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We study the cracking of compact object PSR J1614-2230 in quadratic regime with electromagnetic field. For this purpose, we
develop a general formalism to determine the cracking of charged compact objects. We apply local density perturbations to
hydrostatic equilibrium equation as well as physical variables involved in the model. We plot the force distribution function against
radius of the star with different parametric values of model both with and without charge. It is found that PSR J1614-2230 remains
stable (no cracking) corresponding to different values of parameters when charge is zero, while it exhibits cracking (unstable) when
charge is introduced. We conclude that stability region increases as amount of charge increases.

1. Introduction

Self-gravitating compact objects (CO), like neutron stars,
white dwarfs, millisecond pulsars, and so forth, belong to
a distinguished class of those celestial bodies whose study
becomes very significant in novel astrophysical research. It is
evident that when a star or system of stars burns out all its
nuclear fuel, its remnants can have one of three possibilities:
white dwarfs, neutron stars, and black holes. The stability of
stellar remnants plays a key role in general relativity (GR) as
well as modified relativistic theories [1]. The occurrence of
gravitational collapse may be a result of cooling of gaseous
material, change in anisotropy, fluctuation of gravitational
waves, and variation of electromagnetic field of CO [2].
Therefore, such phenomena stimulate our interest to study
the stability regions of these self-gravitating CO.

Astronomical objects are not physically viable, if they are
unstable towards perturbations. Therefore, it is important to
check the stability of these objects. In this context, Bondi [3]
initially developed hydrostatic equilibrium equation to exam-
ine the stability of self-gravitating spheres. Chandrasekhar [4]
calculated the principle value, that is, 4/3, to determine the

dynamical instability of sphere filled with perfect fluid in GR.
Herrera [5] presented the technique of cracking to discuss
gravitational collapse of self-gravitating spherical CO. This
technique interprets the behavior of inner fluid distribution
of CO just after equilibrium state is disturbed. Cracking
takes place in CO when radial forces changes its sign from
positive to negative and vice versa [6]. Several authors [7–
10] studied nonlocal effects of cracking through radial sound
speed velocities and Raychaudhuri equation for spherically
symmetric CO. Gonzalez [11, 12] presented the idea of local
density perturbation (DP) to discuss the idea of cracking for
relativistic spheres.

To study the effect of charge on the physical properties
of stars is an important subject in GR. In this scenario,
Bonnor [13, 14] explored the effect of charge on spherically
symmetric CO and found that electric repulsion can halt
the gravitational collapse. Bondi [15] used local Minkowski
coordinates to describe the contraction of radiating isotropic
spherical symmetry.The main hindrance in astrophysics and
GR is to develop stablemathematical models which describes
the characteristic of charged spherical CO. Bekenstein [16]
presented the idea of gravitational collapse in charged CO.

Hindawi Publishing Corporation
Advances in High Energy Physics
Volume 2015, Article ID 865086, 9 pages
http://dx.doi.org/10.1155/2015/865086

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/190717894?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Advances in High Energy Physics

Ray et al. [17] found the maximum amount of charge (i.e.,
approximately 1020 coulomb), needed for CO to be in equilib-
rium configuration. Some authors [18, 19] studied the impact
of charge on gravitational collapse of celestial objects and
analyzed the tendency of self-gravitating systems to produce
charged black holes or naked singularities. Sharif and Azam
[20, 21] studied the stability of spherical and cylindrical
symmetric objects under the influence of electromagnetic
field.

Demorest et al. [22] used the Green Bank Telescope at
the National Radio Astronomy Observatory to analyze the
system of stars by means of Shapiro delay (SD) and presented
the observed values of different physical parameters for PSR
J1614-2230. These physical parameters like ecliptic longitude,
ecliptic latitude, parallax pulsar spin, pulsar spin period,
orbital period, companion mass, radius, and so forth are
recorded with very high precision by SD for PSR J1614-
2230.The availability of very accurate parametric valuesmade
PSR J1614-2230 extremely important for modern research
in GR. Neutron stars are made of the most dense mate-
rial existing in this universe. Tauris et al. [23] developed
mathematical model of PSR J1614-2230 and provided the
possible variation of masses to show that PSR J1614-2230 was
born more massive as compared to any discovered neutron
star. Lin et al. [24] used stellar evaluation code “MESA” to
describe the relationship between PSR J1614-2230 and its
stellar companion. This discovery of high massive neutron
star has extensive consequences on the equation of state
(EoS) of matter with high densities.The relationship between
physical parameters becomesmore complicated as linear EoS
is replaced by nonlinear EoS. In this work, we apply the
concept of cracking to self-gravitating CO in the presence of
electromagnetic field in quadratic regime. Here, we take local
density perturbation (DP) which is different from constant
DP presented by Herrera [5]. We applied this technique to
the model of charged compact objects with quadratic EoS
presented by Takisa et al. [25] and determine the cracking
of newly discovered PSR J1614-2230 with electromagnetic
field. Recently, we have investigated the cracking of some
compact objects with and without electromagnetic field in
linear regime [26, 27].

This paper is arranged as follows. Section 2 deals with
Einstein-Maxwell field and Tolman-Oppenheimer-Volkoff
(TOV) equations corresponding to an isotropic fluid. We
present the general formalism to determine the cracking
of charged CO with local DP in the quadratic regime in
Section 3. Section 4 investigates stable andunstable regions of
compact star PSR J1614-2230. In the last section, we conclude
our results.

