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We find and analyze a generalized analytical solution for nonlinear wave propagation in waveguide couplers with opposite signs of
the linear refractive index, nonzero phase mismatch between the channels, and arbitrary nonlinear coefficients.

1. Introduction

By leveraging the capabilities of photonics (speed) and
of electronics (compactness) it may be possible to realize
high-performance integrated optoelectronic systems for high
bandwidth signal processing or sensing applications. Such
integration requires the availability of ultracompact, ultra-
fast, low-loss components that can be efficiently coupled
to the rest of a network [1–3]. While some of the basic
functionalities are presently available in the form of indi-
vidual components, their integration is still challenging for
a number of reasons, including their size, speed, and power
consumption. Therefore, the development of optoplasmonic
devices that could be integrated on a single chip and
could bridge existing gaps in optoelectronic integration is of
paramount importance.

One of the major requirements for the realization of
efficiently performing optoelectronics circuits is the ability
to buffer optical signals so that the data traffic jams are
prevented. An optical buffer is a device that slows down
(or even stops) light to store it for a certain period of
time. Although several approaches to the realization of such
structures have been demonstrated, a majority of slow light
schemes based on various waveguide geometries are not
easily scalable to a chip-size footprint [1].

It is well known that optical bistability, a phenomenon in
which two different values of output power are possible for
the same input power, finds numerous applications in optical

memory and storage devices. Therefore, realized in compact
configuration, it can provide a viable solution for all-optical
on-chip storage applications.

Metamaterials (MMs) were shown to enable subwave-
length waveguides and cavities—a property that funda-
mentally differentiates them from conventional-materials-
based light wave components [4, 5]. Therefore, in this
work, we investigate the most general solution for wave
interactions in positive-negative index MM-based nonlinear
optical couplers (shown in Figure 1). It should be men-
tioned that nonlinear optical couplers made of conventional
positive index materials (PIMs) are not bistable (unless
some additional components providing optical feedback are
introduced) [6]. However, in MM-based couplers, bistability
results from the effective feedback mechanism enabled by
the opposing directionality of phase and energy velocities in
negative index materials (NIMs). Moreover, such a coupler
supports gap solitons—a feature commonly associated with
periodic structures [7, 8]. These unusual properties of
MM directional couplers form a basis for the development
of all-optical processing applications, including wavelength
converters, flip-flops, and mirrorless lasers.

Our previous studies focused on particular cases of
phase-matched symmetric couplers with identical nonlinear
properties and on asymmetric couplers with only one
nonlinear channel. In this work, we found a generalized
analytical solution in the presence of phase mismatch and for
arbitrary values of nonlinear coefficients of both channels.
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Figure 1: Positive-negative index nonlinear optical coupler.

The availability of such a solution enables novel optimized
designs of such couplers.

2. Theoretical Model

As it has been mentioned above, in this work, the case
of continuous wave propagation in a directional PIM-NIM
coupler with third-order Kerr nonlinearity [9] is considered.
From Maxwell’s equations in a slowly varying envelope
approximation the following system of differential equations,
which can describe continuous wave propagation in such
optical system, can be derived [9, 10]:

iσ1
∂a1

∂z
+ κ12a2 exp(−iδz) + γ1|a1|2a1 = 0,

iσ2
∂a2

∂z
+ κ21a1 exp(iδz) + γ2|a2|2a2 = 0,

(1)

here a1 and a2 are the complex amplitudes of the waves in
the PIM and NIM channels, respectively, κ12 and κ21 are
coupling coefficients, γ1 and γ2 are normalized nonlinearity
coefficients, δ = β1 − β2 is the mismatch between the
propagation constants in the channels, and σi is the sign of
the refractive index. In the case of the PIM-NIM coupler
σ1 > 0, σ2 < 0. It is worth noting that the magnitude of the
coupling coefficients depends on the geometrical parameters,
such as channel width and separation distance between the
channels, as well as on the channels dielectric properties.
In a particular situation, it may be difficult to fabricate two
identical waveguides with different signs of the refraction
indexes, but, without losing any generalization of the ana-
lytical solution, it can be assumed that coupling coefficients
of both channels are equal.

