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We investigate the problem of adaptive mean square synchronization for nonlinear delayed coupled complex networks with
stochastic perturbation. Based on the LaSalle invariance principle and the properties of the Weiner process, the controller and
adaptive laws are designed to ensure achieving stochastic synchronization and topology identification of complex networks.
Sufficient conditions are given to ensure the complex networks to be mean square synchronization. Furthermore, numerical
simulations are also given to demonstrate the effectiveness of the proposed scheme.

1. Introduction

As is known to all, complex networks are shown to exist
ubiquitously in the nature world [1]. Among various behav-
iors of complex networks, synchronization is a significant
and interesting phenomenon. It has been demonstrated that
many real-world problems have close relationships with
synchronization [2–4].

Recently, as signals transmitted between subsystems of
complex networks are unavoidably subjected to stochastic
perturbations from the environment, which may cause infor-
mation contained in these signals to be lost, stochastic model
has played an important role inmany scientific and engineer-
ing applications and stochastic systems have received increas-
ing attention. Many fundamental results about stochastic
systems have been studied [5–14]. Moreover, in some cir-
cumstances, this simplification that networks are coupled
linearly does not match satisfactorily the peculiarities of real
networks. In many practical problems, it often happens that
the states of the system cannot be observed directly. Instead,
we can only observe the states of the system with nonlinear
coupled, which means that the coupling scheme is nonlinear
[15–20]. In addition, in practical situations, there exists much

uncertain information in complex networks, such as the
topological structures, for example, genomic coexpression
networks, energy network, biological neural networks, and
so on. The accurate topological structures of these complex
networks are often difficult to know in the real world. So,
identification of the topology is also an important issue in the
research of the complex networks. In [21–27], a great many
results have been reported about parameter identification for
complex dynamical networks.

To the best of our knowledge, the topological identifi-
cation of complex networks with multidelayed coupling and
nonlinear stochastic effects are seldom discussed. Motivated
by the previous discussions, the aim of this paper is to discuss
topological identification of a general nonlinearmultidelayed
coupled complex dynamical network with stochastic effects.
We derive some criteria and design controller which ensure
topology identification of stochastic nonlinear delayed cou-
pled complex networks.

The rest of this work is organized as follows. Section 2
gives the problem formulation. Section 3 gives some theoret-
ical analyses. Section 4 gives illustrative example. Section 5
gives the conclusions of the paper.
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2. Problem Formulation

The nonlinear delayed coupled complex networks can be
described by stochastic effects:

𝑑𝑥
𝑖
(𝑡) = [

[
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(𝑡)) +
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2
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]
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1
, 𝑥
2
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)
𝑇

∈ 𝑅
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𝑛
→ 𝑅
𝑛 standing
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strength. If there exists a link from node 𝑖 to 𝑗 (𝑖 ̸= 𝑗), then
𝑎
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𝑛×𝑚 is the noise intensity function, 𝜔 are arrays of

appropriate dimensional Brownian motions, and 𝐸[𝑑𝜔] = 0,
𝐸{[𝑑𝜔]

2
} = 𝑑𝑡, 𝐸[⋅] is the mathematical expectation.

Remark 1. In fact, the stochastically coupled complex net-
works model considered in this paper could be more general.
The stochastic coupling term is introduced tomodel the array
of coupled complex networks, which can not only reflect
more realistic dynamical behaviors of the networks, but also
make it possible to simulate more complicate dynamical
behaviors. For example, the nonlinear stochastic coupling can
be the general stochastic coupling or the unknown general
stochastic coupling. Moreover, the coupled system (1) itself
can be a general complex network.

Assumption 2. There exists nonnegative constant 𝜇, such that
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𝑖
(𝑡), and Tr(⋅) denotes the trace of matrix.