2. Einstein-Maxwell Field and Tolman-
Oppenheimer-Volkoff Equations

We consider the line element for a static spherically symmet-
ric space time in curvature coordinates given by

𝑑𝑠2 = −𝑒2]𝑑𝑡2 + 𝑒2𝜆𝑑𝑟2 + 𝑟2 (𝑑𝜃2 + sin2𝜃𝑑𝜙2) , (1)

where 0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝜙 < 2𝜋, and ] = ](𝑟), 𝜆 = 𝜆(𝑟) are
gravitational potentials. The Maxwell’s equations are defined
as

𝐹𝑎𝑏;𝑐 + 𝐹𝑏𝑐;𝑎 + 𝐹𝑐𝑎;𝑏 = 0,
𝐹𝑎𝑏;𝑏 = 4𝜋𝐽𝑎,
𝐸𝑎𝑏 = 𝐹𝑎𝑐𝐹𝑐𝑏 − 14𝑔𝑎𝑏𝐹𝑐𝑑𝐹𝑐𝑑,

(2)

where 𝐹𝑎𝑏 is the electromagnetic field tensor, 𝐽 is the four
current densities, and 𝐸𝑎𝑏 is the electromagnetic energy-
momentum tensor [28]. The skew-symmetric electromag-
netic field tensor can be decomposed as

𝐹𝑎𝑏 = [[[[[
[

0 𝐸𝑥 𝐸𝑦 𝐸𝑧−𝐸𝑥 0 𝐵𝑧 𝐵𝑦−𝐸𝑦 −𝐵𝑧 0 𝐵𝑥−𝐸𝑧 −𝐵𝑦 −𝐵𝑥 0

]]]]]
]
, (3)

where E = (𝐸𝑥, 𝐸𝑦, 𝐸𝑧) is the electric field and B =(𝐵𝑥, 𝐵𝑦, 𝐵𝑧) is the magnetic field. The electromagnetic field
tensor and four current densities can be defined as

𝐹𝑎𝑏 = 𝐴𝑏,𝑎 − 𝐴𝑎,𝑏,
𝐽𝑎 = 𝜎𝑢𝑎, (4)

where 𝐴 and 𝜎 are the four potential and proper charge
densities and 𝑢𝑎 = 𝑒−]𝛿𝑎0 is four vector velocities of the fluid.
The four potentials are defined as

𝐴𝑎 = (𝜙 (𝑟) , 0, 0, 0) . (5)

Using this in the above equation, it yields

𝐹01 = −𝜙󸀠 (𝑟) , (6)

which can also be written as

𝐹01 = 𝑒−2(]+𝜆)𝜙󸀠 (𝑟) = 𝑒−(]+𝜆)𝐸 (𝑟) , (7)

where we have used 𝐸(𝑟) = 𝑒−(]+𝜆)𝜙󸀠(𝑟). The total energy-
momentum tensor corresponding to charged anisotropic
fluid sphere is defined by [28]

𝑇𝑎𝑏 = diag(−𝜌 − 𝐸22 , 𝑃𝑟 − 𝐸
2

2 , 𝑃𝑡 + 𝐸
2

2 , 𝑃𝑡 + 𝐸
2

2 ) . (8)

The terms𝐸,𝜌, and𝑃𝑟 and𝑃𝑡 are electromagnetic field, energy
density, and radial and tangential pressure, respectively.

The synergies of electromagnetic field and matter are
governed by system of field equations. These synergies
of spherically symmetric metric correspond to Einstein-
Maxwell field equations given by

𝐺𝑎𝑏 = 𝜅𝑇𝑎𝑏 = 𝜅 (𝑀𝑎𝑏 + 𝐸𝑎𝑏) , (9)

where 𝑀𝑎𝑏 is the energy-momentum tensor for the fluid
inside the star and 𝐸𝑎𝑏 = 𝐹𝑎𝑐𝐹𝑐𝑏 − (1/4)𝑔𝑎𝑏𝐹𝑐𝑑𝐹𝑐𝑑 is
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electromagnetic field tensor. The nonzero components of
Einstein-Maxwell field equations corresponding to (1) and (8)
are given as follows:

1 + 𝑒−2𝜆 (2𝑟𝜆󸀠 − 1) = 8𝜋𝑟2𝜌 + 𝑟2𝐸22 , (10)

1 − 𝑒−2𝜆 (2𝑟]󸀠 + 1) = −8𝜋𝑟2𝑃𝑟 + 𝑟2𝐸22 , (11)

𝑒−2𝜆 (𝜆󸀠𝑟 − ]󸀠𝑟 − ]󸀠󸀠𝑟2 + ]󸀠𝜆󸀠𝑟2 − (]󸀠)2 𝑟2)
= −8𝜋𝑟2𝑃𝑡 − 𝑟2𝐸22 ,

(12)

𝑟2𝜎 = 𝑒−𝜆 (𝑟2𝐸)󸀠 , (13)

where “󸀠” denotes the differentiation with respect to 𝑟.
It is clear that the choice of EoS of fluid inside the star

plays a key role for its physical significance. Thus, a star is
physically acceptable, if it satisfies the barotropic EoS 𝑃𝑟 =𝑃𝑟(𝜌). In this work, we have used the quadratic EoS to explore
the stability of PSR J1614-2230. The quadratic EoS is given by
[25]

𝑃𝑟 = 𝛾𝜌2 + 𝛼𝜌 − 𝛽, (14)

where 𝛾, 𝛼, and 𝛽 are constants and are constrained by (𝜌 ≤(1 + 𝛼)/2𝛾) and 𝛽 = 𝛼𝜌𝜀, where 𝜌𝜀 = 0.5 × 1015 g/cm3 gives
the density at the boundary surface of sphere. It is interesting
to note that this equation reduces to linear EoS, when 𝛾 = 0
[25].

