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The point 𝑥 for which the limit lim
𝑟→0

(log 𝜇 (𝐵 (𝑥, 𝑟)) / log 𝑟) does not exist is called divergence point. Recently, multifractal
structure of the divergence points of self-similar measures has been investigated by many authors. This paper is devoted to the
study of some Moran measures with the support on the homogeneous Moran fractals associated with the sequences of which the
frequency of the letter exists; the Moran measures associated with this kind of structure are neither Gibbs nor self-similar and
than complex. Suchmeasures possess singular features because of the existence of so-called divergence points. By the box-counting
principle, we analyze multifractal structure of the divergence points of some homogeneous Moran measures and show that the
Hausdorff dimension of the set of divergence points is the same as the dimension of the whole Moran set.

1. Introduction and Statement of Results

1.1. Moran Set. Let {𝑛
𝑘
}
𝑘≥1

be a sequence of positive integers
and let {𝑟

𝑘
} be a sequence of positive real number with 𝑛

𝑘
𝑟
𝑘
<

1 for any 𝑘 ∈ N. Define𝐷
𝑜
= 𝜙, and for any 𝑘 ≥ 1, set𝐷

𝑚,𝑘
=

{(𝑖
𝑚
, 𝑖
𝑚+1

, . . . , 𝑖
𝑘
); 1 ≤ 𝑖

𝑗
≤ 𝑛

𝑗
, 𝑚 ≤ 𝑗 ≤ 𝑘},𝐷

𝑘
= 𝐷

1,𝑘
, and

𝐷 = ⋃

𝑘≥0

𝐷
𝑘
. (1)

If 𝜎 = (𝜎
1
, 𝜎

2
, . . . , 𝜎

𝑘
) ∈ 𝐷

𝑘
, 𝜏 = (𝜏

1
, . . . , 𝜏

𝑚−𝑘
) ∈ 𝐷

𝑘+1,𝑚
, let

𝜎 ∗ 𝜏 = (𝜎
1
, . . . , 𝜎

𝑘
, 𝜏
1
, . . . , 𝜏

𝑚−𝑘
). And for 1 ≤ 𝑙 ≤ 𝑘, remark

𝜎 | 𝑙 = (𝜎
1
, . . . , 𝜎

𝑙
).

Definition 1. Suppose 𝐽 is a closed interval of length 1. The
collection F = {𝐽

𝜎
; 𝜎 ∈ 𝐷} of closed subintervals of 𝐽 is

said to have a homogeneousMoran structure, if it satisfies the
following conditions (MSC):

(i) 𝐽
𝜙
= 𝐽;

(ii) for all 𝑘 ≥ 0 and 𝜎 ∈ 𝐷
𝑘
, 𝐽

𝜎∗1
, 𝐽
𝜎∗2

, . . . , 𝐽
𝜎∗𝑛𝑘+1

are subintervals of 𝐽
𝜎
and satisfy that 𝐽∘

𝜏∗𝑖
⋂𝐽

∘

𝜏∗𝑗
=

𝜙 (𝑖 ̸= 𝑗), where 𝐴∘ denotes the interior of 𝐴;

(iii) for any 𝑘 ≥ 1 and 𝜎 ∈ 𝐷
𝑘−1

, 1 ≤ 𝑗 ≤ 𝑛
𝑘
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝐽
𝜎∗𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝐽
𝜎

󵄨
󵄨
󵄨
󵄨

= 𝑟
𝑘
, (2)

where |𝐴| denotes the diameter of 𝐴.

Suppose thatF is a collection of closed subintervals of 𝐽
having homogeneous Moran structure, and set

𝐸
𝑘
= ⋃

𝜎∈𝐷𝑘

𝐽
𝜎
, 𝐸 = ⋂

𝑘≥0

𝐸
𝑘
. (3)

It is ready to see that 𝐸 is a nonempty compact set. The set
𝐸 := 𝐸(F) is called the homogeneous Moran set associated
with the collectionF.

Let F
𝑘

= {𝐽
𝜎
; 𝜎 ∈ 𝐷

𝑘
}, and let F = ⋃

𝑘≥0
F

𝑘
. The

elements ofF
𝑘
are called the basic elements of order 𝑘 of the

homogeneous Moran set 𝐸 and the elements ofF are called
the basic elements of the homogeneous Moran set 𝐸.

Remark 2. If lim
𝑛→∞

sup
𝜎∈𝐷𝑛

|𝐽
𝜎
| > 0, then 𝐸 contains

interior points. Thus, the measure and dimension properties
will be trivial. We assume therefore that

lim
𝑛→∞

sup
𝜎∈𝐷𝑛

󵄨
󵄨
󵄨
󵄨
𝐽
𝜎

󵄨
󵄨
󵄨
󵄨
= 0. (4)
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Proposition 3 (see [1, Proposition 3.1]). For a homogeneous
Moran set 𝐸 defined as above, suppose furthermore that

lim
𝑘→∞

log 𝑟
𝑘

log 𝑟
1
𝑟
2
⋅ ⋅ ⋅ 𝑟

𝑘−1

= 0. (5)

Then we have

dim
𝐻
𝐸 = lim inf

𝑘→∞

𝑠
𝑘
, (6)

where 𝑠
𝑘
satisfies the equation ∑

𝜎∈𝐷𝑘
𝑟
𝑠𝑘

𝜎
= 1 for each 𝑘.

Let 𝐴 = {𝑎
1
, 𝑎

2
, . . . , 𝑎

𝑚
}, and let 𝜔 = 𝑠

1
𝑠
2
⋅ ⋅ ⋅ 𝑠

𝑘
⋅ ⋅ ⋅ be a

sequence over 𝐴, 𝑠
𝑖
∈ 𝐴. For 𝑘 ≥ 1, write 𝜔

𝑘
= 𝜔|

𝑘
=

𝑠
1
𝑠
2
⋅ ⋅ ⋅ 𝑠

𝑘
; then |𝜔

𝑘
| = 𝑘. We denote by |𝜔

𝑘
|
𝑎𝑖
the number

of occurrences of the letter 𝑎
𝑖
in 𝜔

𝑘
. If for any 𝑎

𝑖
∈ 𝐴,

lim
𝑘→∞

(|𝜔
𝑘
|
𝑎𝑖
/𝑘) = 𝜂

𝑖
> 0, then we say that the sequence 𝜔

has the frequency vector 𝜂 = (𝜂
1
, 𝜂

2
, . . . , 𝜂

𝑚
). It is easy to see

that ∑𝑚

𝑖=1
|𝜔

𝑘
|
𝑎𝑖
= 𝑘 and ∑

𝑚

𝑗=1
𝜂
𝑗
= 1. For 𝜂 = (𝜂

1
, 𝜂

2
, . . . , 𝜂

𝑚
),

let

𝐴
N
𝜂
= {𝜔 = {𝑠

𝑘
}
𝑘≥1

; 𝑠
𝑘
∈ 𝐴, lim

𝑘→∞

󵄨
󵄨
󵄨
󵄨
𝜔
𝑘

󵄨
󵄨
󵄨
󵄨𝑎𝑖

𝑘

= 𝜂
𝑖
, 1 ≤ 𝑖 ≤ 𝑚} .

(7)

For 1 ≤ 𝑖 ≤ 𝑚, let 𝑚
𝑖
∈ N and let 𝑐

𝑖
be a positive real

number with 𝑚
𝑖
𝑐
𝑖
≤ 1. For 𝜔 ∈ 𝐴

N, in the homogeneous
Moran construction above, for any 𝑘 ≥ 1 if 𝑠

𝑘
= 𝑎

𝑖
take

𝑛
𝑘
= 𝑚

𝑖
, 𝑟

𝑘
= 𝑐

𝑖
. Then we construct the homogeneous Moran

set relating to 𝜔 ∈ 𝐴
N
𝜂
and denote it by 𝐸(𝜔) = {𝐽, {𝑛

𝑘
}, {𝑟

𝑘
}}.

