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The combinatorial frequency generation by the periodic stacks of binary layers of anisotropic nonlinear dielectrics is examined.
The products of nonlinear scattering are characterised in terms of the three-wave mixing processes. It is shown that the intensity
of the scattered waves of combinatorial frequencies is strongly influenced by the constitutive and geometrical parameters of the
anisotropic layers, and the frequency ratio and angles of incidence of pump waves. The enhanced efficiency of the frequency
conversion at Wolf-Bragg resonances has been demonstrated for the lossless and lossy-layered structures.

1. Introduction

A new generation of artificial electromagnetic materials has
opened up new opportunities for engineering the media with
the specified properties. The latest advancements in this field
have prompted a surge of research in the new phenomenol-
ogy, which could extend a range of functional capabilities
and enable the development of innovative devices in the
millimeter, terahertz (THz), and optical ranges.

Frequency conversion in dielectrics with nonlinearities
of the second and third order has been investigated in
optics, particularly, in the context of the second (SHG) and
third (THG) harmonic generation. The recent studies have
indicated that nonlinear photonic crystals (PhCs) and meta-
materials (MMs) have significant potential for enhancement
of the nonlinear activity associated with the mechanisms
of field confinement, dispersion management and resonant
intensification of the interacting waves. For example, it
has been demonstrated in [1–5] that the PhCs dispersion
can be tailored to facilitate the phase synchronism (The
phase synchronism between pump wave and its harmonic
is a prerequisite for efficient frequency conversion.) between
the second harmonic and the pump wave of fundamental

frequency. The harmonic generation efficiency can be further
increased when the pump wave frequencies are close to the
PhC band edges [6–12] where the higher density of states
provides favourable phase-matching conditions. The SHG
efficiency also grows with the PhC thickness or the number
of stacked layers [5].

Combinatorial frequency generation by mixing pump
waves of two different frequencies provides alternative means
for frequency conversion. The efficiency of mixing process
can be dramatically increased in the layered structures,
for example, at the higher order Wolf-Bragg resonances of
the combinatorial frequencies generated in the anisotropic
nonlinear dielectric slabs. As shown in [13], at the specific
thickness of the layers illuminated by the plane waves of two
tones, the mixing products reach their extremes and exhibit
either giant growth of the peak intensity or full suppression.
The global maxima and nulls at Wolf-Bragg resonances in the
layer are achieved only at the particular combinations of the
two frequencies ω1,2 of pump waves and the layer parameters
and anisotropy.

The aim of this paper is to explore the mechanisms of the
combinatorial frequency generation in the PhC composed
of a periodic stack of binary anisotropic nonlinear dielectric
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Figure 1: Geometry of the problem.

layers illuminated by two-tone pump waves that allows us to
combine the effects of the resonance mixing with the disper-
sion control provided by the structure periodicity. Here the
properties of the combinatorial frequencies generated by the
nonlinear anisotropic dielectric PhC illuminated by plane
waves of two tones are investigated. A generic approach,
based on the transfer matrix method (TMM) [14], has been
devised here to take into account nonlinear polarization
of the constituent anisotropic layers and analyse frequency
mixing of the two-tone plane waves obliquely incident
on the PhC. The problem statement and the solution of
the respective boundary value problem obtained in the
three-wave approximation [15] are outlined in Section 2.
The results of the numerical analysis and the properties
of TM waves of combinatorial frequencies scattered by the
nonlinear PhC are discussed in Section 3 and the main
features of the three-wave mixing products generated by the
anisotropic nonlinear PhCs are summarised in Conclusions.

2. Nonlinear Scattering in Three-Wave
Mixing Process

Wave propagation and scattering in linear stratified media
are usually modelled by TMM, which sequentially relates the
fields at the layer interfaces, see, for example, [14, 16]. The
TMM approach has also been applied to the study of optical
harmonic generation and frequency mixing in 1D nonlinear-
layered structures at normal incidence of the pump waves
[17–20]. The nondepleted pump wave approximation has
been usually employed taking into account multiple reflec-
tions from the layer interfaces and interference between
all propagating waves, including the forward and backward
propagating waves. A relatively simple approach based upon
the TMM generalisation to a multiwavelength case has been
proposed in [19] where interaction between the different

frequencies was described by the “effective” refractive index
characteristic for each optical wave. The latter technique
allows simulations of multiple optical wave interactions in
the homogenised metamaterials as well as in PhCs.