Assumption 3. Assume that 𝑓 is Lipschitz with respect to its
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𝑖
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Consequently, one can consider
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Assumption 4. The nonlinear function ℎ(⋅) satisfies 𝛾
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Lemma 5 (see [28]). Given any vectors 𝑥, 𝑦 of appropriate
dimensions and a positive definite matrix 𝑃 > 0 with
compatible dimensions, then the following inequality holds:

2𝑥
𝑇
𝑦 ≤ 𝑥

𝑇
𝑃𝑦 + 𝑦

𝑇
𝑃
−1
𝑦. (5)

Remark 6. For studying the convergence of random process,
instead of the standard Euclidian norm, the mean square
norm, 𝐿2 norm, is used which is defined as

‖𝑒 (𝑡)‖ = (𝐸 [𝑒
𝑇
(𝑡) 𝑒 (𝑡)])

1/2

. (6)

3. Synchronization Criterion

In order to achieve topology identification and synchroniza-
tion, if system (1) is considered as the drive system with state
variable denoted by 𝑥

𝑖
(𝑡), we construct a response system as

follows:
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Definition 7. The systems (1) and (7) are said to achieve
stochastic synchronization in the mean square sense if
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where 𝑒𝑖(𝑡) = (𝑒
1
(𝑡), 𝑒
2
(𝑡), . . . , 𝑒

𝑛
(𝑡))
𝑇, ‖ ⋅ ‖ stands for 𝐿2 norm.

Let the synchronization errors 𝑒𝑖(𝑡) = 𝑦
𝑖
(𝑡) − 𝑥

𝑖
(𝑡); then
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Figure 1: Synchronization errors 𝑒𝑖(𝑡) and 𝐸(𝑡) of network.
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) 𝑑𝜔 (𝑡) , (9)
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can derive the following result.
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dynamical networks (7) synchronizes to the complex dynamical
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strengths:
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Figure 2: Identification of network structure (some elements of matrix 𝐴 = (𝑎
𝑖𝑗
)
4×4

are displayed).
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𝛾
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2
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2

2
+ 2 + 2𝛽𝛾

2

2
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By Itô’s differential rule, the stochastic derivative of 𝑉

along trajectories of error systems (9) can be obtained as
follows:
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+
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+

𝑁

∑

𝑖=1

1

2
Tr [𝜑𝑇 (𝑡, 𝑒𝑖 (𝑡)) 𝜑 (𝑡, 𝑒

𝑖
(𝑡))]
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=

𝑁

∑

𝑖=1

(𝑒
𝑖
(𝑡))
𝑇
[

[

(𝑓 (𝑦
𝑖
(𝑡)) − 𝑓 (𝑥

𝑖
(𝑡)))

+

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
(ℎ (𝑦
𝑗
(𝑡)) + ℎ (𝑦

𝑖
(𝑡)))

+

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
(ℎ (𝑦
𝑗
(𝑡 − 𝜏
1
))

+ ℎ (𝑦
𝑖
(𝑡 − 𝜏
2
)))

− 𝑟
𝑖
(𝑡) 𝑒
𝑖
(𝑡)

−

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
(ℎ (𝑥
𝑗
(𝑡)) + ℎ (𝑥

𝑖
(𝑡)))

−

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
(ℎ (𝑥
𝑗
(𝑡 − 𝜏
1
))

+ ℎ (𝑥
𝑖
(𝑡 − 𝜏
2
))) ]

]

+

𝑁

∑

𝑖=1

(𝑟
𝑖
(𝑡) − 𝑘) (𝑒

𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

[(𝑒
𝑖 (𝑡))
𝑇
𝑒
𝑖 (𝑡) − (𝑒

𝑖
(𝑡 − 𝜏
1
))
𝑇
𝑒
𝑖
(𝑡 − 𝜏
1
)]

+

𝑁

∑

𝑖=1

[(𝑒
𝑖 (𝑡))
𝑇
𝑒
𝑖 (𝑡) − (𝑒

𝑖
(𝑡 − 𝜏
2
))
𝑇
𝑒
𝑖
(𝑡 − 𝜏
2
)]

+

𝑁

∑

𝑖=1

1

2
Tr [𝜑𝑇 (𝑡, 𝑒𝑖 (𝑡)) 𝜑 (𝑡, 𝑒

𝑖
(𝑡))]

≤

𝑁

∑

𝑖=1

(𝑒
𝑖
(𝑡))
𝑇
[

[

𝑀(𝑥
𝑖
(𝑡)) 𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
(𝛾
2
𝑒
𝑗
(𝑡) + 𝛾

2
𝑒
𝑖
(𝑡))

− 𝑟
𝑖
(𝑡) 𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
(𝛾
2
𝑒
𝑗
(𝑡 − 𝜏
1
)