Remark 4. In this paper, we assume that 𝐽
𝜎
∈ F

𝑘
(𝑘 ≥ 1), let

𝐽
𝜎∗1

, 𝐽
𝜎∗2

, . . . , 𝐽
𝜎∗𝑛𝑘+1

be the 𝑛
𝑘+1

basic intervals of order 𝑘 + 1

contained in 𝐽
𝜎
arranged from left to right. For all 1 ≤ 𝑗 ≤

𝑛
𝑘+1

−1, let𝑑(𝐽
𝜎∗𝑗

, 𝐽
𝜎∗(𝑗+1)

) ≥ Δ
𝑘
|𝐽
𝜎
|, where {Δ

𝑘
} is a sequence

of positive real number. Let Δ = inf
𝑘≥1

Δ
𝑘
. In this paper we

suppose Δ > 0.

1.2. Moran Measure. Let 𝑃
𝑎𝑖
= (𝑝

𝑖1
𝑝
𝑖2
⋅ ⋅ ⋅ 𝑝

𝑖𝑚𝑖
) (1 ≤ 𝑖 ≤ 𝑚)

be probability vectors; that is, 𝑝
𝑖𝑗
> 0 and ∑

𝑚𝑖

𝑗=1
𝑝
𝑖𝑗
= 1 (1 ≤

𝑖 ≤ 𝑚). For any 𝑘 ≥ 1, 𝜎 ∈ 𝐷
𝑘
, from Section 1.1, we know

𝜎 = 𝜎
1
𝜎
2
⋅ ⋅ ⋅ 𝜎

𝑘
∈ 𝐷

𝑘
where 𝜎

𝑘
∈ {1, 2, . . . , 𝑚

𝑖
}, if 𝑠

𝑘
= 𝑎

𝑖
.

For 𝜎 = 𝜎
1
𝜎
2
⋅ ⋅ ⋅ 𝜎

𝑘
, define 𝜎(𝑎

𝑖
) as follows: let 𝜔

𝑘
= 𝑠

1
⋅ ⋅ ⋅ 𝑠

𝑘
,

𝑒
1
< 𝑒

2
< ⋅ ⋅ ⋅ 𝑒

|𝜔𝑘|𝑎𝑖

be the occurrences of the letter 𝑎
𝑖
in 𝜔

𝑘
;

then 𝜎(𝑎
𝑖
) = 𝜎

𝑒1
𝜎
𝑒2
⋅ ⋅ ⋅ 𝜎

𝑒|𝜔𝑘|𝑎𝑖

. For convenience we will write
𝜎(𝑎

𝑖
) = 𝜎

𝑖1
𝜎
𝑖2
⋅ ⋅ ⋅ 𝜎

𝑖|𝜔𝑘|𝑎𝑖

, where 𝜎
𝑖𝑗
∈ {1, 2, . . . , 𝑚

𝑖
} (1 ≤ 𝑖 ≤ 𝑚).

In fact, 𝜎
(𝑎1)

∗ 𝜎
(𝑎2)

∗ ⋅ ⋅ ⋅ ∗ 𝜎
(𝑎𝑚)

is a rearrangement of 𝜎 =

𝜎
1
⋅ ⋅ ⋅ 𝜎

𝑘
. We make the convention that 𝜎

(𝑎𝑖)
= 𝜙 if |𝜔

𝑘
|
𝑎𝑖
= 0.

Now define
𝑝
𝜎(𝑎𝑖)

= 𝑝
𝑖𝜎𝑖1

⋅ ⋅ ⋅ 𝑝
𝑖𝜎𝑖|𝜔𝑘|𝑎𝑖

, 1 ≤ 𝑖 ≤ 𝑚. (8)

It is obvious that∑
𝜎∈𝐷𝑘

∏
𝑚

𝑖=1
𝑝
𝜎(𝑎𝑖)

= 1 for any 𝑘 ≥ 1.Wemake
the convention that 𝑝

𝜎(𝑎𝑖)
= 1 if 𝜎(𝑎

𝑖
) = 𝜙.

Let 𝜇 be a mass distribution on 𝐸(𝜔), such that for any
𝐽
𝜎
∈ F

𝑘
, 𝜎 ∈ 𝐷

𝑘
,

𝜇 (𝐽
𝜎
) = 𝑝

𝜎(𝑎1)
𝑝
𝜎(𝑎2)

⋅ ⋅ ⋅ 𝑝
𝜎(𝑎𝑚)

, (9)

and 𝜇(∑
𝜎∈𝐷𝑘

𝐽
𝜎
) = 1. Since 𝜇 is related to 𝜔, we denote it

by 𝜇(𝜔). Here 𝜇(𝜔) is a homogeneous Moran measure on
𝐸(𝜔), and it is an extension of the self-similar measure by
Hutchinson [2].

1.3. Main Results. From now on, we assume that 𝐸(𝜔) is
a homogeneous Moran fractal defined in Section 1.1, and
𝜇(𝜔) is a probability measure introduced in Section 1.2. The
notationa 𝐷, 𝐷

𝑘
, 𝐽

𝜎
, 𝜇(𝐽

𝜎
), 𝑃

𝜎(𝑎𝑖)
(1 ≤ 𝑖 ≤ 𝑚) are as above; in

the following, if 𝜎 ∈ 𝐷
𝑘
, 𝜏 ∈ 𝐷

𝑘+1,𝑘+𝑛
, let 𝑟

𝜎
= |𝐽

𝜎
|, 𝑝

𝜎
= 𝜇(𝐽

𝜎
)

and 𝑟
𝜏
= |𝐽

𝜎∗𝜏
|/|𝐽

𝜎
|, 𝑝

𝜏
= 𝜇(𝐽

𝜎∗𝜏
)/𝜇(𝐽

𝜎
). Now we define an

auxiliary function 𝛽(𝑞) as follows. For each 𝑞 ∈ R and 𝑘 ≥ 1,
there is a unique number 𝛽

𝑘
(𝑞) such that

∑

𝜎∈𝐷𝑘

𝑝
𝑞

𝜎
𝑟
𝛽𝑘(𝑞)

𝜎
= 1. (10)

By simple calculation, we get

lim
𝑘→∞

𝛽
𝑘
(𝑞) = 𝛽 (𝑞) =

∑
𝑚

𝑖=1
𝜂
𝑖
log (∑𝑚𝑖

𝑗=1
𝑝
𝑞

𝑖𝑗
)

∑
𝑚

𝑖=1
𝜂
𝑖
log 𝑐

𝑖

. (11)

Proposition 5 (see [3, Proposition 2.3]). For all 𝑞 ∈ R, 𝛽(𝑞)
defined by (10) satisfies the following:

(i) 𝛽(0) = dim 𝐸;
(ii) 𝛽(𝑞) is strictly decreasing, and lim

𝑞→∓∞
𝛽(𝑞) = ±∞;

(iii) 𝛽(𝑞) is convex in 𝑞, and 𝛽(𝑞) is strictly convex if and
only if log p

𝑖𝑗
/ log 𝑐

𝑖
is not the same for all 1 ≤ 𝑗 ≤ 𝑚

𝑖
,

𝑖 = 1, 2, . . . , 𝑚.