In order to examine the three-wave mixing process in the
1D anisotropic PhC, it is necessary to generalise the TMM-
based analysis for the case of two pump waves, incident at
arbitrary angles. To elucidate the main features of the devel-
oped approach, we consider here a canonical PhC structure
with the cross-section shown in Figure 1. It is composed
of the periodic binary dielectric layers of thicknesses d1

and d2 and infinite extent in the x and y directions. The
total thickness of the periodic stack is L = N · (d1 + d2),
where N is the number of periods (unit cells). The PhC is
surrounded by the linear homogeneous medium with the
dielectric permittivity εa at z ≤ 0 and z ≥ L. It is illuminated
by two plane waves of frequencies ω1 and ω2 incident at
angles Θi1 and Θi2, respectively, as shown in Figure 1.

Each layer has 6 mm class of anisotropy and is described
by the linear dielectric permittivity tensor ε̂ = (εxx, εxx, εzz)
and the second-order nonlinear susceptibility tensor χ̂:

χ̂ =
⎛

⎜

⎝

0 0 0 0 χxxz 0
0 0 0 χxxz 0 0

χzxx χzxx χzzz 0 0 0

⎞

⎟

⎠. (1)

Owing to the structure uniformity in the x0y plane and
symmetry of the tensors ε̂ and χ̂, we can assume without
loss of generality that ∂/∂y = 0. In this case, Maxwell’s
equations for TE and TM polarised waves are separated and
can be treated independently. Only TM waves are considered
in the rest of the paper (the analysis of TE waves is similar
and somewhat simpler being unaffected by anisotropy of
χ̂ defined in (1)). The electric Ex,z and magnetic Hy field
components of TM waves in each layer satisfy the following
system of nonlinear equations:
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(2)

where j = 1, 2 denotes the respective constituent nonlinear
layer in the binary unit cell, c is the speed of light.

In the approximation of weak nonlinearity, the scattering
characteristics of the TM waves can be obtained separately
at each frequency by the harmonic balance method. Thus at
the combinatorial frequency ω3 = ω1 + ω2, the system of
nonlinear equations (2) can be reduced to inhomogeneous
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Helmholtz equation for Hy j in each nonlinear anisotropic
dielectric layer

∂2Hy j(ω3)

εxx j∂z2
+
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k2
3 −

k2
x3

εzz j
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= 4πk3

[
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,

(3)

where kp = ωp/c, p = 1, 2, 3 and kx3 = k3
√
εa sinΘ3. Since

kx3 must obey the requirement of the waveform invariance
along the layer interfaces, the phase synchronism condition
in the three-wave mixing process [15] is enforced here in the
following form:

kx3 = kx1 + kx2, (4)

where kx1,x2 = k1,2
√
εa sinΘi1,i2. In order to make the

solution procedure more transparent, we assume here that
both incident pump waves of frequencies ω1,2 have the same
amplitudes equal to unity. Generalisation to the case of
unequal pump wave amplitudes is straightforward but the
resulting expressions are more cumbersome.

The full solution of inhomogeneous equation (3) is
composed of the partial and general solutions which can be
represented in the form

H(n)
y j (ω3, x, z) =

(

An+
j eik

(3)
zL j z + An−

j e−ik
(3)
zL j z + Dn+

1 j e
ik+

zL j z

+Dn+
2 j e

−ik+
zL j z + Dn−

1 j e
ik−zL j z + Dn−

2 j e
−ik−zL j z

)

× e−iω3t+ikx3x.
(5)

Here the amplitude coefficients An±
j are associated with

the general solution of (3) and are determined by means
of enforcing the continuity conditions for the tangential
field components at the layer interfaces. The coefficients
Dn±