Let us represent complex amplitudes a1 and a2 in terms
of real amplitudes Ai and phases φi:

a1 = A1 exp
(
iφ1
)
, a2 = A2 exp

(
iφ2
)
. (2)

Substituting (2) into (1) and separating the real and im-
aginary parts lead to the following system of equations:

∂A1

∂z
= κ12A2 sin(θ),

∂A2

∂z
= κ21A1 sin(θ),

∂θ

∂z
=
(
κ12

A2

A1
+ κ21

A1

A2

)
cos(θ) + γ1A

2
1 + γ2A

2
2 + δ,

(3)

here θ = φ1 − φ2 + δz.

If the light is initially launched into channel 1, then the
boundary conditions take the following form:

A1(0) = A0, A2(L) = 0, (4)

where A0 is the amplitude of the input signal and L is the
length of the coupler. Assuming that coupling coefficients
κ12 = κ21 = κ, we can rewrite (3) as follows:

∂A1

∂z
= κA2 sin(θ),

∂A2

∂z
= κA1 sin(θ),

∂θ

∂z
= κ

(
A2

A1
+
A1

A2

)
cos(θ) + γ1A

2
1 + γ2A

2
2 + δ.

(5)

Next, we found that (5) have two integrals of motion:

P1 − P2 = C,

Γ = A2
2

[(
γ2 − γ1

)
A2

2 + 2γ1A
2
1 + 2δ

]
+ 4κA1A2 cos(θ),

(6)

where P1 = A2
1 and P2 = A2

2. From the boundary conditions
(4) one can conclude that C = A2

1(L) and Γ = 0. From these
integrals of motion, we can derive an expression for cos(θ):

cos(θ) = −A2
2

((
γ1 + γ2

)
A2

2 + 2
(
δ + γ1C

))

4κA1A2
. (7)

Substituting (7) into the second equation of (5), we derive an
equation for power evolution in the second channel:

(
∂P2

∂z

)2

= 4κ2P1P2 − P2
2

(
γ̃P2 + δ̃

)
, (8)

where γ̃ = (γ1 +γ2)/2 and δ̃ = δ+γ1C. Using the first integral
of motion, we can rewrite this equation in terms of P2:

(
∂P2

∂z

)2

= −γ̃P4
2 − 2γ̃δ̃P3

2 +
(

4κ2 − δ̃
)
P2

2 + 4κ2CP2. (9)

The solutions for P1 and P2 are found in terms of the
Weierstrass elliptic function ℘(z; g2, g3):

P1(z) =C +
κ2C

(
℘
(
L− z; g2, g3

)− (1/12)
(

4κ2 − δ̃2
)) ,

P2(z) = κ2C
(
℘
(
L− z; g2, g3

)− (1/12)
(

4κ2 − δ̃2
)) .

(10)

The invariants g2 and g3 are defined as follows:

g2 = 2γ̃δ̃κ2C +

(
4κ2 − δ̃

)2

12
,

g3 = −
γ̃δ̃κ2C

(
4κ2 − δ̃

)

6
−
(

4κ2 − δ̃

6

)3

+ γ̃κ4C2.