Let 𝜇 be a Borel probability measure on R𝑑; let

Θ(𝑞; 𝑟) = sup∑
𝑖

𝜇(𝐵 (𝑥
𝑖
, 𝑟))

𝑞

, 𝑟 > 0, 𝑞 ∈ R, (12)

where the supremum is taken over all families of
disjoint closed balls {𝐵(𝑥

𝑖
, 𝑟)}

𝑖
with 𝑥

𝑖
∈ supp 𝜇. If

lim
𝑟→0

(logΘ(𝑞; 𝑟)/ log 𝑟) exists, we call that the 𝐿𝑞-spectrum
𝜏(𝑞) of 𝜇 exists; that is,

𝜏 (𝑞) = lim
𝑟→0

logΘ(𝑞; 𝑟)

− log 𝑟
. (13)

Peres and Solomyak [4] give alternative definition of
𝐿
𝑞-spectrum. Let 𝜇 be a Borel probability measure onR𝑑. Let

D
𝑛
be the partition of R𝑑 into grid boxes ∏𝑑

𝑖=1
[𝑘

𝑖
2
−𝑛

, (𝑘
𝑖
+

1)2
−𝑛

) with 𝑘
𝑖
∈ Z. For 𝑞 > 0, denote 𝜏(𝑞)

𝑛
(𝜇) = ∑

𝑄∈D𝑛(𝜇𝑄)
𝑞.

If lim
𝑛→0

(log 𝜏(𝑞)
𝑛
(𝜇)/ − 𝑛 log 2) exists, we call that the

𝐿
𝑞-spectrum 𝜏

0
(𝑞) of 𝜇 exists; that is,

𝜏
0
(𝑞) = lim

𝑛→0

log 𝜏(𝑞)
𝑛

(𝜇)

−𝑛 log 2
. (14)

Peres and Solomyak [4] prove that 𝜏(𝑞) = 𝜏
0
(𝑞).

Proposition 6 (see [5]). Let 𝜇 be a Moran measure supported
on the homogeneous Moran fractals 𝐸; then

𝜏 (𝑞) = 𝜏
0
(𝑞) = 𝛽 (𝑞) . (15)
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The Legendre transform of 𝛽 is the function 𝛽
∗

:

(𝛼min, 𝛼max) → R defined by

𝛽
∗

(𝛼) = inf
𝑞∈R

{𝛽 (𝑞) + 𝛼𝑞} , (16)

where 𝛼min = inf
𝑞∈R 𝛽

󸀠

(𝑞), 𝛼max = sup
𝑞∈R 𝛽

󸀠

(𝑞).
Let 𝑋 be a complete separable metric space and 𝜇 a

finite Borel measure on 𝑋. In the multifractal analysis one is
interested in the size of the following level sets:

𝑋
𝛼
= {𝑥 ∈ 𝑋 : lim

𝑟→0

log𝜇 (𝐵 (𝑥, 𝑟))

log 𝑟
= 𝛼} ,

−∞ ≤ 𝛼 ≤ +∞.

(17)

The space𝑋 has the following natural decomposition:

𝑋 = ⋃

−∞≤𝛼≤+∞

𝑋
𝛼
∪ 𝑋

𝑜

, (18)

where

𝑋
𝑜

= {𝑥 ∈ 𝑋 : lim
𝑟→0

log 𝜇 (𝐵 (𝑥, 𝑟))

log 𝑟
does not exist} . (19)

The set 𝑋𝑜 is called the set of divergence points and the
point 𝑥 for which the limit lim

𝑟→0
(log𝜇(𝐵(𝑥, 𝑟))/ log 𝑟) does

not exist is called divergence point. Recently, multifractal
structure of the divergence points of self-similar measures
has been investigated by a large number of authors. Barreira
and Schmeling [6] and Chen and Xiong [7] have shown
that for self-similar measures satisfying the SSC the set of
divergence points typically has the Hausdorff dimension as
the support 𝐾. Furthermore, Olsen and Winter [8] analyse
its structure and give a decomposition of this set for the
case that the SSC satisfies. However, with only the OSC
satisfied, we cannot do most of the work on a symbolic space
and then transfer the results to the subsets of R𝑑, which
makes things more difficult. By the box-counting principle
we (2011) [9] show that the set of divergence point has still
the same Hausdorff dimension as the support 𝐾 for self-
similar measures satisfying the OSC. Li et al. [10] further
analyse its structure and give a decomposition of this set
for the case that the OSC satisfies. This paper is devoted
to the study of some Moran measures with the support
on the homogeneous Moran fractals associated with the
sequences of which the frequency of the letter exists; such
measures possess singular features because of the existence of
so-called divergence points. By the box-counting principle,
we analyze Multifractal structure of the divergence points
of some homogeneous Moran measures and show that the
Hausdorff dimension of the set of divergence points is the
same as the dimension of the whole Moran set. It should
be pointed out that the Moran measures associated with this
kind of structure are neither Gibbs nor self-similar and more
than complex.

Theorem 7. Let 𝜇 be a Moran measure supported on
the homogeneous Moran fractals 𝐸(Ω) associated with the

sequencesΩ of which the frequency of the letter exists as above.
Set

𝐸
𝑞1,𝑞2

= {𝑥 ∈ 𝐸 (Ω)

| 𝛽
󸀠

(𝑞
1
) = lim inf

𝑟→0

log𝜇 (𝐵 (𝑥, 𝑟))

log 𝑟

< lim sup
𝑟→0

log 𝜇 (𝐵 (𝑥, 𝑟))

log 𝑟
= 𝛽

󸀠

(𝑞
2
)} .

(20)

Then

dim 𝐸
𝑞1 ,𝑞2

= 𝛽
∗

(𝛽
󸀠

(𝑞
1
)) . (21)

ByTheorem 7 and Proposition 5, we easily obtain that the
Hausdorff dimension of the set of divergence points is the
same as the dimension of the whole Moran set.

2. Several Lemma

Lemma 8. Suppose that 𝛼 ∈ R is such that 𝛼 = −𝛽
󸀠

(𝑞) for
some 𝑞 ∈ R. Then for any 𝛿 > 0, 𝜌 > 0,

(I) there exist 𝑑 ∈ (0, 𝜌), ℓ ≥ 𝑑
−𝛽
∗
(𝛼)+𝛿(𝑞+1), an integral

number 𝑁, and 𝑢
1
, . . . , 𝑢

ℓ
∈ 𝐷

𝑁
satisfying the

following properties:

(a) 𝑑1+𝛿 ≤ 𝑟
𝑢𝑖
≤ 𝑑

1−𝛿 for all 1 ≤ 𝑖 ≤ ℓ,
(b) 𝑑𝛼+𝛿 ≤ 𝑝

𝑢𝑖
≤ 𝑑

𝛼−𝛿 for all 1 ≤ 𝑖 ≤ ℓ;

(II) there exist an integral number 𝑛
0
such that for any

integer 𝑘 > 𝑛
0
, there exist 𝑑 ∈ (0, 𝜌), ℓ ≥ 𝑑

−𝛽
∗
(𝛼)+𝛿(𝑞+1),

an integral number 𝑁, and 𝑢
1
, . . . , 𝑢

ℓ
∈ 𝐷

𝑘+1,𝑁+1

satisfying the following properties:

(a) 𝑑1+𝛿 ≤ 𝑟
𝑢𝑖
≤ 𝑑

1−𝛿 for all 1 ≤ 𝑖 ≤ ℓ;
(b) 𝑑𝛼+𝛿 ≤ 𝑝

𝑢𝑖
≤ 𝑑

𝛼−𝛿 for all 1 ≤ 𝑖 ≤ ℓ.