1 j,2 j represent the partial solution of inhomogeneous
equation (3) and are expressed in terms of the refracted field

amplitudes in each layer at the pump wave frequencies ω1

and ω2:
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(6)

Here k
(p)
zL j are the z components of the wave vectors in jth

layer at frequencies ωp, respectively; superscript n identifies
the period number in the stack. The coefficients Bn±

j (ω1,2) are
the field amplitudes inside the jth layer of the nth period at
the incident wave frequencies ω1 and ω2. These coefficients
are obtained by imposing the continuity conditions for
the tangential field components of each pump wave of
frequencies ω = ω1,2 independently at the layer interfaces
and can be represented in the form:
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where k
(p)
za = kp

√
εa cosΘip is the longitudinal wavenumber

in the surrounding medium and R(ωp) is the reflection

coefficient at frequency ωp. The transfer matrix ̂M(ωp) of
the finite linear periodic structure containing N periods
can be expressed in terms of the transfer matrix m̂(ωp) =
m̂L1(ωp)m̂L2(ωp) of a single period using Abeles theorem

[21]: ̂M(ωp) = (m̂(ωp))N , where m̂L1,L2(ωp) are the transfer
matrices of the constituent layers of the unit cell. The

matrices ŝ(n)
j in (7) are defined as follows: ŝ(n)

1 (ωp) =
(m̂(ωp)n−1)

−1
and ŝ(n)

2 (ωp) = (m̂(ωp)n−1 · m̂L1(ωp))
−1

.
To satisfy the boundary conditions at the interfaces of the

nonlinear layers at the combinatorial frequencyω3, the TMM
procedure has to be modified in order to take into account
the contribution of the frequency mixing products generated
in each layer and subsequently refracted through the periodic
stack. Namely, the fields at interfaces of the first layer in the
binary unit cell are related as follows:

(

H(1)
y1 (ω3, x, 0)

E(1)
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)
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(
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.

(8)

Similarly, for the second layer we obtain
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(9)

Thus, (8) and (9) define the interrelation between the fields
at the external interfaces of the constituent unit cell. After
applying the boundary conditions sequentially to all N unit
cells, the fields at the stack outer interfaces can be represented
in the form:

(

H(1)
y1 (ω3, x, 0)

E(1)
x1 (ω3, x, 0)

)

= ̂M(ω3)

(

H(N)
y2 (ω3, x,L)

E(N)
x2 (ω3, x,L)

)

+ m̂L1(ω3)

(

τ11(d1)
ξ11(d1)

)

+ m̂L1(ω3)m̂L2(ω3)

(

τ21(d1 + d2)
ξ21(d1 + d2)

)

+ · · · + ̂M(ω3)

(

τ2N (L)
ξ2N (L)

)

.

(10)

Here τjn and ξjn contain the terms proportional to coeffi-
cients Dn±

1 j,2 j , j = 1, 2:
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The magnetic field of frequency ω3 emitted from the stack
of nonlinear layers into the surrounding homogeneous
medium has the form:

Ha
y(ω3) = e−iω3t+ikx3x

⎧

⎨

⎩

Fre−ik
(3)
za z, z ≤ 0,

Fteik
(3)
za z, z ≥ L,

(12)

where k(3)
za =

√

k2
3εa − k2

x3 is the longitudinal wave number of
the wave at frequency ω3 in the homogeneous media and the
nonlinear scattering coefficient Fr and Ft are determined by
enforcing the interface boundary conditions at z = 0,L.

Finally, by combining (5), (10), and (12) we obtain the
sought coefficients Fr,t:

Fr =
(
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where
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(
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21;

η̂n = [m̂(ω3)]n, η̂′n = η̂n−1m̂L1(ω3), η̂N = ̂M(ω3).
(14)

It is necessary to note that Fr,t in (13) always remain finite
inspite of the fact that coefficients Dn±

1 j,2 j have singularity

at k±zL j = k(3)
zL j . However, it can be shown that coefficients
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An±
j in (5) contain exactly the same pole as Dn±

1 j,2 j at
Θi1 = Θi2, and their combined contribution is finite at all
frequencies and incidence angles.