Solving (10)–(12) simultaneously, we obtain hydrostatic
equilibrium equation (TOV) for anisotropic charged fluid:

𝑑𝑃𝑟𝑑𝑟 = 2 (𝑃𝑡 − 𝑃𝑟)𝑟 − (𝜌 + 𝑃𝑟) ]󸀠 + 𝐸8𝜋𝑟2 (𝑟2𝐸)󸀠 , (15)

which shows that gradient of pressure is effected by charge
and anisotropy of fluid. Using the relation 𝑒−2𝜆(𝑟) = 1−2𝑀/𝑟+𝑄2/𝑟2 in the above equation [28], it yields

Ω = −𝑑𝑃𝑟𝑑𝑟 +
2 (𝑃𝑡 − 𝑃𝑟)𝑟

+ (𝜌 + 𝑃𝑟) −4𝑀/𝑟 + 4𝑟2𝐸2 − 8𝜋𝑟2𝑃𝑟4𝑟 (1 − 2𝑀/𝑟 + 𝑟2𝐸2)
+ (𝑟2𝐸)

󸀠 𝐸
4𝜋𝑟2 = 0,

(16)

where the mass function with 𝑄 = 𝑟2𝐸 is defined as

𝑀 = 4𝜋∫𝑟
0
(𝜌 (𝑥) + 𝐸28𝜋)𝑥2𝑑𝑥. (17)

3. Effect of Local Density Perturbation

In this section, we perturb the equilibrium configuration of
charged CO through local DP (𝛿𝜌). Equation (16) depicts

that cracking takes place in interior of spherical CO when
equilibrium state is interrupted due to change in sign of
perturb force, that is, 𝛿Ω < 0 → 𝛿Ω > 0, and vice versa. We
apply the local DP to (16) and all the physical variables like
mass, radial and tangential pressure, electromagnetic field,
and their derivatives are involved in (16), given by

𝑃𝑟 (𝜌 + 𝛿𝜌) = 𝑃𝑟 (𝜌) + 𝑑𝑃𝑟𝑑𝜌 𝛿𝜌,
𝑑𝑃𝑟𝑑𝑟 (𝜌 + 𝛿𝜌)
= 𝑑𝑃𝑟𝑑𝑟 (𝜌) + [ 𝑑𝑑𝑟 (𝑑𝑃𝑟𝑑𝜌 ) + 𝑑𝑃𝑟𝑑𝜌 𝑑

2𝜌𝑑𝑟2 1𝑑𝜌/𝑑𝑟] 𝛿𝜌,
𝑃𝑡 (𝜌 + 𝛿𝜌) = 𝑃𝑡 (𝜌) + 𝑑𝑃𝑡𝑑𝜌 𝛿𝜌,
𝑀 (𝜌 + 𝛿𝜌) = 𝑀(𝜌) + 𝑑𝑀𝑑𝜌 𝛿𝜌,
𝐸 (𝜌 + 𝛿𝜌) = 𝐸 (𝜌) + 𝐸󸀠𝜌󸀠 𝛿𝜌,
𝐸󸀠 (𝜌 + 𝛿𝜌) = 𝐸󸀠 (𝜌) + 𝐸󸀠󸀠𝜌󸀠 𝛿𝜌.

(18)

The radial sound speed V2𝑟 and tangential sound speed V2𝑡 are
defined as

V2𝑟 = 𝑑𝑃𝑟𝑑𝜌 ,
V2𝑡 = 𝑑𝑃𝑡𝑑𝜌 .

(19)

The perturb form of (16) is given by

Ω = Ω0 (𝜌, 𝑃𝑟, 𝑃󸀠𝑟 , 𝑃𝑡,𝑀, 𝐸, 𝐸󸀠) + 𝛿Ω, (20)

where

𝛿Ω = 𝜕Ω𝜕𝜌 𝛿𝜌 + 𝜕Ω𝜕𝑃𝑟 𝛿𝑃𝑟 +
𝜕Ω𝜕𝑃󸀠𝑟 𝛿𝑃

󸀠
𝑟 + 𝜕Ω𝜕𝑃𝑡 𝛿𝑃𝑡 +

𝜕Ω𝜕𝑀𝛿𝑀
+ 𝜕Ω𝜕𝐸 𝛿𝐸 + 𝜕Ω𝜕𝐸󸀠 𝛿𝐸󸀠,

(21)