Proof. For the given 𝛿 > 0, we choose a small 0 < 𝜖 < 1 such
that

(𝛼 −

𝛿

2

) 𝜖 ≤ 𝛽 (𝑞) − 𝛽 (𝑞 + 𝜖) ≤ (𝛼 +

𝛿

2

) 𝜖, (22)

(𝛼 −

𝛿

2

) 𝜖 ≤ 𝛽 (𝑞 − 𝜖) − 𝛽 (𝑞) ≤ (𝛼 +

𝛿

2

) 𝜖. (23)

Using (10), we can pick 0 < 𝛾 < min{𝜖𝛿/6, 1} and an integral
number 𝑛

0
such that for any integer 𝑛 > 𝑛

0
,

𝑟
1
𝑟
2
⋅ ⋅ ⋅ 𝑟

𝑛
< min {𝜌, 3

−1/𝛾

} , (24)

𝑟
−𝛽(𝑞)+𝛾

𝜎
≤ ∑

𝜎∈𝐷𝑛

𝑝
𝑞

𝜎
≤ 𝑟

−𝛽(𝑞)−𝛾

𝜎
, (25)

𝑟
−𝛽(𝑞+𝜖)+𝛾

𝜎
≤ ∑

𝜎∈𝐷𝑛

𝑝
𝑞+𝜖

𝜎
≤ 𝑟

−𝛽(𝑞+𝜖)−𝛾

𝜎
. (26)
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Set

B
1
= {𝜎 ∈ 𝐷

𝑛
: 𝑝

𝜎
≥ 𝑟

𝛼−𝛿

𝜎
} , B

2
= {𝜎 ∈ 𝐷

𝑛
: 𝑝

𝜎
≥ 𝑟

𝛼−𝛿

𝜎
} ,

B
3
= {𝜎 ∈ 𝐷

𝑛
: 𝑟

𝛼+𝛿

𝜎
< 𝑝

𝜎
< 𝑟

𝛼−𝛿

𝜎
} .

(27)

Then

∑

𝜎∈B1

𝑝
𝑞

𝜎
= ∑

𝜎∈B1

𝑝
𝑞+𝜖

𝜎
𝑝
−𝜖

𝜎
≤ 𝑟

−𝛽(𝑞+𝜖)−𝛾−𝜖(𝛼−𝛿)

𝜎
≤ 𝑟

−𝛽(𝑞)+𝜖𝛿/2−𝛾

𝜎
.

(28)

Similarly, we have

∑

𝜎∈B2

𝑝
𝑞

𝜎
= ∑

𝜎∈B2

𝑝
𝑞−𝜖

𝜎
𝑝
𝜖

𝜎
≤ 𝑟

−𝛽(𝑞−𝜖)−𝛾+𝜖(𝛼+𝛿)

𝜎
≤ 𝑟

−𝛽(𝑞)+𝜖𝛿/2−𝛾

𝜎
.

(29)

These two inequalities together with (22)–(26) imply

∑

𝜎∈B3

𝑝
𝑞

𝜎
= ( ∑

𝜎∈𝐷𝑛

− ∑

𝜎∈B1

− ∑

𝜎∈B2

)𝑝
𝑞

𝜎

≥ 𝑟
−𝛽(𝑞)+𝛾

𝜎
− 2𝑟

−𝛽(𝑞)+𝜖𝛿/2−𝛾

𝜎

= 𝑟
−𝛽(𝑞)+2𝛾

𝜎
(𝑟

−𝛾

𝜎
− 2𝑟

(𝜖𝛿/2)−3𝛾

𝜎
)

≥ 𝑟
−𝛽(𝑞)+2𝛾

𝜎
(𝑟
−𝛾

𝜎
− 2) (by 0 < 𝛾 < min{𝜖𝛿

6

, 1})

≥ 𝑟
−𝛽(𝑞)+2𝛾

𝜎
(by (24)) .

(30)

Note that for each 𝜎 ∈ B
3
, 𝑝

𝜎
≤ max {𝑟(𝛼±𝛿)𝑞

𝜎
} = 𝑟

𝛼𝑞−|𝛿|𝑞

𝜎
=

(𝑟
1
𝑟
2
⋅ ⋅ ⋅ 𝑟

𝑛
)
𝛼𝑞−|𝛿|𝑞. Hence,

∑

𝜎∈B3

𝑝
𝑞

𝜎
≤ (#B

3
) (𝑟

1
𝑟
2
⋅ ⋅ ⋅ 𝑟

𝑛
)
𝛼𝑞−|𝛿|𝑞

(31)

which combining with (30) yields

#B
3
≥ (𝑟

1
𝑟
2
⋅ ⋅ ⋅ 𝑟

𝑛
)
−𝛽(𝑞)−𝛼𝑞+𝛿|𝑞|+2𝛾

= (𝑟
1
𝑟
2
⋅ ⋅ ⋅ 𝑟

𝑛
)
−𝛽
∗
(𝛼)+𝛿|𝑞|+2𝛾

≥ (𝑟
1
𝑟
2
⋅ ⋅ ⋅ 𝑟

𝑛
)
−𝛽
∗
(𝛼)+𝛿(|𝑞|+1)

.

(32)

We suppose 𝑁 is an integral number satisfying 𝑁 > 𝑛
0
and

𝑑 = 𝑟
1
𝑟
2
⋅ ⋅ ⋅ 𝑟

𝑁
. This completes the proof of (I).

Next we prove (II). Note that ∑
𝜎∈𝐷𝑘

𝑝
𝑞

𝜎
𝑟
𝛽𝑘(𝑞)

𝜎
= 1; we get

𝛽
𝑘
(𝑞)

=

log∑
𝜎∈𝐷𝑘

𝑝
𝑞

𝜎

− log 𝑟
𝜎

=

∑
𝑚

𝑖=1
𝜂
𝑖
log∑𝑚𝑖

𝑗=1
𝑝
𝑞

𝑖𝑗
+ ∑

𝑚

𝑖=1
((
󵄨
󵄨
󵄨
󵄨
𝜔
𝑘

󵄨
󵄨
󵄨
󵄨𝛼𝑖
/𝑘) − 𝜂

𝑖
) log∑𝑚𝑖

𝑗=1
𝑝
𝑞

𝑖𝑗

− (∑
𝑚

𝑖=1
𝜂
𝑖
log 𝑐

𝑖
+ ∑

𝑚

𝑖=1
((
󵄨
󵄨
󵄨
󵄨
𝜔
𝑘

󵄨
󵄨
󵄨
󵄨𝛼𝑖
/𝑘) − 𝜂

𝑖
) log 𝑐

𝑖
)

,

log∑
𝜎∈𝐷𝑘+1,𝑘+𝑛

𝑝
𝑞

𝜎

− log 𝑟
𝜎

= (

𝑚

∑

𝑖=1

𝜂
𝑖
log

𝑚1

∑

𝑗=1

𝑝
𝑞

𝑖𝑗

+

𝑚

∑

𝑖=1

(((𝑘 + 𝑛) ((
󵄨
󵄨
󵄨
󵄨
𝜔
𝑘+𝑛

󵄨
󵄨
󵄨
󵄨𝛼𝑖
/ (𝑘 + 𝑛)) − 𝜂

𝑖
)

− 𝑘 ((
󵄨
󵄨
󵄨
󵄨
𝜔
𝑘

󵄨
󵄨
󵄨
󵄨𝛼𝑖
/𝑘) − 𝜂

𝑖
)) × (𝑛)

−1

)

× log
𝑚𝑖

∑

𝑗=1

𝑝
𝑞

𝑖𝑗
)

× (−(

𝑚

∑

𝑖=1

𝜂
𝑖
log 𝑐

𝑖

+

𝑚

∑

𝑖=1

(((𝑘 + 𝑛) ((
󵄨
󵄨
󵄨
󵄨
𝜔
𝑘+𝑛

󵄨
󵄨
󵄨
󵄨𝛼𝑖
/ (𝑘 + 𝑛)) − 𝜂

𝑖
)

−𝑘 ((
󵄨
󵄨
󵄨
󵄨
𝜔
𝑘

󵄨
󵄨
󵄨
󵄨𝛼𝑖
/𝑘) − 𝜂

𝑖
)) × (𝑛)

−1

)

× log 𝑐
𝑖
))

−1

.

