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Aging is associated with neuronal loss, gross weight reduction of the brain, and glial proliferation in the cortex, all of which lead
to functional changes in the brain. It is known that oxidative stress is a critical factor in the pathogenesis of aging; additionally,
growing evidence suggests that excessive nitric oxide (NO) production contributes to the aging process. However, it is still unclear
how NO plays a role in the aging process. This paper describes age-related changes in the activity of NADPH-diaphorase (NADPH-
d), a marker for neurons containing nitric oxide synthase (NOS), in many CNS regions. Understanding these changes may provide
a novel perspective in identifying the aging mechanism.

1. Introduction

During normal aging, the brain changes morphologically
and functionally in terms of brain weight, protein quantity,
number of neurons, and neurotransmitter synthetic enzyme
concentrations, leading to impairments and changes in sleep
patterns, emotions, appetite, neuroendocrine function, exer-
cise, and memory [1, 2]. Reactive oxygen species (ROS) have
particularly deleterious effects on the nervous system because
the brain is relatively deficient in antioxidant systems [3]. It is
widely believed that the long-term effects of oxidative stress
drive aged-related deficits in brain function [4]. This aging
process, which is related to the effects of increased oxidative
damage, is thought to involve the production of free radicals
[5], including superoxide (O2

−), hydrogen peroxide (H2O2),
nitric oxide (NO), and peroxynitrite (ONOO−) [1]. In
particular, the diffusible gas, NO, is involved in essential
functions of the central nervous system (CNS), including
neurotransmitter release, synaptic plasticity, and the regula-
tion of neuronal electrical activity [6, 7]; it is also associated
with learning and memory in both the cerebrum and
cerebellum [1, 8]. NO plays a significant role in both normal
aging and neurodegenerative processes [9, 10]. Increased NO
production during aging suggests that NO may contribute to
the aging process [10–12]. Although these free radicals do
not have deleterious effects on the human body in a general
environment, the enhanced production of NO aggravates

aging process in the CNS [1]. Mitochondria and nitric
oxide synthase (NOS) are two major sources of free radicals
[13]. To identify the effects of NO in aging, various studies
have been made use of nicotinamide adenine dinucleotide
phosphate-diaphorase (NADPH-d) histochemistry, which
is a simple and selective method for the visualization of
neurons containing NOS [14]. In this paper, we highlight the
age-related changes in NOS in many CNS regions via several
NADPH-d immunohistochemistry studies.

2. NADPH-d-Positive Neurons

NO is produced by the oxidation of L-arginine through
NOS using NADPH-d as the electron donor [15]. NADPH-
d histochemical staining has been used to identify neuronal
NOS (nNOS) because many studies show that NADPH-
d may correspond to nNOS [16, 17]. Thus, NADPH-d
is a specific histochemical marker for NOS in the brain
[18, 19], and NADPH-d-positive neurons have been used
to evaluate NO-positive neurons [20]. NOS-immunoreactive
(IR)/NADPH-d-positive neurons have been localized in the
brain structures of various mammalian species. Many studies
have shown the presence of NO and NOS expression in
several aging brain areas, such as the cerebral cortex [21],
cerebellum [22], amygdala [23], hippocampus [16], striatum
[21], tegmental nuclei [24], and periaqueductal gray [25].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/190741629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Oxidative Medicine and Cellular Longevity

To varying degrees, nNOS has been colocalized with choline
acetyltransferase in the basal forebrain and brainstem [26].
Excessive NO production has been shown to be associated
with some neurotoxic and neurodegenerative characteris-
tics during aging [27]. Some studies have suggested that
NADPH-d-positive neurons are relatively resistant to various
neurodegenerative diseases such as Alzheimer’s disease [28,
29] and Huntington’s disease [30], and to toxic insults such as
N-methyl-d-aspartate (NMDA) agonist [31, 32] and quino-
linic acid [32, 33]. Unger and Lange [29] reported that there
was no significant reduction in the number of NADPH-d-
positive neurons in the amygdala and temporal cortex of aged
humans although Benzing and Mufson [28] demonstrated
an increased number of NADPH-d-positive neurons within
the substantia innominata of Alzheimer’s disease patients. In
many studies, age-related changes in the NADPH-d-positive
neurons had different significances in different regions of
the brain. Thus, the significance of increased or decreased
numbers of NADPH-d-positive neurons in aged rats remains
unclear because, in studies by our group, increased NOS-
IR/NADPH-d-positive neurons increased resistance to the
aging process more than neurodegenerative events in brain
[15, 34].

3. Regional Changes in NADPH-d in
the Aging Brain

Thomas and Pearse determined that neurons with high
NADPH-d activity existed and were dispersed throughout
the cerebral cortex and basal ganglia [35]. In this section,
we will briefly review the age-related alterations that occur
in various CNS regions.