which can also be written as

𝛿Ω𝛿𝜌 = 𝜕Ω𝜕𝜌 + 𝜕Ω𝜕𝑃𝑟 V2𝑟 +
𝜕Ω𝜕𝑃󸀠𝑟 (V

2
𝑟

󸀠 + V2𝑟𝜌󸀠󸀠 (𝜌󸀠)−1)
+ 𝜕Ω𝜕𝑃𝑡 V2𝑡

󸀠 + 4𝜋𝑟2𝜌󸀠 𝜕Ω𝜕𝑀 (𝜌 + 𝐸22 ) + 𝜕Ω𝜕𝐸 𝐸
󸀠

𝜌󸀠
+ 𝜕Ω𝜕𝐸󸀠 𝐸

󸀠󸀠

𝜌󸀠 .
(22)
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This is the fundamental equation used to determine the
effects of local DP on the cracking of charged anisotropic
fluid. We will plot the force distribution function 𝛿Ω/𝛿𝜌
against radius “𝑟” of the star for different values of the
parameters involved in the model. Using (16), the derivatives
involved in the above equation are given as follows:

𝜕Ω𝜕𝜌 = −4𝑀 − 16𝜋𝑟3𝑃𝑟 + 3𝑟3𝐸24𝑟2 − 8𝑀𝑟 + 4𝑟4𝐸2 ,
𝜕Ω𝜕𝑀 = −(𝜌 + 𝑃𝑟) (4𝑟2 − 16𝜋𝑟4𝑃𝑟 − 2𝑟4𝐸2)(2𝑟2 − 4𝑀𝑟 + 2𝑟4𝐸2)2 ,
𝜕Ω𝜕𝑃𝑟
= −2𝑟 − 2𝑀 + 16𝜋𝑟3𝑃𝑟 + 8𝜋𝑟3𝜌 − 𝑟3𝐸22𝑟2 − 4𝑀𝑟 + 2𝑟4𝐸2
+ 𝑟2𝐸24𝑟 − 8𝑀 + 4𝑟3𝐸2 ,

𝜕Ω𝜕𝑃𝑡 =
2𝑟 ,

𝜕Ω𝜕𝑃󸀠𝑟 = −1,
𝜕Ω𝜕𝐸
= −(𝜌 + 𝑃𝑟) (𝑟2𝐸) (3𝑟 − 10𝑀 + 6𝑟3𝐸2 − 6𝜋𝑟3𝑃𝑟)

2 (𝑟 − 2𝑀 + 𝑟3𝐸3)2
+ 2 + 𝑟𝐸󸀠8𝜋𝑟 ,

𝜕Ω𝜕𝐸󸀠 = 𝐸8𝜋 .

(23)

4. Cracking of PSR J1614-2230

Here, we apply the formalism developed in the above section
to investigate the cracking of charged objects for the model
given by Takisa et al. [25]. This model is consistent with
the physical features of observed objects and its connection
can be made with PSR J1614-2230 for particular values of
parameters given in [25]. The analysis of Takisa seems to be
consistent with observational objects such as Vela X-1, Cen
X-3, SMC X-1, PSR J1903-327, and PSR J1614-2230. But our
focus in this analysis is the particular object PSR J1614-2230
because its mass and radius have been measured with great
accuracy. The model is defined by following equations:

𝑀(𝑟) = 𝑟3 (4𝑎 − 4𝑏)8 (𝑎𝑟2 + 1) + 5𝑠 arctan
√𝑎𝑟28𝑎3/2

− 𝑟𝑠 (−2𝑎2𝑟4 + 10𝑎𝑟2 + 15)24𝑎 (𝑟2 + 𝑎 + 1) ,
(24)

𝜌 = (2𝑎 − 2𝑏) (𝑎𝑟2 + 3) − 𝑎2𝑟4𝑠16𝜋 (𝑎𝑟2 + 1)2 , (25)

𝑃𝑟 = 𝛾 [(2𝑎 − 2𝑏) (𝑎𝑟
2 + 3) − 𝑎2𝑟4𝑠]2

256𝜋2 (𝑎𝑟2 + 1)4
+ 𝛼 [(2𝑎 − 2𝑏) (𝑎𝑟2 + 3) − 𝑎2𝑟4𝑠]16𝜋 (𝑎𝑟2 + 1)2 − 𝛽,

(26)

𝑃𝑡 = 𝑃𝑟 + Δ, (27)

where

8𝜋Δ = 4𝑟2 (𝑏𝑟2 + 1)𝑎𝑟2 + 1 ( 𝐹󸀠󸀠2𝑟2 − 𝐹󸀠2𝑟3 + 𝐹
󸀠2

4𝑟2 + 𝑏
2𝑛 (𝑛 − 1)
(𝑏𝑟2 + 1)2

+ 𝑎2𝑡 (𝑡 − 1)(𝑎𝑟2 + 1)2 +
𝐹󸀠𝑏𝑛𝑟 (𝑏𝑟2 + 1) + 𝐹󸀠𝑎𝑡𝑟 (𝑎𝑟2 + 1)

+ 2𝑎𝑏𝑛𝑡(𝑎𝑟2 + 1) (𝑏𝑟2 + 1))(4𝑏𝑟
2 + 4𝑎𝑟2 + 1 − 𝑟2 (2𝑎 − 2𝑏)(𝑎𝑟2 + 1)2 )(

𝐹󸀠2𝑟
+ 𝑏𝑛𝑏𝑟2 + 1 + 𝑎𝑡𝑎𝑟2 + 1)

