et al. [10] further
analyse its structure and give a decomposition of this set
for the case that the OSC satisfies. This paper is devoted
to the study of some Moran measures with the support
on the homogeneous Moran fractals associated with the
sequences of which the frequency of the letter exists; such
measures possess singular features because of the existence of
so-called divergence points. By the box-counting principle,
we analyze Multifractal structure of the divergence points
of some homogeneous Moran measures and show that the
Hausdorft dimension of the set of divergence points is the
same as the dimension of the whole Moran set. It should
be pointed out that the Moran measures associated with this
kind of structure are neither Gibbs nor self-similar and more
than complex.

Theorem 7. Let yu be a Moran measure supported on
the homogeneous Moran fractals E(Q)) associated with the

sequences Q) of which the frequency of the letter exists as above.
Set

E, o = {x € E(Q)
logy (B (x,7))

| () = liminf =5 0

. logu (B(x,7))
< hrrnjng =p (qz)}-
(20)
Then
dim E, . = p* (B (a1))- (21)

By Theorem 7 and Proposition 5, we easily obtain that the
Hausdorff dimension of the set of divergence points is the
same as the dimension of the whole Moran set.

2. Several Lemma

Lemma 8. Suppose that o € R is such that « = —f'(q) for
some q € R. Then for any § > 0, p > 0,

(I) there exist d € (0,p), € = d P @t gy integral
number N, and u,,...,u, € Dy satisfying the
following properties:

@d"<r, <dforalll<i<e,

(b) d*** < p, <d* forall1 <i< b
(II) there exist an integral number ny such that for any
integer k > ny, there exist d € (0, p), £ > d P (@+°@+),

an integral number N, and u,...
satisfying the following properties:

sUp € Dk+1,N+1

@d*<r,

(b) dot+5 <p

<d" forall1 <i< ¢

W S A7 forall 1 <i<e.

Proof. For the given § > 0, we choose a small 0 < € < 1 such
that

(oc—g>es/3(q)—[3(q+e)s((x+§>e, (22)
(6-2)e<p@-9-p@=<(a+3)e @

Using (10), we can pick 0 < y < min{ed/6, 1} and an integral
number #, such that for any integer n > n,

ity -1, < min {p,3_1/"}, (24)
—-Blg)+ G
raﬁq Y < ZPZS”UM Y (25)
o€D,
-B(q+e)+ + -B(g+e)-
,,Uﬁqe Y < Zpgegraﬁqe 1 (26)

o€eD,



Set

B, ={oeD, p(,_(‘;“s}, B,={oeD, p(,_ff‘s},

B3={0'6Dn <p(,<r“5}.
(27)
Then
)—y—e( 5) (q)+ed/2-
Zpg_ Zpgﬂpa B(g+e)—y—e(a— ﬁq+e y‘
oeB, o€B;
(28)

Similarly, we have

_ € € —B(g—€)—y+e(a+d) —B(q)+ed/2—
Zl’a qu <rgﬁq Y S,,aﬁq V.

o€B, o€B,

(29)

These two inequalities together with (22)-(26) imply

Yi-(Z-3-3)n

oeB; oeD, oeB, o0¢€B,

> r;ﬁ(q)w _ Zr;ﬁ(q)+65/2—y
21’ (e6/2)— )

—ﬁ(q +2y (

> r;ﬁ(q)ﬂy (r;Y-2) <by 0 <y < min {? 1})

> r PO (by (24)).

(30)

Note that for each 0 € B;, p, < max{r (0‘+5)q} = rgq—lélq =
(riry--- rn)“q_lslq. Hence,

> Pl < (#83) (o)

o€B,

(31)

which combining with (30) yields

#B, > (ﬁrz ) B(q)-aq+dlql+2y

-7

)_ﬁ*(a)+6|q|+2y > (7’1r2 .
- n

)P @dal+)
(32)

We suppose N is an integral number satisfying N > n, and
d = r 1, -+ - ry. This completes the proof of (I).
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Next we prove (II). Note that ) ;cp, pgrf"(q) = 1; we get

Bx ()

_ log ZoeDk PZ
—logr,

X nlog X7+ X ((leoel, 1K) — i) log X p)
- (er; niloge + Y, ((lwkl(xi/k) - ’7i) logci)

Cl
log ZO'EDkH’kH, pa

—logr,

m my
= <Zm log ) pf
i=1 =1

>

+ 3 (e 1) (gl / G+ 1)) = 17)

=k (il /k) =) x (")

xlogZpZ)

j=1

x <— (im logg;
i=1

(G + 1) ((J0panlo, / e+ 1)) = 1)

ke (|xlo, /) =) x ()"

-1
xlogcl-) > .