3.1. NOS and the Auditory System. In the central auditory
nervous system, auditory information is delivered from the
cochlear nucleus (CN) to the superior olivary complex,
lateral lemniscus, inferior colliculus (IC), medial geniculate
body (MGB), and auditory cortex (AC), in that order.
Of these structures, the auditory cortex is considered the
most important for hearing. To identify the mechanism of
aging in the auditory system, various studies suggested the
involvement of oxidative stress in auditory processing. In
the central auditory system, age-related changes in NOS-
IR/NADPH-d-positive neurons were found in the cochlea
[36], the superior olivary complex [37], the inferior col-
liculus (IC) [38], and the auditory cortex (AC) [39]. In
previous studies, a significant increase in NADPH-d-positive
neurons was reported in the superior olivary nucleus in
aged hamsters [37] and rats [40]. Sánchez-Zuriaga et al.
showed evidence of a decreased area of NADPH-d-positive
neurons in the dorsal cortex (DC) of the IC and an age-
related loss of NADPH-d-positive neurons in the IC and
primary cortical auditory area (Te1) in rats [41]. These
changes were related to hearing impairments associated
with increasing age. Our group showed that the number
of NADPH-d-positive neurons in the inferior colliculus was
significantly increased in aged rats (Figure 1), whereas the
area of NADPH-d-positive neurons in all regions did not
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Figure 1: NADPH-d-positive neurons in the rat inferior colliculus.
The number of NADPH-d-positive neurons in the inferior collicu-
lus was significantly higher in aged than in younger rats. NADPH-d-
positive neurons are dark purple. Frozen sections of 40 μm thickness
were made in the coronal plane. The histochemical detection for
NADPH-d activity was performed as follows: after free-floating sec-
tions were incubated for 10 min at room temperature in 0.05 M Tris
buffer (pH 8.0), sections were incubated for 60 min at 37◦C in the
0.05 M Tris buffer containing 0.3% (v/v) Triton X-100, 0.1 mg/mL
nitroblue tetrazolium, and 1.0 mg/mL β-NADPH. C: control; A:
aged rat. Scale bar = 50 μm. Modified from Huh et al. [42].

differ significantly between aged and younger rats [42]. Thus,
age-related alterations in the NADPH-d-positive neurons of
the auditory system may be region-specific.

Interestingly, NO has been reported to inhibit the activity
of N-methyl-D-aspartate (NMDA) receptors, reducing the
effects of glutamate and inducing changes in neural trans-
mission [43]. This reduction in NMDA receptors (NMDARs)
expression may be involved in the change of synaptic
plasticity driven by the age-related decease in sensory input,
resulting in age-related impairment in the function of the
NMDAR/NO signaling pathway in the CNS [44]. However,
in our study, the expression of NMDARs was increased
in the CN, MGB, and AC during aging, although it was
found that the expression of NMDARs was decreased in the
superior olivary nucleus and IC [45]. Thus, these findings
also indicated that age-related changes in the NMDARs in
the central auditory system were region-specific.

Another interesting observation was the activation of
voltage-gated K+ currents through excessive NO produc-
tion in rat auditory cortical neurons [46]. In a previous
study, NO-stimulated potassium channels induced long-
term potentiation in slices prepared from the rat auditory
cortex layer IV [47]. Using patch-clamp electrophysiology,
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our group evaluated the effects of NO on modulating K+

currents by assaying for NADPH-d, a marker of NOS, and
by examining the effects of S-nitro-N-acetylpenicillamine
(SNAP), an NO donor. The modulatory effects of NO on
the K+ currents of acutely isolated rat auditory cortical
neurons showed gradual increases in the K+ currents [46].
This NO-induced activation of K+ currents hyperpolarizes
the membrane potential of a neuron, inhibiting neuronal
excitability. The increased NO activation of K+ currents
suppress neuronal activity in the auditory cortex. Therefore,
excessive NO production may be involved in the hearing
impairment caused by aging.