(33)

Note that lim
𝑛→∞

𝛽
𝑛
(𝑞) = 𝛽(𝑞) and lim

𝑘→∞
(|𝜔

𝑘
|
𝑎𝑖
/𝑘) = 𝜂

𝑖

for 1 ≤ 𝑖 ≤ 𝑚 and using (33), we can choose an integral 𝑁
1

such that for any integral 𝑘, 𝑛 > 𝑁
1
, the following properties

are satisfied; that is,

𝛽 (𝑞) − 𝛾 ≤

∑
𝑚

𝑖=1
𝜂
𝑖
log∑𝑚𝑖

𝑗=1
𝑝
𝑞

𝑖𝑗

−∑
𝑚

𝑖=1
𝜂
𝑖
log 𝑐

𝑖

≤ 𝛽 (𝑞) + 𝛾,

∑
𝑚

𝑖=1
𝜂
𝑖
log∑𝑚𝑖

𝑗=1
𝑝
𝑞

𝑖𝑗

−∑
𝑚

𝑖=1
𝜂
𝑖
log 𝑐

𝑖

− 𝛾 ≤

log∑
𝜎∈𝐷𝑘+1,𝑘+𝑛

𝑝
𝑞

𝜎

− log 𝑟
𝜎

≤

∑
𝑚

𝑖=1
𝜂
𝑖
log∑𝑚𝑖

𝑗=1
𝑝
𝑞

𝑖𝑗

−∑
𝑚

𝑖=1
𝜂
𝑖
log 𝑐

𝑖

+ 𝛾.

(34)

Combining (34) we get

𝛽 (𝑞) − 2𝛾 ≤

log∑
𝜎∈𝐷𝑘+1,𝑘+𝑛

𝑝
𝑞

𝜎

− log 𝑟
𝜎

≤ 𝛽 (𝑞) + 2𝛾. (35)
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Therefore

𝑟
−(𝛽(𝑞)−2𝛾)

𝜎
≤ ∑

𝜎∈𝐷𝑘+1,𝑘+𝑛

𝑝
𝑞

𝜎
< 𝑟

−(𝛽(𝑞)+2𝛾)

𝜎
. (36)

Using the same method, we can choose an integral 𝑁
2
such

that for any integral 𝑘, 𝑛 > 𝑁
2
,

𝑟
−(𝛽(𝑞+𝜖)−2𝛾)

𝜎
≤ ∑

𝜎∈𝐷𝑘+1,𝑘+𝑛

𝑝
𝑞+𝜖

𝜎
≤ 𝑟

−(𝛽(𝑞+𝜖)+2𝛾)

𝜎
. (37)

Set 𝑛
0
= max{𝑁

1
, 𝑁

2
}, and (36) and (37) satisfy simultane-

ously. We suppose𝑁 is an integral number satisfying𝑁 > 𝑛
0

and

(

𝑚

∏

𝑖=1

(𝑐
𝜂𝑖

𝑖
))

𝑁

< 𝜌,

𝑚

∏

𝑖=1

(𝑐
𝜂𝑖

𝑖
)

𝛿

≤

𝑚

∏

𝑖=1

𝑐

((𝑘+𝑁)((|𝜔𝑘+𝑁|𝛼𝑖
/(𝑘+𝑁))−𝜂𝑖)−𝑘((|𝜔𝑘|𝛼𝑖

/𝑘)−𝜂𝑖))/𝑁

𝑖

≤

𝑚

∏

𝑖=1

(𝑐
𝜂𝑖

𝑖
)

−𝛿

.

(38)

Set 𝑑 = (∏
𝑚

𝑖=1
𝑐
𝜂𝑖

𝑖
)

𝑁. Replace (25) and (26) with (36) and (37);
we can prove (II) by the same method with (I).

Lemma 9. Let 𝜇 be a Moran measure supported on the homo-
geneous Moran fractals 𝐸(Ω) associated with the sequences Ω
of which the frequency of the letter exists as above. Set

𝐸
𝑞1 ,𝑞2

= {𝑥 ∈ 𝐸 (Ω)

| 𝛽
󸀠

(𝑞
1
) = lim inf

𝑟→0

log𝜇 (𝐵 (𝑥, 𝑟))

log 𝑟

< lim sup
𝑟→0

log𝜇 (𝐵 (𝑥, 𝑟))

log 𝑟
= 𝛽

󸀠

(𝑞
2
)} .

(39)

Then

dim 𝐸
𝑞1 ,𝑞2

≤ 𝛽
∗

(𝛽
󸀠

(𝑞
1
)) . (40)

Proof. Let 𝑓 = dim 𝐸
𝑞1 ,𝑞2

, then for any 0 < 𝜀 < 𝑓,
H𝑓−𝜀

(𝐸
𝑞1 ,𝑞2

) = ∞; Using (39), there exist 𝐸∘
𝑞1 ,𝑞2

⊂ 𝐸
𝑞1 ,𝑞2

and a
number sequence {𝑟

𝑖
} ↑ 0 such that

H𝑓−𝜀

(𝐸
∘

𝑞1 ,𝑞2

) > 1, (41)

𝜇 (𝐵 (𝑥, 𝑟
𝑖
)) ≥ 3

1/𝑞1
𝑟
𝛽
󸀠
(𝑞1)+𝜀

𝑖
, (42)

for any 𝑥 ∈ 𝐸
∘

𝑞1 ,𝑞2

. We can choose 0 < 𝛿 ≤ (1/2)𝑟
0
such that

H𝑓−𝜀

𝛿
(𝐸

∘

𝑞1 ,𝑞2

) ≥ 1. For any 𝑟
𝑖
≤ 𝛿 and 2

−(𝑛𝑖+1)
≤ 𝑟

𝑖
< 2

−𝑛𝑖 , we
consider grid boxes [𝑘2−𝑛𝑖 , (𝑘 + 1)2

−𝑛𝑖
); there exist 3 adjacent

grid boxes 𝐴,𝐴
1
, 𝐴

2
such that 𝐵(𝑥, 𝑟

𝑖
) ⊂ 𝐴 ∪ 𝐴

1
∪ 𝐴

2
, and

there 𝑥 ∈ 𝐴 and 𝐴
1
, 𝐴

2
are neighbours with 𝐴. Therefore

there exists 𝐴
0
∈ {𝐴, 𝐴

1
, 𝐴

2
} such that 𝜇(𝐴

0
) ≥ 𝑟

𝛽
󸀠
(𝑞1)+𝜀

𝑖
≥

2
−𝑛𝑖(𝛽

󸀠
(𝑞1)+𝜀) (by 𝛽󸀠(𝑞

1
) < 0). On the other hand, notice that

#{𝐶 ∈ D
𝑛𝑖
| 𝐶 ∩ 𝐸

∘

𝑞1,𝑞2

̸= ⌀} ≥ 2
−𝑛𝑖(𝜀−𝑓)H𝑓−𝜀

𝛿
(𝐸

∘

𝑞1 ,𝑞2

) ≥ 2
−𝑛𝑖(𝜀−𝑓)

(by (41)). Thus

# {𝐶 ∈ D
𝑘
| 𝜇 (𝐴

0
) ≥ 2

−𝑛𝑖(𝛽
󸀠
(𝑞1)+𝜀)

} ≥

1

3

2
−𝑛𝑖(𝜀−𝑓)

. (43)

Thus

𝜏
(𝑞1)

𝑛𝑖

(𝜇) = ∑

𝑄∈D𝑛𝑖

(𝜇𝑄)
𝑞1
≥ 2

−𝑛𝑖𝑞1(𝛽
󸀠
(𝑞1)+𝜀)

2
−𝑛𝑖(𝜀−𝑓)

. (44)

Therefore

lim
𝑖→∞

log 𝜏(𝑞1)
𝑛𝑖

(𝜇)

− log 2𝑛𝑖
≥ −𝑞

1
(𝛽

󸀠

(𝑞
1
) + 𝜀) + 𝑓 − 𝜀. (45)

Using (14) and (15), notice that lim
𝑛→∞

(log 𝜏(𝑞1)
𝑛

(𝜇)/ −

log 2𝑛) = 𝛽(𝑞
1
); we have

𝑓 ≤ 𝛽 (𝑞
1
) + 𝑞

1
(𝛽

󸀠

(𝑞
1
) + 𝜀) + 𝜀. (46)