Thus the modified TMM approach presented in this
section gives the closed-form expressions for the nonlinear
scattering coefficients of the finite PhC composed of the
binary nonlinear layers. The obtained analytical formula-
tions not only provide a qualitative insight in the formation
of the nonlinear response and the properties of the scattered
fields but also enable fast quantitative analysis of the specific
PhC configurations.

The results of numerical simulations based upon the
analytical solutions obtained here are presented in the next
section to illustrate the effects of structure and materials
parameters on the properties TM waves of combinatorial
frequencies generated by nonlinear PhC in the three-wave
mixing process.

3. Properties and Mechanisms of Nonlinear
Scattering by Finite Periodic Stacks

The analytical solutions for the coefficients Fr,t obtained
in the preceding section have allowed us to examine the
mechanisms of nonlinear scattering in 1D anisotropic non-
linear PhCs. The effects of the constituent layer parameters,
unit cell aspect ratio, and the pump wave frequencies ω1,2

and incidence angles Θi1,2 on the properties of the waves
of combinatorial frequency ω3 = ω1 + ω2 generated in the
three-wave mixing process have been analysed with the aim
of increasing the efficiency of nonlinear processes in the
artificial medium.

To illustrate the features of the frequency mixing in the
1D nonlinear anisotropic PhCs, the characteristics of the
combinatorial frequency waves are discussed here with the
examples of periodic stacks of binary anisotropic dielectric
layers of CdS and ZnO described by the tensors ε̂ and χ̂ (1)
with the following parameters [22]:

CdS: εxx1 = 5.382, εzz1 = 5.457 (α1 = εxx1/εzz1 =
0.986), χxxz1 = 2.1×10−7, χzxx1 = 1.92×10−7, χzzz1 =
3.78× 10−7;

ZnO: εxx2 = 1.4, εzz2 = 2.6(α2 = εxx2/εzz2 = 0.538),
χxxz2 = 2.82×10−8, χzxx2 = 2.58×10−8, χzzz2 = 8.58×
10−8.

The constituent layer thicknesses are d1 = 0.08 mm and
d2 = 0.05 mm, unless specifically defined. Exterior of the
layer stack in Figure 1 is an air with permittivity εa = 1.

3.1. Spectral Efficiency of the Combinatorial Frequency Gen-
eration. PhCs are known to be instrumental in enhancing
the SHG and THG efficiency by choosing the pump wave
frequency close to the PhC band edge. Therefore, it was
interesting to explore whether similar facility could be
exploited for the combinatorial frequencies generated in the
three-wave mixing process. The spectral bands of a periodic
stack of binary linear anisotropic dielectric layers have been
inferred first from the reflectance |R(ω)| of the pump waves.
Figure 2 illustrates |R(ω)| for the TM wave incident at angle
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|F
r,
t|2
×
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.u

.)

|Fr |2|Fr |2

ω1 × 10−13 (s−1)

Figure 2: Reflectance of plane TM wave incident at Θi = 30◦ on
the periodic stack of N = 7 binary dielectric layers of thicknesses
d1 = 0.08 mm and d2 = 0.05 mm.

Θi1 = 30◦ on the periodic stack containing N = 7 unit
cells. The bandgaps, corresponding to |R(ω)| ≈ 1, are clearly
observable in Figure 2, but it is necessary to note that the
respective frequency bands change with the incidence angle
and layers’ parameters.

The field intensities |Fr,t|2 at the combinatorial frequency
ω3 = ω1 + ω2 generated in the same structure are shown in
Figure 3 for variable frequency ω1 of a pump wave incident
at Θi1 = 30◦, while the frequency ω2 = 1.135 × 1013 s−1 of
the other pump wave, incident at Θi2 = 45◦, was fixed at the
passband edge. Comparison of Figures 2 and 3 demonstrates
strong correlation between |Fr,t|2 and |R(ω)|. However, in
contrast to SHG and THG, the band edges have little effect on
the ω3 generation efficiency, namely, |Ft|2 reaches its maxima
inside the transparency bands, and only |Fr|2 exhibits small
kinks at the band edges when frequency ω1 of the first pump
wave varies.