− 2𝑎 − 2𝑏 − 16𝜋𝛽 (𝑎𝑟2 + 1)
2 + 𝑎2𝑟2𝑠

2 (𝑎𝑟2 + 1)2
− 𝛼 ((2𝑎 − 2𝑏) (𝑎𝑟2 + 3) + 𝑎2𝑟2𝑠)2 (𝑎𝑟2 + 1)2
− 𝛾 ((𝑎 − 𝑏) (𝑎𝑟2 + 3) − 𝑎2𝑟4𝑠)64𝜋 (𝑎𝑟2 + 1)2 ,

𝑡 = 𝛼2 + 𝛾 (2𝑎 − 2𝑏)2 ( 𝑏
(𝑎 − 𝑏)2 −

𝑏2
(𝑎 − 𝑏)3 +

14)
+ 𝑠 (𝛼 + 1)8𝑎 − 8𝑏
+ 𝛾𝑠 (2𝑏3 (2𝑎 − 1) + (𝑎 − 𝑏) (𝑎 + 𝑏 + 2𝑠 (𝑎 − 𝑏)) − 6𝑎𝑏2)8 (𝑎 − 𝑏)3 ,

𝑛 = 𝛽 (𝑎 − 𝑏)4𝑏2 + 𝛾 (2𝑎 − 2𝑏)2 ( 𝑏
(𝑎 − 𝑏)2 −

𝑏2
(𝑎 − 𝑏)3 +

14)

+ 2𝛼 (𝑎 − 𝑏)4𝑎 − 4𝑏 + 𝛾𝑠 (2𝑏 (2𝑎3𝑏 − 6𝑎2𝑏2) − 𝑎4 (4𝑏 + 𝑠))16𝑏2 (𝑎 − 𝑏)3
+ (𝑎 − 𝑏) (𝛼 + 1)4𝑏 − 𝑎2𝑠 (𝛼 + 1)8𝑏2 (𝑎 − 𝑏) ,

𝐸2 = 𝑠𝑎2𝑟4
(1 + 𝑎𝑟2)2 .

(28)

The radial and tangential sound speed velocities can be
obtained from (26) and (27) as
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V2𝑟 = 𝛼 + 2𝛾𝜌,
V2𝑡 = [[

[
2199023255552𝛾 ((2𝑎 − 2𝑏) (3 + 𝑎𝑟2) − 𝑠𝑎2𝑟4) ((4𝑎 − 4𝑏) 𝑎𝑟 − 4𝑠𝑎2𝑟3)

2778046668940015 (1 + 𝑎𝑟2)4

− 8796093022208𝛾 ((2𝑎 − 2𝑏) (3 + 𝑎𝑟2) − 𝑠𝑎2𝑟4)
2 𝑎𝑟

2778046668940015 (1 + 𝑎𝑟2)5 + 116
𝛼 ((4𝑎 − 4𝑏) 𝑎𝑟 − 4𝑠𝑎2𝑟3)

𝜋 (1 + 𝑎𝑟2)2 − 14

⋅ 𝛼 ((2𝑎 − 2𝑏) (3 + 𝑎𝑟2) − 𝑠𝑎2𝑟4) 𝑎𝑟𝜋 (1 + 𝑎𝑟2)3 + {{{{{
𝑟 (1 + 𝑏𝑟2)(𝑡 (𝑡 − 1) 𝑎2(1 + 𝑎𝑟2)2 + 2

𝑡𝑛𝑎𝑏(1 + 𝑎𝑟2) (1 + 𝑏𝑟2) + 𝑡𝑎𝐹󸀠𝑟 (1 + 𝑎𝑟2) + 𝑏
2𝑛 (𝑛 − 1)
(1 + 𝑏𝑟2)2

+ 𝑛𝑏𝐹󸀠𝑟 (1 + 𝑏𝑟2) + 12 𝐹
󸀠󸀠

𝑟2 − 12 𝐹
󸀠

𝑟3 + 14 𝐹
󸀠2

𝑟2 )(1 + 𝑎𝑟2)−1 + 𝑟3𝑏(𝑡 (𝑡 − 1) 𝑎
2

(1 + 𝑎𝑟2)2 + 2
𝑡𝑛𝑎𝑏(1 + 𝑎𝑟2) (1 + 𝑏𝑟2) + 𝑡𝑎𝐹󸀠𝑟 (1 + 𝑎𝑟2)

+ 𝑏2𝑛 (𝑛 − 1)(1 + 𝑏𝑟2)2 +
𝑛𝑏𝐹󸀠𝑟 (1 + 𝑏𝑟2) + 12 𝐹

󸀠󸀠

𝑟2 − 12 𝐹
󸀠

𝑟3 + 14 𝐹
󸀠2

𝑟2 )(1 + 𝑎𝑟2)−1 − 𝑟3 (1 + 𝑏𝑟2)(𝑡 (𝑡 − 1) 𝑎
2

(1 + 𝑎𝑟2)2 + 2
𝑡𝑛𝑎𝑏(1 + 𝑎𝑟2) (1 + 𝑏𝑟2)