Note that lim, _, . ,(q) = B(g) and limkﬁw(lwklai/k) =1
for 1 < i < m and using (33), we can choose an integral N,
such that for any integral k,n > N, the following properties
are satisfied; that is,

+

s

Il
—

(33)

Y2 nilog ZT:H Pg

B(q)-y< Y <p(q) +v
-2t milogg
Xitimlog ¥t _log¥oeni, 5 (34)
- it milogg ~logr,
Y milog X, i)
< +
- X nilogg
Combining (34) we get

1 q
Blg)-2y< BrrPuunls g n )

—logr,
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IheI efOIe
r q < Pq <r q ( )

UEDkH,km

Using the same method, we can choose an integral N, such
that for any integral k,n > N,,

Z pZ+e < r;(ﬁ(q+e)+2y).

geDk+ Lk+n

~(B(g+e)-2y)
7’0 < (37)

Set n, = max{N;, N,}, and (36) and (37) satisfy simultane-
ously. We suppose N is an integral number satisfying N > n,

and
(ﬁ@f)) <p

i=1

m m

\ & ((k+N)((lwgs N, / AN =17)=Fe((lie| o, /F)—11:)) [N
[T <[ g it ag)

Setd = (]~ c."")N. Replace (25) and (26) with (36) and (37);

i=1%

we can prove (II) by the same method with (I). O
Lemma9. Let y be a Moran measure supported on the homo-

geneous Moran fractals E(Q) associated with the sequences Q
of which the frequency of the letter exists as above. Set

E, . = {x cE(Q)

log p (B (x,71))

| B (ay) = lim inf ogr (39)
‘ logu (B(x,7)) _ }
<1 P - )
msup B ()
Then
dim E, , < B (B (a1))- (40)
Proof. Let f = dim E; ., then for any 0 < & < f,
Hffe(qu,qz) = 00; Using (39), there exist E;qu CEg 4 anda
number sequence {r;} T 0 such that
fe (g
B (1) @
(B (xr;)) = 3V e, (42)

forany x € E; . We can choose 0 < & < (1/2)r, such that
—& /10 —(m;+1 —n;
Hg E(qu)qz) > 1.Foranyr, < §and 27" < 7, < 27 we

consider grid boxes [k27", (k + 1)27"); there exist 3 adjacent
grid boxes A, A, A, such that B(x,r;) ¢ AUA, UA,, and
there x € A and A,, A, are neighbours with A. Therefore

there exists A, € {A, A, A,} such that u(A;) > riﬁ @)+
27F @) (by B'(g,) < 0). On the other hand, notice that

. —ne=f)yyS€ (o —n;(e~f)
#CeD, |CNE;  +2}22 H; (B )22
(by (41)). Thus

#{CeD | pu(ay) 2 2@} 5 %2‘"f(5‘f . (43)

Thus
o (W)= Y (uQ)" 2@y
QGDni
Therefore

log 7\ (1)
m —————--
i— o0 —logzni

>-q (/3' (qu) + s) +f-e (45)

Using (14) and (15), notice that limnﬁm(logrqu)(y)/ -
log2") = B(q,); we have

f<B(a)+a (/3’ (611)+€)+£. (46)

Thus
dim E, , < B (B (a1))- (47)
O

3. Proof of Theorem 7

Lemma 10. Suppose A > 0 (A is from Remark 4), for allr > 0,
and x € ], € F, and choose k,I € N such that

|]a|k+1 (x)| <r< |](r|k (X)| ,
A |]U|l+l (x)l <r<A |]G|l (X)l s

where J1,1(x) denote the basic elements of order | + 1 that
contains the point x. Then

() Joper1 () S B(x, 1), ENB(x,7) € Jy4y (),

(i) 3N, > Osuchthatk —1 < A,,.