Thus

dim 𝐸
𝑞1 ,𝑞2

≤ 𝛽
∗

(𝛽
󸀠

(𝑞
1
)) . (47)

3. Proof of Theorem 7

Lemma 10. Suppose Δ > 0 (Δ is from Remark 4), for all 𝑟 > 0,
and 𝑥 ∈ 𝐽

𝜎
∈ 𝐹, and choose 𝑘, 𝑙 ∈ N such that

󵄨
󵄨
󵄨
󵄨
𝐽
𝜎|𝑘+1

(𝑥)
󵄨
󵄨
󵄨
󵄨
≤ 𝑟 <

󵄨
󵄨
󵄨
󵄨
𝐽
𝜎|𝑘

(𝑥)
󵄨
󵄨
󵄨
󵄨
,

Δ
󵄨
󵄨
󵄨
󵄨
𝐽
𝜎|𝑙+1

(𝑥)
󵄨
󵄨
󵄨
󵄨
≤ 𝑟 < Δ

󵄨
󵄨
󵄨
󵄨
𝐽
𝜎|𝑙
(𝑥)

󵄨
󵄨
󵄨
󵄨
,

(48)

where 𝐽
𝜎|𝑙+1

(𝑥) denote the basic elements of order 𝑙 + 1 that
contains the point 𝑥. Then

(i) 𝐽
𝜎|𝑘+1

(𝑥) ⊆ 𝐵 (𝑥, 𝑟) , 𝐸 ∩ 𝐵 (𝑥, 𝑟) ⊆ 𝐽
𝜎|𝑙+1

(𝑥) ,

(ii) ∃Δ
0
> 0 such that 𝑘 − 𝑙 ≤ Δ

0
.

(49)

Proof. It is obvious that 𝐽
𝜎|𝑘+1

(𝑥) ⊆ 𝐵(𝑥, 𝑟). Now let 𝑦 ∈ 𝐸 ∩

𝐵(𝑥, 𝑟), but 𝑦∈̄𝐽
𝜎|𝑙+1

(𝑥); then there exists 𝑗 < 𝑙 + 1 such that
𝜏|𝑗 = 𝜎|𝑗, and 𝜏|𝑗+1 ̸= 𝜎|𝑗+1, and 𝑥 ∈ 𝐽

𝜎|𝑗+1
(𝑥), 𝑦 ∈ 𝐽

𝜏|𝑗+1
(𝑦).

Therefore,
󵄨
󵄨
󵄨
󵄨
𝑦 − 𝑥

󵄨
󵄨
󵄨
󵄨
≥ 𝑑 (𝐽

𝜏|𝑗+1
(𝑥) , 𝐽

𝜎|𝑗+1
(𝑦))

≥ Δ
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐽
𝜎|𝑗

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≥ Δ

󵄨
󵄨
󵄨
󵄨
𝐽
𝜎|𝑙
(𝑥)

󵄨
󵄨
󵄨
󵄨
> 𝑟,

(50)

which is a contradiction since 𝑦 ∈ 𝐸 ∩ 𝐵(𝑥, 𝑟); therefore 𝐸 ∩

𝐵(𝑥, 𝑟) ⊆ 𝐽
𝜎|𝑙+1

(𝑥).
Since Δ < 1 and 𝑘 ≥ 𝑙. (48) imply that

1 ≤

󵄨
󵄨
󵄨
󵄨
𝐽
𝜎|𝑘

(𝑥)
󵄨
󵄨
󵄨
󵄨

Δ
󵄨
󵄨
󵄨
󵄨
𝐽
𝜎|𝑙+1

(𝑥)
󵄨
󵄨
󵄨
󵄨

≤

(max {𝑐
𝑖
})
𝑘−𝑙−1

Δ

, (51)

which yields

𝑘 − 𝑙 ≤ 1 +

logΔ
logmax {𝑐

𝑖
}

≜ Δ
0
. (52)
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Proof of Theorem 7. For any 𝑞
2

< 𝑞
1
, define a number

sequence {𝛼
𝑖
}
∞

𝑖=1
in the following manner:

𝑞
𝑖
= {

𝑞
1
, 𝑖 is odd number;

𝑞
2
, 𝑖 is even number,

(53)

𝛼
𝑖
=

{

{

{

𝛽
󸀠

(𝑞
1
) , 𝑖 is odd number;

𝛽
󸀠

(𝑞
2
) , 𝑖 is even number.

(54)

We choose a positive sequence {𝛿
𝑖
}
∞

𝑖=1
↓ 0. For {𝛼

𝑖
} and

{𝛿
𝑖
}, there exist an integral number sequence {𝑛

(𝑖)

0
}
∞

𝑖=1
(𝑛(𝑖)

0

corresponds to 𝑛
0
in Lemma 8) and a real number {𝑑

𝑖
}
∞

𝑖=1
(1 >

𝑑
1
> 𝑑

2
> ⋅ ⋅ ⋅ ) such that the follow properties are satisfied.

For 𝛼
1

= 𝛽
󸀠

(𝑞
1
) and 𝛿

1
, using Lemma 8 we can

pick 𝑢
(1)

11
, 𝑢

(1)

12
, . . . , 𝑢

(1)

1ℓ
(1)

∈ 𝐷
𝑁
(1) , 𝑢

(1)

21
, 𝑢

(1)

22
, . . . , 𝑢

(1)

2,ℓ
(1)

∈

𝐷
𝑁
(1)
+1,2𝑁

(1) , . . . , 𝑢
(1)

𝑀11
, 𝑢

(1)

𝑀12
. . . , 𝑢

(1)

𝑀1ℓ
(1)

∈ 𝐷
(𝑀1−1)𝑁

(1)
+1,𝑀1𝑁

(1)

satisfying (𝑑
1
)
𝛼1+𝛿1

≤ 𝑝
𝑢
(1)

𝑗𝑙

≤ (𝑑
1
)
𝛼1−𝛿1 , (𝑑

1
)
1+𝛿1

≤ 𝑟
𝑢
(1)

𝑗𝑙

≤

(𝑑
1
)
1−𝛿1 for all 1 ≤ 𝑗 ≤ 𝑀

1
; 1 ≤ 𝑙 ≤ ℓ

(1) and ℓ
(1)

≥

(𝑑
1
)
−𝛽
∗
(𝛼1)+𝛿1(𝑞+1).

For 1 ≤ 𝑗 ≤ 𝑀
1
, remark B(1)

𝑗
= {𝑢

(1)

𝑗1
, 𝑢

(1)

𝑗2
, . . . , 𝑢

(1)

𝑗ℓ
(1)
}.

By the same step, for 𝛼
𝑖
and 𝛿

𝑖
, we also construct B(𝑖)

𝑗
=

{𝑢
(𝑖)

𝑗1
, 𝑢

(𝑖)

𝑗2
. . . , 𝑢

(𝑖)

𝑗ℓ
(𝑖)
} (1 ≤ 𝑗 ≤ 𝑀

𝑖
) such that

(a) ℓ(𝑖) ≥ (𝑑
𝑖
)
−𝛽
∗
(𝛼𝑖)+𝛿𝑖(𝑞+1);

(b) 𝑢(𝑖)
𝑗1
, 𝑢

(𝑖)

𝑗2
, . . . , 𝑢

(𝑖)

𝑗,ℓ
(𝑖)
∈𝐷

∑
𝑖−1

𝑘=1
𝑀𝑖𝑁
(𝑘)
+(𝑗−1)𝑁

(𝑖)
+1,∑
𝑖−1

𝑘=1
𝑀𝑖𝑁
(𝑘)
+𝑗𝑁
(𝑖) ;

(c) 𝑑1+𝛿𝑖
𝑖

≤ 𝑟
𝑢
(𝑖)

𝑗𝑙

≤ 𝑑
1−𝛿𝑖

𝑖
for 1 ≤ 𝑗 ≤ 𝑀

𝑖
, 1 ≤ 𝑙 ≤ ℓ

(𝑖);

(d) 𝑑𝛼𝑖+𝛿𝑖
𝑖

≤ 𝑝
𝑢
(𝑖)

𝑗𝑙

≤ 𝑑
𝛼𝑖−𝛿𝑖

𝑖
for 1 ≤ 𝑗 ≤ 𝑀

𝑖
, 1 ≤ 𝑙 ≤ ℓ

(𝑖).