+ 𝛾
2
𝑒
𝑖
(𝑡 − 𝜏
2
)) ]

]

+

𝑁

∑

𝑖=1

(𝑟
𝑖
(𝑡) − 𝑘) (𝑒

𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

[(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡) − (𝑒

𝑖
(𝑡 − 𝜏
1
))
𝑇

𝑒
𝑖
(𝑡 − 𝜏
1
)]

+

𝑁

∑

𝑖=1

[(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡) − (𝑒

𝑖
(𝑡 − 𝜏
2
))
𝑇

𝑒
𝑖
(𝑡 − 𝜏
2
)]

+

𝑁

∑

𝑖=1

1

2
Tr [𝜑𝑇 (𝑡, 𝑒𝑖 (𝑡)) 𝜑 (𝑡, 𝑒

𝑖
(𝑡))]

=

𝑁

∑

𝑖=1

(𝑒
𝑖
(𝑡))
𝑇

𝑀(𝑥
𝑖
(𝑡)) 𝑒
𝑖
(𝑡) −

𝑁

∑

𝑖=1

𝑘(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

(𝑒
𝑖
(𝑡))
𝑇
[

[

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
(𝛾
2
𝑒
𝑗
(𝑡) + 𝛾

2
𝑒
𝑖
(𝑡))

+

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
(𝛾
2
𝑒
𝑗
(𝑡 − 𝜏
1
)

+ 𝛾
2
𝑒
𝑖
(𝑡 − 𝜏
2
)) ]

]

+

𝑁

∑

𝑖=1

[(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡) − (𝑒

𝑖
(𝑡 − 𝜏
1
))
𝑇

𝑒
𝑖
(𝑡 − 𝜏
1
)]

+

𝑁

∑

𝑖=1

[(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡) − (𝑒

𝑖
(𝑡 − 𝜏
2
))
𝑇

𝑒
𝑖
(𝑡 − 𝜏
2
)]

+

𝑁

∑

𝑖=1

1

2
Tr [𝜑𝑇 (𝑡, 𝑒𝑖 (𝑡)) 𝜑 (𝑡, 𝑒

𝑖
(𝑡))]

=

𝑁

∑

𝑖=1

(𝑒
𝑖
(𝑡))
𝑇

𝑀(𝑥
𝑖
(𝑡)) 𝑒
𝑖
(𝑡) −

𝑁

∑

𝑖=1

𝑘(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

(𝑒
𝑖
(𝑡))
𝑇

𝑎
𝑖𝑗
𝛾
2
𝑒
𝑗
(𝑡)

+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

(𝑒
𝑖
(𝑡))
𝑇

𝑎
𝑖𝑗
𝛾
2
𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

(𝑒
𝑖
(𝑡))
𝑇

𝑏
𝑖𝑗
𝛾
2
𝑒
𝑗
(𝑡 − 𝜏
1
)

+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

(𝑒
𝑖
(𝑡))
𝑇

𝑏
𝑖𝑗
𝛾
2
𝑒
𝑖
(𝑡 − 𝜏
2
)

+

𝑁

∑

𝑖=1

[(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡) − (𝑒

𝑖
(𝑡 − 𝜏
1
))
𝑇

𝑒
𝑖
(𝑡 − 𝜏
1
)]

+

𝑁

∑

𝑖=1

[(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡) − (𝑒

𝑖
(𝑡 − 𝜏
2
))
𝑇

𝑒
𝑖
(𝑡 − 𝜏
2
)]

+

𝑁

∑

𝑖=1

1

2
Tr [𝜑𝑇 (𝑡, 𝑒𝑖 (𝑡)) 𝜑 (𝑡, 𝑒

𝑖
(𝑡))]

≤

𝑁

∑

𝑖=1

(𝑒
𝑖
(𝑡))
𝑇

𝑀(𝑥
𝑖
(𝑡)) 𝑒
𝑖
(𝑡) −

𝑁

∑

𝑖=1

𝑘(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

(𝑒
𝑖
(𝑡))
𝑇

𝑎
𝑖𝑗
𝛾
2
𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝛾
2

2
𝑎
2

𝑖𝑗
(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡)
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+