(48)

(49)

Proof. It is obvious that ], (x) € B(x,r). Nowlet y € EN
B(x,r), but y€],,,(x); then there exists j < [ + 1 such that
7|j =olj,and 7|j+1#0lj+1,and x € Jy ;41 (%), ¥ € Joyja(¥)-
Therefore,

|y — x| >d (]r|j+1 (x) >]a|j+1 (y))

(50)
2 8T 0] 2 Aoy (0] > 7

which is a contradiction since y € E N B(x, r); therefore E N

B(x’ 7") - ]o‘|l+1(x)'
Since A < 1 and k > [. (48) imply that

|]0‘|k (x)l (maX {Ci})k_l_l (51)
T AT ()] A ,
which yields
kol<1s 1088 s ) (52)
logmax {;} -



Proof of Theorem 7. For any g, < ¢,, define a number
sequence {a;};") in the following manner:

q,> iisoddnumber;
qi = .. (53)
q,> iisevennumber,

B (q,), iisodd number;
%= (54)
ﬁ’ (q,), iiseven number.

We choose a positive sequence {8;};, | 0. For {a;} and
{6;}, there exist an integral number sequence {”(1)}1 ! (n(’)
corresponds to 7, in Lemma 8) and a real number {d;};°, (1 >
d, > d, > ---) such that the follow properties are satisfied.
For «, = p'(g,) and &), using Lemma8 we can

: ® 1) () @ (1) ()
pick wypstyys ety € Dottty €

(1) 1) 1)
Do 418> s UpppUpgo - "”Mlg(n € D(Ml—l)N“)Jrl,MN“’
satisfying (d, )"‘““sl < p, W < (d, )"‘1_61 (d, )H‘S1 <r W <
d) ™ foralll < j < M1 <1 < Z(l)ande >

(dl) ﬁ xxl)+6 q+1)‘
. O _ @ (1) 1
For1<j< Ml,remarkBj = {uj1 PUjy s Ui N
By the same step, for ; and §;, we also construct By)

{uﬂ,u(’) .. (’) 1 (1 <j < M,) such that

(a) e(l) > (di)—ﬁ*(a,»)+5,~(q+1);

(l) (l) . .
(b) ”11’ SP IRl eDZ;(1MiN<k)+(j—1)N(i)+1,Z;:lMiN("HjN“)’
146, 1-6; ) i
©d™ <rp<d “forl<j<M,1<l<e?;
jl

(@ di <po<d™forl<j<M,1<l<e?
il

Also we let {M;};2
enough such that

be a sequence of integers large

(e) M;N? > u?;
(f) d™ < (d,,,)* for eachi € N;
(g) limy oo (XX, M;logd,/M,,, logdy,,) = 0

Now we define a sequence of subsets of symbol set 2" in
the following manner:

M W g@ @ 0) ®
BY,...,B}),BY,....BY), .. ,BY,..,BY,... (55

and relabel them as {B];}72 . Let

n=1

(o]

qu‘]z = ﬂ

n=1v, €BY,...,v,€B;

 — (56)

It is easy to check that F, _ is the homogeneous Moran set
which is a subset of the homogeneous Moran set E(Q}).
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Next we show that

. logu(B(x,7))
1 f—=————= = ,
1?1151 IOgT ﬁ (ql)
. logu(B(x,1)) _ (57)
hfrnngT =P (q), VYxeF, .
dil'nH Fql,qz = ﬁ* (ﬁ, (ql)) .
Letx € F,  , then there existv; € B (i = 1,2,...) such
that
{x}=lim], ., . (58)
Letm = My + M, + -+ + M, — 1; there exists r,,_such that
]Vl"'Vnk+1 - r"k < ]Vl Vg | (59)

Using Lemma 10, we attain

log pvl-nv,,k +A 0 log minlsiSm,lstmi {pi,j}

log rvl'“vnkﬂ

_logu(B(xr,)) (60)
- logrnk
IOg p"l""’nkﬂ

<
log Pyt

Thus to calculate lim; _, ., (log u(B(x, 1, ))/ logr,, ), we need
to estimate p, .., andr, ., for M = m,m + 1. By (c) and
(d), we obtain

T M) Moyl
M (0+06;) Moy (0 +0
[ [a >y

i=1

(61)
2t Mi(0=0.) 5(Myp—1)(0y—03)
< pvl“'vnk+l < le'"Vnk < Hdi i (o ;de 2% 2%0u)
i=1
2k-1
de\/f,-(Hé,-)d;\;{IZk(HSZk)
i=1
(62)
2%~
gM1-8) J(My=1)(1-8)
S < 1_1[ d ok~ 2k
By (54), (60)-(62), and (g), we obtain
logu (B (x,,
i BECER) ()
k— 00 logrnk
Letn'y = My + My +---+ My, — 1; there exists r,y such that
]vl---anl = rn]’( < ]Vl'"vn)’c . (64)
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By the same method, we obtain

logu (B (x, r”L))

log

=B (q,). (65)

k— o0

Next we show ﬁ'(ql) < liminf, | ,(log u(B(x,r))/
log(r)) < limsup, _, ,(log u(B(x,r))/log(r)) < B'(qz). For
r > 0 small enough, there is a unique large integer #n such
that