3.2. NOS and the Visual System. In the visual system, retinal
ganglion cells project to the lateral geniculate nucleus (LGN)
of the thalamus. Visual input is delivered from the retina and
the occipital cortex to the ventral lateral geniculate nucleus
(vLGN), a thalamic visual nucleus, of the rat [48]. During
normal aging, visual function decreases partly because of
neural changes in the retina and central visual pathways.
Ahmad and Spear [49] suggested that aging produced a
statistically significant reduction in neuron density in both
the magnocellular and parvicellular layers, which are parts of
the visual system, although there was no significant loss of
neurons. Uttenthal et al. [50] observed a several fold increase
in NOS-positive bands in aged rats using Western blotting
of brain extracts. In the rat vLGN, most NADPH-d-positive
neurons are geniculotectal projection neurons, although a
smaller proportion acts as local circuit inhibitory neurons
[51]. Yu et al. [40] showed a significant enhancement in
NADPH-d activity in the supraoptic nucleus of aged rats.
Villena et al. showed a decrease in the number of NADPH-d-
positive neurons in aged old rat vLGN compared with con-
trols [17]. Our group showed that the number of NADPH-d-
and nNOS-positive neurons did not change significantly in
the dorsal LGN (dLGN) and vLGN of aged rats. Addition-
ally, no age-related changes were observed in the superior
colliculus. The staining intensities of NOS-IR/NADPH-d-
positive neurons increased significantly in the dLGN and
vLGN aging processes [52]. However, although each group
published different results characterizing NAPDH-d-positive
neurons in the central visual system all, these results showed
that increased NO production may be associated with
alteration in visual function during aging. Further studies
are required to clarify this relationship between NADPH-d-
positive neurons and nNOS in age-related changes in central
visual system.

3.3. NOS and Spinal Cord. During advanced aging, the
pelvic visceral organs physically and functionally changes.
The lower lumbar and sacral spinal cord are essential for
controlling the function of the bowel, bladder, and sexual
organs [53]. Ranson et al. reported that the dorsal com-
missural nucleus (DCN) and the intermediolateral nuclei
(ILN) of the lumbosacral spinal cords in aged rats exhibit
significant decreases in neurotransmitter levels [54]. Yoon
et al. reported that a reduction in the number of nNOS-IR
neurons occurred in the central autonomic nucleus and the

superficial dorsal horn of the spinal cord in aged rats [55].
The number of NADPH-d-positive neurons in the motor
nucleus at the L4–L6 levels of the spinal cord decreased
in aged rats [56]. Tan et al. found that NADPH-d-positive
neurons are present in the lumbosacral spinal cords of aged
rats. However, no colocalization of NADPH-d-positive and
nNOS-IR neurons was detected in the lumbosacral spinal
cords of aged rats [57]. Thus, NADPH-d activity does not
always coincide with the NO-containing neural structures,
and NADPH-d function in spinal cord is also unclear.

3.4. NOS and Hormones. Magnocellular neurosecretory neu-
rons in the rat supraoptic nucleus (SON) have been found to
synthesize oxytocin (OXY) in the dorsal part and the arginine
vasopressin (AVP) in the ventral region [58]. OXY is a
mammalian hormone that functions as a neuromodulator in
the brain. OXY is best known as a reproduction-related hor-
mone, facilitating childbirth and breastfeeding after child-
birth. Arginine vasopressin (AVP), also known as antidiuretic
hormone (ADH), is a neurohypophysial hormone produced
in most mammalian brains. AVP is responsible for increas-
ing the effective circulating volume by increasing water
absorption, water permeability, reabsorption, and peripheral
vascular resistance. Yu et al. observed no significant age-
related changes in the number of the OXY-IR/NADPH-d-
positive neurons in the dorsal part of the SON, but they
did observe an age-related increase in NADPH-d-positive
neurons in the SON [40]. Because the concentration of OXY
in the plasma decreased in aged rats [59], it is thought that
the age-related increase in the NADPH-d-positive neurons
may inhibit the secretion of the OXY and reduce the
concentration of OXY in the plasma. The AVP-expressing
neurons exhibited an increased area in the SON of aged
rats [60]. Yu et al. confirmed this increase and the existence
of AVP-IR/NADPH-d-positive neurons in aged rats [40].
However, because the circulating levels of AVP did not
change in aged rats compared with young rats [61], this result
corresponded to inhibition of the secretion of AVP by NO in
NOS-expressing neurons [62].

Neuropeptide Y (NPY) is a widely distributed neuro-
hormone associated with food intake [63] and the release
of gonadotrophins [64]. NOS colocalizes with both somato-
statin and neuropeptide Y (NPY) in the corpus striatum
and the cerebral cortex [65, 66]. During aging process,
the decrease in NPY levels in neural tissues is drastic [67,
68]. Our group demonstrated that, in the aged group,
the number of NPY-IR/NADPH-d-positive neurons did not
significantly decrease in the cerebral cortex and striatum
compared to the control group. However, the number of
NPY-IR/NADPH-d-negative neurons significantly decreased
in all cerebral cortical areas, except the nucleus accumbens,
and the caudatoputamen in the aged group [21]. In a study
of aged Fischer 344 rats, which are more resistant to aging
than other rats strain [69, 70], the aged group showed
that the number of NPY-IR/NADPH-d-positive neurons did
also not significantly change in all regions of the cerebral
cortex compared to the control group [71]. However,
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the number of NPY-IR/NADPH-d-negative neurons signif-
icantly decreased in the frontal association, primary motor,
secondary somatosensory, insular, ectorhinal, perirhinal and
auditory cortexes in the aged group [71]. These studies
demonstrated that the NADPH-d containing NPY-IR neu-
rons in the cerebral cortex and striatum of rats were less
influenced by aging than those of the control. Therefore,
the relative stability of the selective population of NPY-
IR/NADPH-d-positive neurons within the cerebral cortex
and striatum helped protect against atrophy during aging.