Figure 3 also shows that the peak intensity |Ft|2 grows
with ω1 and the efficiency of the frequency conversion
is higher when the ω1 remains inside the pump wave
transparency bands. This effect can be attributed to the
increase of the pump wave interaction length at the higher
frequencies further assisted by the enhanced mixing effi-
ciency at Wolf-Bragg resonances of Bloch waves in the finite
PhCs. It is noteworthy that (N-1) resonances occur in each
transparency band of the N-cell stack. At these resonances
|R(ω)| = 0 as the stack overall thickness equals an integer
number of Bloch half-waves with the wavenumbers k(ω),
that is, Nk(ω) (d1 + d2) = πq, q = 0,±1,±2, . . ., where k(ω)
is defined by the relation cos k(d1 + d2) = (m11 +m22)/2,m11

and m22 are elements of the unit cell transfer matrix m̂(ω)
defined in connection with (7).

3.2. Effect of the Stack Thickness. As indicated in the preced-
ing section, the number N of stacked unit cells and thickness
of the whole stack may have strong impact on the efficiency
of harmonic generation in nonlinear PhC. This effect has
been predicted by the analytical formulations (13) and
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Figure 3: The field intensity at frequency ω3 = ω1 + ω2 radiated
in the reverse (|Fr|2: red solid line) and forward (|Ft|2: black dash-
dot line) directions of the z-axis at Θi1 = 30◦; Θi2 = 45◦, N = 7,
d1 = 0.08 mm, d2 = 0.05 mm, and ω2 = 1.135× 1013 s−1.

confirmed by the numerical simulations in Figure 4. Indeed,
the field intensity |Fr,t|2 exhibits nonmonotonic depend-
ences on the number N of unit cells in the stack as illustrated
by Figure 4 for two different combinatorial frequencies ω3 =
ω1 + ω2 (the pump wave frequencies ω1 and ω2 are close to
the PhC band edges in both cases). Indeed, Figure 4(a) shows
that |Fr|2 has maxima at N = 32, 57, 89, . . ., whereas |Ft|2
has a higher peak at N = 32 and then follows almost the
same pattern as |Fr|2. However, at the higher frequency ω1,
maxima of |Fr,t|2 occur at N = 108 and N = 127 as shown
in Figure 4(b), where the peak values of |Ft|2 are about two
orders of magnitude higher than those in Figure 4(a) and
about 20 times larger than for |Fr|2. The |Fr,t|2 can also
exhibit giant growth and reach their extrema at Wolf-Bragg
resonances of very high orders in rather thick stacks with
the special combinations of the pump wave frequencies,
incidence angles, and the layer parameters as suggested in
[13].

3.3. Effect of the Pump Wave Incidence Angles on the Frequency
Mixing Efficiency. Harmonic generation in 1D PhCs are
usually analysed at normal incidence of pump wave on
the stacked layers. In the case of combinatorial frequency
generation by a pair of pump waves, incident at different
angles, an additional degree of freedom exists in realising
the phase synchronism and controlling the whole frequency
mixing process. To gain insight in the effect of the incidence
angle on the combinatorial frequency field intensities, |Fr,t|2
have been simulated at variable incidence angle Θi1 and fixed
angle Θi2 of the respective pump waves and different number
of the unit cells in the stack: N = 7, 15, 25.

Examination of |Fr,t(Θi1)|2 in Figure 5 shows that when
the stack is relatively thin (N = 7), both |Fr|2 and |Ft|2
exhibit similar behaviour and smoothly vary with Θi1.
However, additional resonances arise in the thicker stacks,
and the |Fr,t(Θi1)|2 dependencies qualitatively change. Sev-
eral factors are responsible for these alterations. At first,

dissimilar reflectance and transmittance of the individual
pump waves have significant effect on the ratio of the pump
wave amplitudes in the three-wave mixing process. Secondly,
angular variations of the PhC transparency bands become
more noticeable in the thicker stacks. Finally, the higher
order spatial harmonics, which can resonate in thicker stacks,
contribute to the combinatorial frequency generation.