Also we let {𝑀
𝑖
}
∞

𝑖=1
be a sequence of integers large

enough such that

(e) 𝑀
𝑖
𝑁

(𝑖)

> 𝑛
(𝑖)

0
;

(f) 𝑑𝑀𝑖
𝑖

< (𝑑
𝑖+1

)
2
𝑖

for each 𝑖 ∈ N;

(g) lim
𝑘→∞

(∑
𝑘

𝑖=1
𝑀

𝑖
log 𝑑

𝑖
/𝑀

𝑘+1
log𝑑

𝑘+1
) = 0.

Now we define a sequence of subsets of symbol set Σ∗ in
the following manner:

B(1)

1
, . . . ,B(1)

𝑀1

,B(2)

1
, . . . ,B(2)

𝑀2

, . . . ,B(𝑖)

1
, . . . ,B(𝑖)

𝑀𝑖

, . . . (55)

and relabel them as {B∗

𝑛
}
∞

𝑛=1
. Let

𝐹
𝑞1,𝑞2

=

∞

⋂

𝑛=1

⋃

V1∈𝐵∗1 ,...,V𝑛∈𝐵
∗
𝑛

𝐽V1V2 ⋅⋅⋅V𝑛 . (56)

It is easy to check that 𝐹
𝑞1,𝑞2

is the homogeneous Moran set
which is a subset of the homogeneousMoran set 𝐸(Ω).

Next we show that

lim inf
𝑟→0

log𝜇 (𝐵 (𝑥, 𝑟))

log 𝑟
= 𝛽

󸀠

(𝑞
1
) ,

lim sup
𝑟→0

log𝜇 (𝐵 (𝑥, 𝑟))

log 𝑟
= 𝛽

󸀠

(𝑞
2
) , ∀𝑥 ∈ 𝐹

𝑞1 ,𝑞2
,

dim
𝐻
𝐹
𝑞1 ,𝑞2

≥ 𝛽
∗

(𝛽
󸀠

(𝑞
1
)) .

(57)

Let 𝑥 ∈ 𝐹
𝑞1,𝑞2

, then there exist V
𝑖
∈ B∗

𝑖
(𝑖 = 1, 2, . . .) such

that

{𝑥} = lim
𝑛→∞

𝐽V1 ⋅⋅⋅V𝑛 . (58)

Let 𝑛
𝑘
= 𝑀

1
+𝑀

2
+ ⋅ ⋅ ⋅ + 𝑀

2𝑘
− 1; there exists 𝑟

𝑛𝑘
such that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐽V1 ⋅⋅⋅V𝑛𝑘+1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑟
𝑛𝑘
<

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐽V1 ⋅⋅⋅V𝑛𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

. (59)

Using Lemma 10, we attain

log𝑝V1 ⋅⋅⋅V𝑛𝑘
+ Δ

0
logmin

1≤𝑖≤𝑚,1≤𝑗≤𝑚𝑖
{𝑝

𝑖,𝑗
}

log 𝑟V1 ⋅⋅⋅V𝑛𝑘+1

≤

log𝜇 (𝐵 (𝑥, 𝑟
𝑛𝑘
))

log 𝑟
𝑛𝑘

≤

log𝑝V1 ⋅⋅⋅V𝑛𝑘+1

log 𝑟V1 ⋅⋅⋅V𝑛𝑘
.

(60)

Thus to calculate lim
𝑘→∞

(log𝜇(𝐵(𝑥, 𝑟
𝑛𝑘
))/ log 𝑟

𝑛𝑘
), we need

to estimate 𝑝V1 ⋅⋅⋅V𝑀 and 𝑟V1 ⋅⋅⋅V𝑀 for 𝑀 = 𝑛
𝑘
, 𝑛

𝑘
+ 1. By (c) and

(d), we obtain

2𝑘−1

∏

𝑖=1

𝑑
𝑀𝑖(𝛼𝑖+𝛿𝑖)

𝑖
𝑑
𝑀2𝑘(𝛼2𝑘+𝛿2𝑘)

2𝑘

≤ 𝑝V1 ⋅⋅⋅V𝑛𝑘+1
≤ 𝑝V1 ⋅⋅⋅V𝑛𝑘

≤

2𝑘−1

∏

𝑖=1

𝑑
𝑀𝑖(𝛼𝑖−𝛿𝑖)

𝑖
𝑑
(𝑀2𝑘−1)(𝛼2𝑘−𝛿2𝑘)

2𝑘
,

(61)

2𝑘−1

∏

𝑖=1

𝑑
𝑀𝑖(1+𝛿𝑖)

𝑖
𝑑
𝑀2𝑘(1+𝛿2𝑘)

2𝑘

≤ 𝑟V1 ⋅⋅⋅V𝑛𝑘+1
≤ 𝑟V1 ⋅⋅⋅V𝑛𝑘

≤

2𝑘−1

∏

𝑖=1

𝑑
𝑀𝑖(1−𝛿𝑖)

𝑖
𝑑
(𝑀2𝑘−1)(1−𝛿2𝑘)

2𝑘
.

(62)

By (54), (60)–(62), and (g), we obtain

lim
𝑘→∞

log𝜇 (𝐵 (𝑥, 𝑟
𝑛𝑘
))

log 𝑟
𝑛𝑘

= 𝛽
󸀠

(𝑞
2
) . (63)

Let 𝑛󸀠
𝑘
= 𝑀

1
+𝑀

2
+ ⋅ ⋅ ⋅ +𝑀

2𝑘+1
− 1; there exists 𝑟

𝑛
󸀠

𝑘

such that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐽V1 ⋅⋅⋅V𝑛󸀠
𝑘
+1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑟
𝑛
󸀠

𝑘

<

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐽V1 ⋅⋅⋅V𝑛󸀠
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

. (64)
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By the same method, we obtain

lim
𝑘→∞

log 𝜇 (𝐵 (𝑥, 𝑟
𝑛
󸀠

𝑘

))

log 𝑟
𝑛
󸀠

𝑘

= 𝛽
󸀠

(𝑞
1
) . (65)

Next we show 𝛽
󸀠

(𝑞
1
) ≤ lim inf

𝑟→0
(log 𝜇(𝐵(𝑥, 𝑟))/

log(𝑟)) < lim sup
𝑟→0

(log𝜇(𝐵(𝑥, 𝑟))/ log(𝑟)) ≤ 𝛽
󸀠

(𝑞
2
). For

𝑟 > 0 small enough, there is a unique large integer 𝑛 such
that

󵄨
󵄨
󵄨
󵄨
󵄨
𝐽V1 ⋅⋅⋅V𝑛+1

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑟 <

󵄨
󵄨
󵄨
󵄨
󵄨
𝐽V1 ⋅⋅⋅V𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
. (66)

Using the same method as above, we attain

log𝑝V1 ⋅⋅⋅V𝑛 + Δ
0
logmin

1≤𝑖≤𝑚,1≤𝑗≤𝑚𝑖
{𝑝

𝑖,𝑗
}

log 𝑟V1 ⋅⋅⋅V𝑛+1

≤

log 𝜇 (𝐵 (𝑥, 𝑟))

log 𝑟

≤

log𝑝V1 ⋅⋅⋅V𝑛+1

log 𝑟V1 ⋅⋅⋅V𝑛
.