𝑁

∑

𝑗=1

(𝑒
𝑗
(𝑡))
𝑇

𝑒
𝑗
(𝑡)

+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝛾
2

2
𝑏
2

𝑖𝑗
(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑗=1

(𝑒
𝑗
(𝑡 − 𝜏
1
))
𝑇

𝑒
𝑗
(𝑡 − 𝜏
1
)

+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝛾
2

2
𝑏
2

𝑖𝑗
(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑗=1

(𝑒
𝑗
(𝑡 − 𝜏
2
))
𝑇

𝑒
𝑗
(𝑡 − 𝜏
2
)

+

𝑁

∑

𝑖=1

[(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡) − (𝑒

𝑖
(𝑡 − 𝜏
1
))
𝑇

𝑒
𝑖
(𝑡 − 𝜏
1
)]

+

𝑁

∑

𝑖=1

[(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡) − (𝑒

𝑖
(𝑡 − 𝜏
2
))
𝑇

𝑒
𝑖
(𝑡 − 𝜏
2
)]

+

𝑁

∑

𝑖=1

1

2
Tr [𝜑𝑇 (𝑡, 𝑒𝑖 (𝑡)) 𝜑 (𝑡, 𝑒

𝑖
(𝑡))]

=

𝑁

∑

𝑖=1

(𝑒
𝑖
(𝑡))
𝑇

𝑀(𝑥
𝑖
(𝑡)) 𝑒
𝑖
(𝑡) −

𝑁

∑

𝑖=1

𝑘(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

(𝑒
𝑖
(𝑡))
𝑇

𝑎
𝑖𝑗
𝛾
2
𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝛾
2

2
𝑎
2

𝑖𝑗
(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑗=1

(𝑒
𝑗
(𝑡))
𝑇

𝑒
𝑗
(𝑡)

+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝛾
2

2
𝑏
2

𝑖𝑗
(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝛾
2

2
𝑏
2

𝑖𝑗
(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡) +

𝑁

∑

𝑖=1

(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

1

2
Tr [𝜑𝑇 (𝑡, 𝑒𝑖 (𝑡)) 𝜑 (𝑡, 𝑒

𝑖
(𝑡))]

≤

𝑁

∑

𝑖=1

𝜆(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡) −

𝑁

∑

𝑖=1

𝑘(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

(𝑒
𝑖
(𝑡))
𝑇

𝛼
1
𝛾
2
𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

(𝑒
𝑖
(𝑡))
𝑇

𝛼
2
𝛾
2

2
𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑗=1

(𝑒
𝑗
(𝑡))
𝑇

𝑒
𝑗
(𝑡)

+ 2

𝑁

∑

𝑖=1

(𝑒
𝑖
(𝑡))
𝑇

𝛽𝛾
2

2
𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

1

2
Tr [𝜑𝑇 (𝑡, 𝑒𝑖 (𝑡)) 𝜑 (𝑡, 𝑒

𝑖
(𝑡))]

= − [𝑘 − 𝜆 − 𝛼
1
𝛾
2
− 𝛼
2
𝛾
2

2
− 3 − 2𝛽𝛾

2

2
]

×

𝑁

∑

𝑖=1

(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

1

2
Tr [𝜑𝑇 (𝑡, 𝑒𝑖 (𝑡)) 𝜑 (𝑡, 𝑒

𝑖
(𝑡))]

≤ − [𝑘 − 𝜆 − 𝛼
1
𝛾
2
− 𝛼
2
𝛾
2

2
− 3 − 2𝛽𝛾

2

2
]

×

𝑁

∑

𝑖=1

(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

𝜇(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡)

= − [𝑘 − 𝜆 − 𝛼
1
𝛾
2
− 𝛼
2
𝛾
2

2
− 3 − 2𝛽𝛾

2

2
− 𝜇]

×

𝑁

∑

𝑖=1

(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡) ≤ −

𝑁

∑

𝑖=1

(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡) .

(16)

Based on the LaSalle invariance principle of stochastic differ-
ential equation,whichwas developed in [29], we have 𝑒𝑖(𝑡) →

0, which in turn illustrates that 𝐸‖𝑒𝑖(𝑡)‖2 → 0, and at the
same time 𝑟

𝑖
(𝑡) → 𝑘, 𝑎

𝑖𝑗
(𝑡) → 𝑎

𝑖𝑗
and �̂�
𝑖𝑗
(𝑡) → 𝑏

𝑖𝑗
. This

completes the proof.