Both the reflectance/transmittance of pump waves and
the phase synchronism in the mixing process are essen-
tially dependent on the permittivities and anisotropy of
the constituent binary layers. Therefore the effect of the
constituent layer parameters has been assessed first to dis-
criminate contributions of the aforementioned mechanisms
to the combinatorial frequency generation. In order to
evaluate the effect of the layer anisotropy, the intensities
|Ft(Θi1)|2 have been simulated at the modified permittivity
ratios εxx1/εzz1 = 2α1, εxx2/εzz2 = 2α2, and εxx1/εzz1 = α1/2,
εxx2/εzz2 = α2/2 and are shown in Figure 6. Comparison
of the plots in Figure 5(b) for εxx1/εzz1 = α1, εxx2/εzz2 =
α2 with the respective plots in Figure 6 for the modified
tensor ε̂ demonstrates that variations of the layer anisotropy
qualitatively alter the efficiency of the combinatorial fre-
quency generation. Namely, we can observe that when the
layer anisotropy deviates from the specified values of α1,2

in either direction, the combinatorial frequency intensity
considerably decreases, from a few times to several orders of
magnitude. Furthermore, additional angular undulations of
the field intensity occur at several incidence angles, Figure 6,
being inflicted by the resonances of the higher order spatial
harmonics.

3.4. Effects of Constituent Layer Thicknesses and Resonance
Enhancement of Frequency Conversion. The stack overall
thickness may have profound influence on the frequency
mixing efficiency. This can be the result of the increased
number of unit cells in the stack as illustrated in Figure 4 or
variations in the thicknesses of the constituent layers. The
earlier studies have demonstrated that the efficiency of
combinatorial frequency generation can significantly vary
with thickness of an individual nonlinear layer at the higher
order Wolf-Bragg resonances [13]. This suggests that the
aspect ratio of the binary layers in the unit cell as well as
the unit cell size can provide independent controls of the
dispersion and the pump wave reflectance/transmittance.
In order to elucidate this effect, the intensities |Fr,t|2 at
frequency ω3 = ω1 + ω2 have been analysed at the variable
thickness of one layer, while thickness of the other was
fixed. Figure 7 displays |Fr,t|2 for a stack with N = 7 unit
cells illuminated by the pump waves incident at Θi1 = 38◦

and Θi2 = 45◦ corresponding to the maximal intensity of
|Fr,t|2 for the reference unit cell with d1 = 0.08 mm and
d2 = 0.05 mm in Figure 5. It can be seen that both |Fr,t|2
grow with thickness of the layers in the period, while |Ft|2
always remains greater than |Fr|2. It is necessary to note
that the growth rate of the |Fr,t|2 versus d1 (Figure 7(b)) is
higher than that versus d2 (Figure 7(a)) for nearly an order
of magnitude. This effect is directly related to the fact that
the components of the nonlinear susceptibility tensor χ̂ in
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Figure 4: Intensities |Fr,t|2 of the field at frequency ω3 = ω1 + ω2 radiated in the reverse (|Fr|2: red solid line) and forward (|Ft|2: black
dash-dot line) directions of the z-axis at Θi1 = 30◦,Θi2 = 45◦, ω2 = 1.135× 1013 s−1 and (a) ω1 = 0.4985× 1013 s−1; (b) ω1 = 1.55× 1013 s−1.
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Figure 5: The field intensity at frequency ω3 = ω1 + ω2 radiated in the reverse (a) and forward (b) directions of the z-axis; pump waves of
frequencies ω1= 0.4585 × 1013 s−1 and ω2 = 1.135× 1013 s−1 are incident at Θi2 = 45◦ and variable angle Θi1.

the first layer are an order of magnitude greater than in the
second one. Therefore when both layers are thin as compared
with the wavelength, |Fr,t|2 are small at the low order Wolf-
Bragg resonances. However, when thickness of one of the
layers increases, this leads to considerable difference in the
|Fr,t|2 undulation frequencies and the growth rates due to
substantial dissimilarity of the constitutive parameters of the
layers in the unit cell. The additional periodic undulations
of |Fr,t|2 can also be attributed to unequal variations of the
reflection coefficients R(ω1,2) of the incident pump waves
which cause the pump wave amplitude and phase disbalance
in the mixing process.