(67)

Nowwe estimate 𝑝V1 ⋅⋅⋅V𝑀 and 𝑟V1 ⋅⋅⋅V𝑀 for𝑀 = 𝑛, 𝑛+1. For large
𝑛, write 𝑛 = ∑

𝑘

𝑖=1
𝑀

𝑖
+ 𝑝 with 1 ≤ 𝑝 ≤ 𝑀

𝑘+1
. In the case that

1 ≤ 𝑝 ≤ 𝑀
𝑘+1

− 1, by (c) and (d), we obtain

𝑘

∏

𝑖=1

𝑑
𝑀𝑖(𝛼𝑖+3𝛿𝑖)

𝑖
𝑑
(𝑝+1)(𝛼𝑘+1+𝛿𝑘+1)

𝑘+1

≤ 𝑝V1 ⋅⋅⋅V𝑛+1 ≤ 𝑝V1 ⋅⋅⋅V𝑛 ≤

𝑘

∏

𝑖=1

𝑑
𝑀𝑖(𝛼𝑖−𝛿𝑖)

𝑖
𝑑
𝑝(𝛼𝑘+1−𝛿𝑘+1)

𝑘+1
,

(68)

𝑘

∏

𝑖=1

𝑑
𝑀𝑖(1+𝛿𝑖)

𝑖
𝑑
(𝑝+1)(1+𝛿𝑘+1)

𝑘+1

≤ 𝑟V1 ⋅⋅⋅V𝑛+1 ≤ 𝑟V1 ⋅⋅⋅V𝑛 ≤

𝑘

∏

𝑖=1

𝑑
𝑀𝑖(1−𝛿𝑖)

𝑖
𝑑
𝑝(1−𝛿𝑘+1)

𝑘+1
.

(69)

In the other case 𝑝 = 𝑀
𝑘+1

, we have the similar inequalities
where the lower bounds for 𝑝V1 ⋅⋅⋅V𝑛 and 𝑟V1 ⋅⋅⋅V𝑛 in (68) and (69)
are replaced, respectively, by

(

𝑘+1

∏

𝑖=1

𝑑
𝑀𝑖(𝛼𝑖+𝛿𝑖)

𝑖
)𝑑

(𝛼𝑘+2+𝛿𝑘+2)

𝑘+2
≤ 𝑝V1 ⋅⋅⋅V𝑛+1

< 𝑝V1 ⋅⋅⋅V𝑛 ≤

𝑘+1

∏

𝑖=1

𝑑
𝑀𝑖(𝛼𝑖+𝛿𝑖)

𝑖
,

(70)

(

𝑘+1

∏

𝑖=1

𝑑
𝑀𝑖(1+𝛿𝑖)

𝑖
)𝑑

(1+𝛿𝑘+2)

𝑘+2
≤ 𝑟V1 ⋅⋅⋅V𝑛+1

< 𝑟V1 ⋅⋅⋅V𝑛 ≤

𝑘+1

∏

𝑖=1

𝑑
𝑀𝑖(1+𝛿𝑖)

𝑖
.

(71)

By (54), using the inequalities (67)–(71), (f), and (g), we
obtain

𝛽
󸀠

(𝑞
1
) ≤ lim inf

𝑟→0

log 𝜇 (𝐵 (𝑥, 𝑟))

log 𝑟

< lim sup
𝑟→0

log 𝜇 (𝐵 (𝑥, 𝑟))

log 𝑟
≤ 𝛽

󸀠

(𝑞
2
) .

(72)

Combining (63), (65), and (72), we obtain

lim inf
𝑟→0

log 𝜇 (𝐵 (𝑥, 𝑟))

log 𝑟
= 𝛽

󸀠

(𝑞
1
) ,

lim sup
𝑟→0

log 𝜇 (𝐵 (𝑥, 𝑟))

log 𝑟
= 𝛽

󸀠

(𝑞
2
) , ∀𝑥 ∈ 𝐹

𝑞1 ,𝑞2
.

(73)

To prove dim
𝐻
𝐹
𝑞1 ,𝑞2

≥ 𝛽
∗

(𝑞
1
), recall that 𝐹

𝑞1,𝑞2
is the

homogeneous Moran set which is a subset of the homoge-
neous Moran set 𝐸(Ω). For large 𝑛, write 𝑛 = ∑

𝑘

𝑖=1
𝑀

𝑖
+ 𝑝

with 1 ≤ 𝑝 ≤ 𝑀
𝑘+1

. By (a) and (c), we have

𝑛

∏

𝑠=1

#B∗

𝑠
≥

𝑘

∏

𝑖=1

𝑑
𝑀𝑖(−𝛽

∗
(𝛼𝑖)+𝛿𝑖(𝑞𝑖+1))

𝑖
𝑑
𝑝(−𝛽
∗
(𝛼𝑘+1)+𝛿𝑘+1(𝑞𝑘+1+1))

𝑘+1
(74)

and for any V
1
∈ B∗

1
, . . . , V

𝑛
∈ B∗

𝑛

𝑟V𝑛 ≥ 𝑑
1+𝛿𝑘+1

𝑘+1
, 𝑟V1 ⋅⋅⋅V𝑛 ≤

𝑘

∑

𝑖=1

𝑑
𝑀𝑖(1−𝛿𝑖)

𝑖
𝑑
𝑝(1−𝛿𝑘+1)

𝑘+1
. (75)

Using (75) and (f), we have

lim
𝑛→∞

log 𝑟V𝑛
log 𝑟V1 ⋅⋅⋅V𝑛

= 0. (76)

This implies the condition (5) in Proposition 3; we have
dim

𝐻
𝐹
𝑞1,𝑞2

= lim inf
𝑛→∞

𝑠
𝑛
, where 𝑠

𝑛
satisfies the equation

∑

V1∈𝐵∗1 ⋅⋅⋅V𝑛∈𝐵
∗
𝑛

(𝑟V1 ⋅⋅⋅V𝑛)
𝑠𝑛

= 1. (77)

It follows that

dim
𝐻
𝐹
𝑞1 ,𝑞2

≥ lim inf
𝑛→∞

log (∏𝑛

𝑠=1
#𝐵∗

𝑠
)

− log 𝑟V1 ⋅⋅⋅V𝑛
. (78)
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This, together with (74)-(75), yields

dim
𝐻
𝐹
𝑞1 ,𝑞2

≥ lim inf
𝑘→∞

((

𝑘

∑

𝑖=1

𝑀
𝑖
(𝛽

∗

(𝛼
𝑖
) − 𝛿

𝑖
(𝑞

𝑖
+ 1)) log𝑑

𝑖

+𝑝 (𝛽
∗

(𝛼
𝑘+1

) − 𝛿
𝑘+1

(𝑞
𝑘+1

+ 1)) log𝑑
𝑘+1

)

×(

𝑘

∑

𝑖=1

𝑀
𝑖
(1 − 𝛿

𝑖
) log𝑑

𝑖
+ 𝑝 (1− 𝛿

𝑘+1
) log 𝑑

𝑘+1
)

−1

)

≥ lim inf
𝑘→∞

((

𝑘

∑

𝑖=1

𝑀
𝑖
(𝛽

∗

(𝛽
󸀠

(𝑞
1
)) − 𝛿

𝑖
(𝑞

𝑖
+ 1)) log𝑑

𝑖

+𝑝 (𝛽
∗

(𝛽
󸀠

(𝑞
1
)) − 𝛿

𝑘+1
(𝑞

𝑘+1
+ 1)) log 𝑑

𝑘+1
)

×(

𝑘

∑

𝑖=1

𝑀
𝑖
(1 − 𝛿

𝑖
) log𝑑

𝑖
+ 𝑝 (1 − 𝛿

𝑘+1
) log 𝑑

𝑘+1
)

−1

)

≥ 𝛽
∗

(𝛽
󸀠

(𝑞
1
))

(by (54) and 𝛽
∗

(𝛽
󸀠

(𝑞
1
)) < 𝛽

∗

(𝛽
󸀠

(𝑞
2
))

since 𝛽
∗ is concave (see [3])) .

(79)

Using Lemma 9, we finish proof of Theorem 7.
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