+ 𝑡𝑎𝐹󸀠𝑟 (1 + 𝑎𝑟2) + 𝑏
2𝑛 (𝑛 − 1)
(1 + 𝑏𝑟2)2 +

𝑛𝑏𝐹󸀠𝑟 (1 + 𝑏𝑟2) + 12 𝐹
󸀠󸀠

𝑟2 − 12 𝐹
󸀠

𝑟3 + 14 𝐹
󸀠2

𝑟2 )𝑎 (1 + 𝑎𝑟2)−2 + 12𝑟2 (1 + 𝑏𝑟2)(−4𝑡 (𝑡 − 1) 𝑎
3𝑟

(1 + 𝑎𝑟2)3
− 4 𝑡𝑛𝑎2𝑏𝑟

(1 + 𝑎𝑟2)2 (1 + 𝑏𝑟2) − 4
𝑡𝑛𝑎𝑏2𝑟

(1 + 𝑎𝑟2) (1 + 𝑏𝑟2)2 −
𝑡𝑎𝐹󸀠𝑟2 (1 + 𝑎𝑟2) − 2 𝑡𝑎2𝐹󸀠

(1 + 𝑎𝑟2)2 − 4
𝑏3𝑛 (𝑛 − 1) 𝑟
(1 + 𝑏𝑟2)3 − 𝑛𝑏𝐹󸀠𝑟2 (1 + 𝑏𝑟2)

− 2 𝑏2𝑛𝐹󸀠
(1 + 𝑏𝑟2)2 −

𝐹󸀠󸀠𝑟3 + 32 𝐹
󸀠

𝑟4 − 12 𝐹
󸀠2

𝑟3 )(1 + 𝑎𝑟2)−1 + 18 ((−4𝑎 + 4𝑏) 𝑟(1 + 𝑎𝑟2)2 − (−8𝑎 + 8𝑏) 𝑟3𝑎(1 + 𝑎𝑟2)3 + 8 𝑏𝑟1 + 𝑎𝑟2 −
(8 + 8𝑏𝑟2) 𝑎𝑟
(1 + 𝑎𝑟2)2 )

⋅ ( 𝑡𝑎1 + 𝑎𝑟2 + 𝑛𝑏1 + 𝑏𝑟2 + 12 𝐹
󸀠

𝑟 ) + 18 ((−2𝑎 + 2𝑏) 𝑟
2

(1 + 𝑎𝑟2)2 + 4 + 4𝑏𝑟21 + 𝑎𝑟2 )(−2 𝑡𝑎2𝑟
(1 + 𝑎𝑟2)2 − 2

𝑏2𝑛𝑟
(1 + 𝑏𝑟2)2 −

12 𝐹
󸀠

𝑟2) − 1512
⋅ 𝛾 ((2𝑎 − 2𝑏) 𝑎𝑟 − 4𝑠𝑎2𝑟3)𝜋 (1 + 𝑎𝑟2)2 + 1128

𝛾 ((𝑎 − 𝑏) (3 + 𝑎𝑟2) − 𝑠𝑎2𝑟4) 𝑎𝑟
𝜋 (1 + 𝑎𝑟2)3 + 18

(4𝑎 − 4𝑏 + 2𝑠𝑎2𝑟2 − 32𝜋𝛽 (1 + 𝑎𝑟2)2) 𝑎𝑟
(1 + 𝑎𝑟2)3

− 116
𝛼 ((4𝑎 − 4𝑏) 𝑎𝑟 + 2𝑠𝑎2𝑟)

(1 + 𝑎𝑟2)2 + 14
𝛼 ((2𝑎 − 2𝑏) (3 + 𝑎𝑟2) + 𝑠𝑎2𝑟2) 𝑎𝑟

(1 + 𝑎𝑟2)3
}}}}}
𝜋−1]]

]
((1/4𝑎 − 1/4𝑏) 𝑎𝑟 − 1/4𝑠𝑎2𝑟3𝜋 (1 + 𝑎𝑟2)2

− ((1/2𝑎 − 1/2𝑏) (3 + 𝑎𝑟2) − 1/4𝑠𝑎2𝑟4) 𝑎𝑟𝜋 (1 + 𝑎𝑟2)3 )
−1

− 18
𝑠𝑎2𝑟 − 32𝜋𝛽 (1 + 𝑎𝑟2) 𝑎𝑟

(1 + 𝑎𝑟2)2 .

(29)

The constants 𝑎, 𝑏, and 𝑠 have dimensions of length (𝐿−2)
and are chosen in such way that the given system satisfies the
following conditions:

(i) Energy density must remain positive before and after
equilibrium state.

(ii) Radial pressure should be vanished at the boundary
of star.

(iii) At the center of star, that is, 𝑟 = 0, we have 𝑃𝑟 = 𝑃𝑡 =Δ = 0.
(iv) V2𝑟 is constant in the quadratic regime.

(v) Across boundary of star, when 𝑟 = 𝜀, we have
𝑒−2𝜆 = 1 − 2𝑀𝜀 + 𝑄2𝜀2
𝑒−2] = 1 − 2𝑀𝜀 + 𝑄2𝜀2 .

(30)

By considering above conditions, we have

𝛼 = 0.33,
𝑎 = 𝑎1

R2
,
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Figure 1: Plots show that there is no cracking; that is, the PSR J1614-
2230 remains stable for different values of the parameters involved
in the model given in Table 1, when 𝐸 = 0 in quadratic regime.