The analytical study of nonlinear scattering by an isolated
anisotropic dielectric slab in [13] has revealed that the
efficiency of the combinatorial frequency generation can be
increased for several orders of magnitude at the high-order

Wolf-Bragg resonances. In particular, in the CdS slab with the
parameters ε̂1 and χ̂1 defined at the beginning of this section,
|Fr,t|2 reaches the global maxima at the thickness d1 =
1.695 mm, frequency ratio ω1/ω2 = 1.911, the pump wave
incidence angles Θi1 = 30◦, Θi2 = 60◦. Similar analysis has
been performed here for the periodic stacks containing N =
7 unit cells with the thick binary layers of CdS and ZnO. The
simulation results in Figure 8 shows that the higher order
Wolf-Bragg resonances in individual layers create additional
modulation of the |Fr,t|2 magnitude and the peak intensity
is reached at d2 = 1.35 mm, 4.05 mm and multiples of
these thicknesses. In contrast to the case of an isolated layer,
there is no full cancellation of the combinatorial frequency
generation at the Wolf-Bragg resonances in the layer 2.
Therefore when d2 changes, |Fr,t|2 vary about the same
median level determined by the layer of thickness d1.
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Figure 6: The field intensity at frequency ω3 = ω1 + ω2 radiated in the forward direction of the z-axis; pump waves of frequencies ω1 =
0.4585× 1013 s−1 and ω2 = 1.135× 1013 s−1 are incident at Θi2 = 45◦ and variable angle Θi1; the constituent binary layers have the modified
anisotropy (a) εxx1/εzz1 = 2α1 and εxx2/εzz2 = 2α2; (b) εxx1/εzz1 = α1/2 and εxx2/εzz2 = α2/2.
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Figure 7: Intensities |Fr,t|2 of the field at frequency ω3 = ω1 + ω2 and the pump waves of frequencies ω1 = 0.4585 × 1013 s−1 and ω2 =
1.135× 1013 s−1; Θi1 = 38◦, Θi2 = 45◦, N = 7; (a) d1 = 0.08 mm; (b) d2 = 0.05 mm.

3.5. Effect of Loss on the Three-Wave Mixing Process in the Peri-
odic Stacks of Binary Layers. The combinatorial frequency
generation in the periodic stacks of binary layers discussed
so far has been based upon the analysis of the lossless
structures. To estimate the effect of dissipation on |Fr,t|2,
the structures with the same parameters as in Figures 2
and 3 have been simulated in the cases of imperfect layers
with the loss tangents tgδxx,zz = 0.01, 0.1. Comparison of
the plots in Figures 9 and 10 with the respective results for
the lossless cases in Figures 2 and 3 shows that dissipation
strongly affects both the reflection coefficients R(ω1,2) of the
pump waves and the intensities of |Fr,t|2 of the generated
combinatorial frequencies. First of all, this effect is caused
by the lower reflection coefficients R(ω1,2) of the pump
waves (cf. Figures 2 and 9). In contrast to the lossless
case in Figure 3, unequal dissipation of the pump waves
in the nonlinear layers of the periodic structure entails an

additional disbalance in the three-wave mixing process which
further reduces the efficiency of the combinatorial frequency
generation, as seen in Figure 10. Moreover, in the case of
higher losses (tgδxx,zz = 0.1, Figure 10(b)), the combined
effect of the pump wave dissipation and attenuation of the
mixing products passing through the stack causes dramatic
reduction of the |Ft|2 peak values, which become nearly an
order of magnitude smaller than |Fr|2.