Jojow | ST < |- (66)
Using the same method as above, we attain
log py, ..y, + Aglogmin iy 1cjcm, {Pi,j}
log Ty
< logu(B(x.n) (67)

logr

lOg p"l““’n+1
e
logr

ViV

Now we estimate p,, .., andr, for M = n,n+ 1. For large

1VM
n, write n = Zle M; + pwith 1 < p < M,,. In the case that
1 < p <M, —1,by(c)and (d), we obtain

i

k
M;(o;+38;) 7(p+1)(s1+0k41)
Hd dk+1
i=1

(68)
k
M;(0=6;) 1p(0ths1=Ops1)
= PVl"'Vn+1 = p"l""’n = Hdl dk‘*'lk s >
i=1
k M;(1+6;) 7(p+1)(1+8),;)
i(1+0;) 7(p+1)(1+0;,
Hdi dk+1 o
i=1
(69)

<r
= Ve

k

M;(1-6;) 1p(1-6)41)

<r,., <[] dr o,
i=1

In the other case p = M, we have the similar inequalities
where the lower bounds for p, .., andr, .., in (68) and (69)
are replaced, respectively, by

TT M5 | (@st00s)

i (0 +0; X420k
de dk+2 < Py,
i=1

(70)
k+1

M;(o;+6;)
< o < [0,
i=1

T M) | (1460

M;(1+6; 140445
l_[di dk+2 £ rvl"'vnﬂ
i=1

k+1

<y < | @O
ViV 1
i=1

(71)

By (54), using the inequalities (67)-(71), (f), and (g), we
obtain

.. logu(B(x,1))
! <1 ool )
B (q)) <limin ogr
log pt (B (x,7)) 72
. ogu(B(x,r ,
1 — < .
<limsup == B (q,)
Combining (63), (65), and (72), we obtain
.. Jlogu(B(x,1))
11?1_}{)1ng =B (@),
log y (B (x,7)) 7
. ogu(B(x,r)
limsup== oy =P (42), Vx € Fyg,

To prove dimyF, . > B"(qy), recall that F, . is the
homogeneous Moran set which is a subset of the homoge-

neous Moran set E(Q). For large n, write n = Y& M, + p
with 1 < p < M. By (a) and (c), we have

n k
H#B: > HdlMi(*,B (“i)*‘si(%“))dﬁ(:lﬁ (0k41) 46111 (Grs1 +1)) (74)
s=1 i=1

and forany v, € B],...,v, € B,

k

1+634, M;(1-6;) ;p(1=8;11)

", 2 dk+1 v T, s Zdi dk+1 : (75)
i=1

Using (75) and (f), we have

logr,
lim —2 " — 0, (76)
n~>0010g ermVn

This implies the condition (5) in Proposition 3; we have

dimyF, . =liminf,  .s,, where s, satisfies the equation
SYI
Y (rw,) =1 77)
v, €B} v, EB;
It follows that
. g (T, #B7)
dimy F, , > hnnilo%f#' (78)

- lOg Ty,



This, together with (74)-(75), yields

d1mHFql,q2

k
= e (3408 ) -6, )t

+p (ﬁ* (‘xk+1) - 8k+1 (qk+1 + 1)) 10gdk+1>

i=1

k -1
X <ZM1'(1 ~§;)logd;+ p (1- 8,y 10gdk+1> >

T~

I
—

M; (/3* (/3, (‘11)) ~&;(q; + 1)) logd;

k— o0

> lim inf ((

1

+p (/3* (.8, (‘h)) = Ot (@per + 1)) log dk+1>

k -1
><< M;(1-6;)logd;+ p (1 -6, 10gdk+1> >
i=1

1

> 8" (B (a1))
(by (54) and 8" (B'(a1)) < B (B’ (22))

since * is concave (see [3])).
(79)

Using Lemma 9, we finish proof of Theorem 7. O
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