𝑏 = 𝑏1
R2

,
𝑠 = 𝑠1

R2
,

(31)

whereR = 43.245 km and the values given above are compat-
ible with observational values given by Takisa et al. [25].

For the sake of regions (stable and unstable) of PSR J1614-
2230, we have plotted force distribution function against
radius of the star for different values of the parameters
involved in the model shown in Figures 1–8. We summarize
these results as follows:

(i) Figure 1 depicts that all curves do not change their
sign with different values of 𝛾 and 𝑏1 corresponding
to Table 1. Hence, we find that PSR J1614-2230 is stable
in the absence of charge in quadratic regime and it is
unstable in linear regime which is analogous to the
results found in [26, 27]. From Table 2, it is clear that
any variation in coefficients of quadratic EoS does not
affect stability; even radius of PSR J1614-2230 changes
approximately to 4%.

(ii) In Figure 2, there are three curves corresponding to
model parameters 𝛾 = 0.0, 𝛼 = 0.99 and charge𝑠1 = 0, 7.5, 14.5. It is noted that all three curves
(red, blue, and green) change their sign for charge
parameter (𝑠1 = 0, 7.5, 14.5), respectively, in the linear
regime.This shows that PSR J1614-2230 is unstable in
linear regime, where the symbols “◊,” “I,” and “∗”

Table 1: Stability of neutral PSR J1614-2230 when 𝛾 and 𝑏1 are
variable.

𝛾 𝑎1 𝑏1 𝛼 𝑟 (km) 𝑅𝑐 (km)
0.100 53.34 6.90 0.33 11.07 Stable
0.126 53.34 8.74 0.33 10.85 Stable
0.132 53.34 10.74 0.33 10.60 Stable
0.140 53.34 13.33 0.33 10.30 Stable
0.148 53.34 15.61 0.33 9.99 Stable
0.154 53.34 16.87 0.33 9.82 Stable
0.163 53.34 19.04 0.33 9.51 Stable
0.177 53.34 21.72 0.33 9.13 Stable
0.189 53.34 23.64 0.33 8.83 Stable
0.196 53.34 24.73 0.33 8.65 Stable
0.200 53.34 28.42 0.33 8.04 Stable

Table 2: Stability of PSR J1614-2230 when 𝑠1 = 0 and 𝛼, 𝛾 are
variable.

𝛾 𝑎1 𝑏1 𝛼 𝑟 (km) 𝑅𝑐 (km)
0.0 53.34 13.33 0.99 10.30 7.7
0.140 53.34 13.33 0.33 10.30 Stable
0.158 53.34 13.33 0.24 10.50 Stable
0.163 53.34 13.33 0.21 10.70 Stable
0.177 53.34 13.33 0.15 10.90 Stable
0.196 53.34 13.33 0.06 11.06 Stable
0.200 53.34 13.33 0.04 11.09 Stable

Table 3: Stability of PSR J1614-2230 when 𝑠1 = 7.5 and 𝛼, 𝛾 are
variable.

𝛾 𝑎1 𝑏1 𝛼 𝑟 (km) 𝑅𝑐 (km)
0.0 53.34 13.33 0.99 9.67 8.6
0.140 53.34 13.33 0.33 9.67 8.6
0.158 53.34 13.33 0.24 10.07 9.3
0.163 53.34 13.33 0.21 10.37 9.3
0.177 53.34 13.33 0.15 10.56 9.5
0.196 53.34 13.33 0.06 10.65 9.6
0.200 53.34 13.33 0.04 10.64 9.7

Table 4: Stability of PSR J1614-2230 when 𝑠1 = 14.5 and 𝛼, 𝛾 are
variable.

𝛾 𝑎1 𝑏1 𝛼 𝑟 (km) 𝑅𝑐 (km)
0.0 53.34 13.33 0.99 9.21 8.3
0.140 53.34 13.33 0.33 9.21 8.3
0.158 53.34 13.33 0.24 10.05 9.1
0.163 53.34 13.33 0.21 10.10 9.1
0.177 53.34 13.33 0.15 10.15 9.2
0.196 53.34 13.33 0.06 10.18 9.2
0.200 53.34 13.33 0.04 10.19 9.2

represent the cracking points (where curve changes
its sign from negative to positive) corresponding to𝑠1 = 0, 7.5, 14.5, respectively. The cracking values𝑅𝑐 = 7.7, 8.6, 8.3 corresponding to 𝑠1 = 0, 7.5, 14.5
(red, blue, and green) are given in (Tables 2, 3, and 4).
In this case, our results are consistent with [26, 27] in
linear regime.
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Figure 2: Cracking of PSR J1614-2230 with 𝛾 = 0.0, 𝛼 = 0.99, and𝑠1 = 0, 7.5, 14.5.
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Figure 3: Cracking of PSR J1614-2230 with 𝛾 = 0.140, 𝛼 = 0.33, and𝑠1 = 0, 7.5, 14.5.