Vasoactive intestinal polypeptide (VIP) is a peptide
hormone produced in the suprachiasmatic nuclei (SCN) of
the hypothalamus in the brain [72, 73]. The SCN is the
specific location of the “master circadian pacemaker,” an area
that daily modulates timekeeping in the body. VIP plays an
important role in the communication between individual
brain cells in this area [74]. Andreose et al. [75] suggested
that there is a marked decrease in VIP-IR in the cerebral
cortex and other brain regions in rats during the aging
process. Chee et al. [76] reported that the size of VIP-IR
neurons in the suprachiasmatic nucleus of the aged rats
increased in comparison with that of controls. Our group
showed that VIP and NADPH-d did not coexist in any
single neuron in the cerebral cortex of either group [77].
However, a significant decrease was found in the number of
VIP-IR/NADPH-d-negative neurons in the cerebral cortex
of aged rats. This selective depletion and atrophy of VIP-
IR neurons from the cerebral cortex of aged rats shows
an increased vulnerability of VIP-IR neurons to the aging
process compared with NADPH-d-positive.

3.5. NOS and the Salivary System. Salivary secretion is con-
trolled by the combined action of the parasympathetic
and sympathetic nervous system. Several areas of the SON
and the limbic system, which influence the endocrine and
autonomic nervous systems, participate in the regulation of
water and sodium balance [78, 79]. Inhibition of salivary
secretion during aging has been demonstrated in rats [80],
and many reports have demonstrated that NO influences the
regulation of salivary secretion [81, 82]. In the SON and
the medial septal area of rats, NOS-expressing neurons were
identified, and NO-related inhibition of salivary secretion
was demonstrated [83, 84]. Tanaka et al. showed that cell
number, cell size and reactive density of the NADPH-d-
positive neurons significantly increased in the SON of aged
rats [85]. These results suggest an inhibitory role of NO in
salivary secretion during aging. However, there are not many
studies which have contributed to evaluating the inhibitory
role of NO in salivary secretion in age-related changes.

3.6. NOS and Stress. The periaqueductal gray (PAG) sur-
rounding the cerebral aqueduct is important for the orga-
nization of responses to stress and pain. NADPH-d is well
represented in the neurons of the dorsolateral neuronal
column of the periaqueductal gray (dlPAG) [86]. Lolova et
al. demonstrated that, with aging, the total dendritic length
of NADPH-d-positive neurons was increased, and the total
cell number in the dlPAG was significantly decreased [87].

Several stress models using immobilization, cold and hot
stimuli in wild-type rats increased NOS expression [88] and
the number of NADPH-d neurons in the PAG [89]. Smalls
and Okere reported that acute restraint increases varicosity
density and decreases intervaricosity length in NADPH-d-
positive neurons in the rat dlPAG [90]. The capacity to
defend against stress is decreasing with aging. Although there
are many reports of relationship between stress and NOS,
or NOS and aging, the direct relationship between NO and
aging in dlPAG has not been identified. Thus, through fur-
ther studies, it is expected that the decreased stress response
in aging may be related to the action of NO in dlPAG.

4. Concluding Remarks

NO and aging are closely related, but more intensive
research is necessary to understand this relationship and the
functional, anatomical, and molecular mechanisms of age-
related alteration by NO in the CNS. This information will
help us understand the mechanisms of both the aging process
and neurodegenerative diseases such as Parkinson’s disease
and Alzheimer’s disease. Alterations in the NO system in
the aged CNS influence many regions in the rats brains,
such as the neuroendocrine system, the visual system, the
auditory system, the spinal cord, cognition and learning, the
stress response, the salivary system, and the autonomous
nervous system. The NO system in each region may influence
chemical and structural changes in the CNS during aging.
Consecutive neurophysical changes may cause symptoms
associated with the CNS aging process, such as change in
orientation, attention, and memory. In different parts of the
CNS, NADPH-d-positive neurons have different distribu-
tions and different effects on the aging process. Additionally,
NADPH-d-positive neurons have both protective and toxic
effects on the CNS during aging. Therefore, clarifying age-
related and NO-related alterations in the CNS may be helpful
in the identification of new therapeutic targets for aging and
neurodegenerative diseases.
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