If we let the coupling matrix 𝐴 = 0 or 𝐵 = 0, we will get
two simple conditions:

𝑑𝑥
𝑖
(𝑡)

= [

[

𝑓 (𝑥
𝑖
(𝑡))+

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
(ℎ (𝑥
𝑗
(𝑡 − 𝜏
1
))+ℎ (𝑥

𝑖
(𝑡 − 𝜏
2
)))]

]

𝑑𝑡

+ 𝜑 (𝑡, 𝑥
𝑖
) 𝑑𝜔 (𝑡) ,

(17)
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𝑑𝑥
𝑖
(𝑡)

= [

[

𝑓 (𝑥
𝑖
(𝑡)) +

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
(ℎ (𝑥
𝑗
(𝑡)) + ℎ (𝑥

𝑖
(𝑡)))]

]

𝑑𝑡

+ 𝜑 (𝑡, 𝑥
𝑖
) 𝑑𝜔 (𝑡) .

(18)

For the simple cases, we have the following corollaries.

Corollary 9. Under Assumptions 2–4, the drive system (17)
and the response system (19) will achieve synchronization
under the adaptive controllers (10)-(11) and the adaptive gains
(13):

𝑑𝑦
𝑖
(𝑡)

= [

[

𝑓 (𝑦
𝑖
(𝑡)) +

𝑁

∑

𝑗=1

�̂�
𝑖𝑗
(ℎ (𝑦
𝑗
(𝑡 − 𝜏
1
)) + ℎ (𝑦

𝑖
(𝑡 − 𝜏
2
)))

+ 𝑢
𝑖
(𝑡) ]

]

𝑑𝑡 + 𝜑 (𝑡, 𝑦
𝑖
(𝑡)) 𝑑𝜔 (𝑡) .

(19)

Corollary 10. Under Assumptions 2–4, the drive system (18)
and the response system (20) will achieve synchronization
under the adaptive controllers (10)-(11) and the adaptive gains
(12):

𝑑𝑦
𝑖
(𝑡)

= [

[

𝑓 (𝑦
𝑖
(𝑡)) +

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
(ℎ (𝑦
𝑗
(𝑡)) + ℎ (𝑦

𝑖
(𝑡))) + 𝑢

𝑖
(𝑡)]

]

𝑑𝑡

+ 𝜑 (𝑡, 𝑦
𝑖
(𝑡)) 𝑑𝜔 (𝑡) .

(20)

The proofs of Corollaries 9 and 10 follow directly from
Theorem 8 and be omitted here.

4. Illustrative Example

In this section, numerical simulations are presented to verify
the theoretical result obtained in previous sections. We
consider chaotic Lü oscillators as nodes of the uncoupled
network. A single Lü oscillator is described by [30]

�̇�
1
= 𝑎 (𝑥

2
− 𝑥
1
) ,

�̇�
2
= 𝑐𝑥
2
− 𝑥
1
𝑥
3
,

�̇�
3
= −𝑏𝑥

3
+ 𝑥
1
𝑥
2
,

(21)

where 𝑎 = 36, 𝑐 = 20, 𝑏 = 3.
We rewrite (21) as follows:

�̇� = 𝑀 (𝑥
1
) 𝑥, (22)

where 𝑥 = (𝑥
1
, 𝑥
2
, 𝑥
3
)
𝑇, and

𝑀(𝑥
1
) = (

−𝑎 𝑎 0

0 𝑐 −𝑥
1

0 𝑥
1

−𝑏

) . (23)

According to Section 3, we show that the network with
four nodes described by

𝑑𝑥
𝑖
(𝑡)

= [

[

𝑓 (𝑥
𝑖
(𝑡)) +

4

∑

𝑗=1

𝑎
𝑖𝑗
(ℎ (𝑥
𝑗
(𝑡)) + ℎ (𝑥

𝑖
(𝑡)))

+

4

∑

𝑗=1

𝑏
𝑖𝑗
(ℎ (𝑥
𝑗
(𝑡 − 𝜏
1
)) + ℎ (𝑥

𝑖
(𝑡 − 𝜏
2
)))]