(iii) Figures 3–8 represent the cracking of PSR
J1614-2230 star for fixed values of parameters𝛾 = 0.140, 0.158, 0.163, 0.177, 0.196, 0.200, 𝛼 =0.33, 0.24, 0.21, 0.15, 0.06, 0.04 and charge 𝑠1 =0.0, 7.5, 14.5 in quadratic regime. We see that
cracking takes place for charge parameters 𝑠1 = 7.5
and 14.5, which are indicated by the cracking points
“I” and “∗” corresponding to blue and green
curves, respectively. These cracking points (𝑅𝑐) are
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Figure 4: Cracking of PSR J1614-2230 with 𝛾 = 0.158, 𝛼 = 0.24, and𝑠1 = 0, 7.5, 14.5.
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Figure 5: Cracking of PSR J1614-2230 with 𝛾 = 0.163, 𝛼 = 0.21, and𝑠1 = 0, 7.5, 14.5.

given in Tables 3-4. However, in each case, the star
remains stable; that is, no cracking takes place for𝑠1 = 0 in quadratic regime. Hence, PSR J1614-2230
exhibits cracking both in linear and quadratic regime
when charge is present. From these illustrations, we
conclude that as charge increases, cracking points
are slightly shifted towards center, which indicates
that binding forces of CO become stronger and more
mass is directed towards origin.
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Figure 6: Cracking of PSR J1614-2230 with 𝛾 = 0.177, 𝛼 = 0.15, and𝑠1 = 0, 7.5, 14.5.
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Figure 7: Stability regions for 𝛾 = 0.196, 𝛼 = 0.06, and 𝑠1 =0, 7.5, 14.5.
5. Conclusions and Observations

We have applied the technique of cracking presented by
Herrera [5] to charged anisotropic self-gravitating CO. The
impact of local DP on the stability of inner fluid of star in
the presence of charge is considered in the scenario of GR.
It has been observed that cracking of CO takes place when
the system leaves its equilibrium state. The numerical value
of 𝑅𝑐 (cracking point) provides the stable/unstable region in
the quadratic regime.

PSR J1614-2230 
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Figure 8: Stability regions for 𝛾 = 0.200, 𝛼 = 0.04, and 𝑠1 =0, 7.5, 14.5.

We have used the model of Takisa et al. [25] to investigate
the cracking of PSR J1614-2230 with and without charge.
Figure 1 represents the stability of celestial object PSR J1614-
2230 in the absence of charge for different values of param-
eters 𝛾 and 𝑏1 given in Table 1. It is shown that PSR J1614-
2230 remains stable, when quadratic EoS is considered in
neutral case but it exhibited cracking with the inclusion of
charge. Figure 2 has been plotted for 𝛾 = 0.0 and different
values of 𝛼 and charge 𝑠1 = 0, 7.5, 14.5. It is shown that
PSR J1614-2230 exhibits cracking in each case given by 𝑅𝑐 =7.7, 8.6, 8.3. For 𝑠1 = 0, PSR J1614-2230 shows cracking
which is consistent with our recent published work [26, 27].
It is worth mentioned here that our results are analogous to
[26, 27], when 𝛾 = 0 (Linear Regime) in the presence of
charge.

In Figures 3–8, we have given the comparison of stability
regionwith different values of𝛼, 𝛾 and charge parameter 𝑠1. In
these figures stability regions are plotted for values of charge
parameter 𝑠1 = 0, 7.5, 14.5 with 𝑅𝑐 represented by “◊,” “I,”
and “∗” for 𝑠1 = 0.0, 𝑠1 = 7.5, and 𝑠1 = 14.5, respectively. We
observe that the value of𝑅𝑐 decreases as electromagnetic field
increases, which are given in Tables 2–4 for different values
of parameters. Figures 3–8 show that cracking takes place in
each case for different values of the parameters corresponding
to 𝑠1 = 7.5 and 𝑠1 = 14.5 in the quadratic regime, while it
remains stable in the absence of charge (𝑠1 = 0.0).

It is noted that the local DP scheme does not affect
the stability of CO (remains stable) in neutral case, while
it changes its stability (potentially unstable) drastically with
the inclusion of charge in quadratic regime. Thus, the local
DP scheme under nonlinear EoS considerably affects the
stability regions of CO. When physical parameters like mass,
electromagnetic field, and density of anisotropic charged
self-gravitating CO are locally perturbed, they drastically
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affect the sensitivity of radial forces which may lead to
the gravitational collapse. Therefore, the stability region of
PSR J1614-2230 increases as value of electromagnetic field
increases. Hence, we conclude that the binding forces of
neutron star PSR J1614-2230 become stronger as we move
towards center of star and it becomes more dense as charge
increases.

It is important to mention here that the idea of cracking
was presented by Herrera [5] to understand the behavior of
inner fluid distribution just after the departure from equilib-
rium state may be responsible for cracking (overturning) of
anisotropic sphere [8]. In his study, the globalDP affects phys-
ical quantities like mass and tangential and radial pressure
but does not affect pressure gradient. In this work global DP
technique is modified by local density perturbations to study
cracking in the presence of electromagnetic field. Finally,
we conclude that the given object exhibits cracking in the
presence of electromagnetic field.
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cracking and the stability of self-gravitating anisotropic com-
pact objects,” Classical and Quantum Gravity, vol. 24, no. 18, pp.
4631–4645, 2007.

[11] G. A. Gonzalez, A. Navarro, and L. A. Nunez, “Cracking
and instability of isotropicand anisotropic relativistic spheres,”
http://arxiv.org/abs/1410.7733.
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