The effect of loss on the intensity |Fr,t(ω3)|2 of the
combinatorial frequency generation in the stack of thick
layers with variable thickness is illustrated in Figure 11 for
the structure with the same parameters as in Figure 8.
Comparison of Figures 8 and 11 shows that in the presence
of loss, both the median and the first peak levels of the
|Fr,t(ω3)|2 decrease for about 3 times for |Fr|2 and 5 times
for |Ft|2. When thickness of the second layer increases the
higher order resonance peaks of |Ft|2 progressively decay
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Figure 8: Intensities |Fr,t|2 of the field at frequency ω3 = ω1 + ω2 radiated from the stack of the layers in the reverse (a) and forward (b)
directions of the z-axis at N = 7, d1 = 1.695 mm, Θi1 = 30◦,Θi2 = 60◦ and ω1 = 4.982× 1013 s−1, ω2 = 2.607× 1013 s−1.
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Figure 9: Reflectance of TM wave incident at Θi = 30◦ on the periodic stack containing N = 7 unit cells with the dielectric layers of
thicknesses d1 = 0.08 mm, d2 = 0.05 mm and (a) tgδxx,zz = 0.01, (b) tgδxx , zz = 0.1.

faster than the peak values of |Fr|2 as evidenced by Figure 11.
These results show that the strong enhancement of the com-
binatorial frequency generation efficiency at the high order
Wolf-Bragg resonances is feasible at the practical level of
dissipation loss.

4. Conclusions

The properties and mechanisms of the combinatorial fre-
quency generation by periodic stacks of binary nonlinear
anisotropic dielectric layers have been analysed. The closed-
form solutions for the nonlinear scattering coefficients
have been obtained in the approximation of the three-
wave mixing process in the presence of weak polarisation
nonlinearity. The effects of the structure parameters and the

incident pump wave characteristics on the efficiency of the
combinatorial frequency generation have been investigated
in detail. The performed parametric study has shown that
in contrast to SHG and THG in the PhCs, the spectral
band edges of the binary layer stacks do not improve
the combinatorial frequency generation efficiency for the
refracted waves. Alternatively, it is shown that the frequency
conversion efficiency can be significantly enhanced at Wolf-
Bragg resonances occurring at the appropriate combinations
of the pump wave frequencies, incidence angles, and the
layers’ constitutive parameters. The effects of the individual
parameters on the frequency mixing efficiency have been
discussed in detail for the lossless and lossy constitutive
layers in the periodic stacks. It has been demonstrated
that the combinatorial frequency generation efficiency can
be dramatically increased at the higher order Wolf-Bragg



10 Advances in OptoElectronics

|Ft|2

|Fr |2

0 0.5 1.5 2 3
0

0.05

0.1

0.15

0.2

1 2.5

|F
r,
t|2
×

10
10

(a
.u

.)

ω1 × 10−13 (s−1)

(a)

0 0.5 1.5 2 31 2.5

ω1 × 10−13 (s−1)

|Ft|2

|Fr |2

0

1

2

3

4

5

|F
r,
t|2
×

10
14

(a
.u

.)

(b)

Figure 10: The field intensity at frequency ω3 = ω1 + ω2 radiated in the reverse (|Fr|2: red solid line) and forward (|Ft|2: black dash-dot
line) directions of the z-axis at Θi1 = 30◦;Θi2 = 45◦, N = 7, d1 = 0.08 mm, d2 = 0.05 mm, ω2 = 1.135× 1013 s−1 and (a) tgδxx,zz = 0.01, (b)
tgδxx,zz = 0.1.
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Figure 11: Intensities |Fr,t|2 of the field at frequency ω3 = ω1 + ω2 radiated from the periodic stack with N = 7 unit cells toward the reverse
(a) and forward (b) directions of the z-axis at Θi1 = 30◦,Θi2 = 60◦ and ω1 = 4.982× 1013 s−1, ω2 = 2.607× 1013 s−1, tgδxx,zz = 0.001.

resonances in the stacks with thick constitutive layers. The
performed analysis provides insight in the main features
of the combinatorial frequency generation by the periodic
stacks of binary nonlinear anisotropic dielectric layers.
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