]

𝑑𝑡

+ 𝜑 (𝑡, 𝑥
𝑖
(𝑡)) 𝑑𝜔 (𝑡) ,

𝑑𝑦
𝑖
(𝑡)

= [

[

𝑓 (𝑦
𝑖
(𝑡)) +

4

∑

𝑗=1

𝑎
𝑖𝑗
(ℎ (𝑦
𝑗
(𝑡)) + ℎ (𝑦

𝑖
(𝑡)))

+

4

∑

𝑗=1

�̂�
𝑖𝑗
(ℎ (𝑦
𝑗
(𝑡 − 𝜏
1
)) + ℎ (𝑦

𝑖
(𝑡 − 𝜏
2
)))

−𝑟
𝑖
(𝑡) 𝑒
𝑖
(𝑡) ]

]

𝑑𝑡 + 𝜑 (𝑡, 𝑦
𝑖
(𝑡)) 𝑑𝜔 (𝑡) ,

(24)

where

̇𝑟
𝑖
(𝑡) = 𝜃

𝑖
(𝑒
𝑖
(𝑡))
𝑇

𝑒
𝑖
(𝑡) ,

̇̂𝑎
𝑖𝑗
= −(𝑒

𝑖
(𝑡))
𝑇

(ℎ (𝑦
𝑗
(𝑡)) + ℎ (𝑦

𝑖
(𝑡))) ,

̇̂
𝑏
𝑖𝑗
= −(𝑒

𝑖
(𝑡))
𝑇

(ℎ (𝑦
𝑗
(𝑡 − 𝜏
1
)) + ℎ (𝑦

𝑖
(𝑡 − 𝜏
2
))) ,

1 ≤ 𝑖, 𝑗 ≤ 4.

(25)

In numerical simulation, let

𝐴 = (

6 −2 −3 −1

−2 2 1 −1

−3 1 −2 4

−1 −1 4 −2

) ,
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𝐵 = (

−3 3 −1 1

3 −6 1 2

−1 1 −1 1

1 2 1 −4

) ,

(26)

the nonlinear function ℎ(𝑧) = 𝑧 + sin 𝑧 which satisfies 𝑦
1
≤

(ℎ(𝑧
1
) − ℎ(𝑧

2
))/(𝑧
1
− 𝑧
2
) ≤ 𝑦

2
with 𝑦

1
= 0, 𝑦

2
= 2 the

parameters are given as follows: 𝜃
𝑖
= 1, 𝜏

1
= 0.1, 𝜏

2
= 0.15,

the initial values are 𝑟
𝑖
(0) = 𝑖, 𝑎

𝑖𝑗
(0) = 1, �̂�

𝑖𝑗
(0) = 1, 𝑥𝑖(0) =

(1 + 𝑖, 1 + 𝑖, 𝑖)
𝑇, 𝑦𝑖(0) = (−1 + 𝑖, 1 + 𝑖, 𝑖)

𝑇. The noise intensity
are chosen as 𝜑(𝑡, 𝑥

𝑖
(𝑡)) = 0.01𝑥

𝑖
(𝑡), 𝜑(𝑡, 𝑦𝑖(𝑡)) = 0.01𝑦

𝑖
(𝑡).

Figure 1 shows the variance of the synchronization errors.We
introduce the quantity (𝑡) = √∑

𝑁

𝑖=1
‖𝑦𝑖(𝑡) − 𝑥𝑖(𝑡)‖

2
/𝑁, which

is used tomeasure the quality of the control process. It is obvi-
ous that when 𝐸(𝑡) no longer increases, two networks achieve
synchronization. Figures 2 and 3 show the identification of
the network structure. It is very clear that the identification
of the network structure is very successful. All numerical
simulations illustrate the effectiveness of Theorem 8.

Numerical simulations of Corollaries 9 and 10 can be
illustrated in a similar way as shown in Theorem 8. Thus, we
leave out numerical simulations here.

5. Conclusion

We have proposed an adaptive feedback control approach to
identify the uncertain network topological structure of the
nonlinear coupled stochastic complex dynamical networks
with two differently delayed coupling. Several useful identi-
fication criteria have been attained. Numerical simulations
have been given to verify the effectiveness of the proposed
adaptive identification schemes.
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