(11)

The parameter C can be found by solving the following tran-
scendental equation:

A2
0 = C +

κ2C
(
℘
(
L; g2, g3

)− (1/12)
(

4κ2 − δ̃2
)) . (12)
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Since this is the most general solution for PIM-NIM cou-
plers, first, we test it against previously considered particular
cases [7, 8, 10]: (i) a linear phase-matched coupler with
γ1 = γ2 = δ = 0, (ii) a nonlinear phase-matched coupler
with γ1 = γ2 = γ, δ = 0, and (iii) phase-matched asymmetric
couplers. In the first case, the discriminant of the Weierstrass
function Δ = g3

2 − 27g2
3 = 0. Therefore, in this case we can

rewrite (10) in terms of hyperbolic functions. So we get the
following solution for the linear case of a PIM-NIM coupler
[9]:

P1(z) = C
(

1 + sinh (κ(L− z))2
)

,

P1(z) = C sinh (κ(L− z))2.
(13)

In the second case, by expanding the Weierstrass function
℘(z; g2, g3) in terms of the Jacobi elliptic function one can
derive the same expressions for P1(z) and P2(z) as in [7].

Next, we compare two asymmetric cases: (a) a phase-
matched coupler in which the PIM channel is nonlinear and
the NIM channel is linear, and (b) a phase-matched coupler
in which the PIM channel is linear and the NIM channel
is nonlinear. Figure 2 shows a numerical solution of (12),
which determines the dependence of the output signal power
P1(L) on the input field intensity P1(0), where κ = 8, δ = 0,
and L = 1. The solid, black curve represents the case when
γ1 = 5, γ2 = 0, that is, case (a); the blue, dashed curve shows
the opposite case when γ1 = 0, γ2 = 5, that is, case (b).

These results show in both limiting cases that the phase-
matched PIM-NIM coupler is bi- (or multi-) stable. Also,
it is noteworthy that for given combinations of the linear
coupling coefficient and the length of the coupler, the
bistability threshold is higher only in the second (NIM)
channel, which is nonlinear while light initially is pumped
into the first (PIM) channel. This is due to the fact, that in
this case, nonlinearity takes effect only if enough power is
coupled to the second (nonlinear) channel.

3. Effect of Phase Mismatch

So far, we have considered the behavior of somewhat
idealized PIM-NIM couplers—phase-matched couplers with
δ = 0. However, from a practical realization viewpoint, it
would be important to analyze the influence of the phase
mismatch during wave propagation in such systems. In this
section, we investigate the dependence of P1(z) and P2(z) on
δ.

Figure 3 represents the output power P1(L) as a function
of input power P1(0) when κ = 8, γ1 = 5 and γ = 0 (self-
focusing nonlinearity only in the first channel) with different
values of phase mismatch δ: solid black curve: δ = 0; blue
curve; δ = 10; dashed red curve: δ = −10. It is noteworthy
that the dependence of the output field intensity P1(L)
on input field power P1(0) depends on the sign of phase
mismatch δ. This can be understood by considering the
dispersion relation for this system.

Assuming that the solution of (1) has the following form:

a1,2 = u1,2 exp
(
iqz
)

exp
(
±i δ

2
z
)

, (14)
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Figure 2: Output power P1(L) as a function of input power P1(0)
when κ = 8 and δ = 0. Solid black curve: γ1 = 5, γ2 = 0; dashed
blue curve: γ1 = 0, γ2 = 5.
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Figure 3: Output power P1(L) as a function of input power P1(0)
when κ = 8, γ1 = γ2 = 5 (self-focusing nonlinearity). Solid black
curve: δ = 0; dashed blue curve: δ = 10; dot-dashed red curve δ =
−10.

we can find that δ and q have the following forms:

δ = −κ21 + κ12(1− C/P0 )
±√1− C/P0

− P0

(
γ1 + γ2

(
1− C

P0

))
,

q = −κ21 − κ12(1− C/P0)
±2
√

1− C/P0
− P0

(
γ2

(
1− C

P0

)
− γ1

)
,

(15)

where because of the boundary conditions C ∈ [0,P0].
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Figure 4: Output power P1(L) as a function of input power P1(0)
when κ = 8, γ1 = γ2 = −5 (self-defocusing nonlinearity). Solid
black curve: δ = 0; dashed blue curve: δ = 10; dot-dashed red curve
δ = −10.

In a linear PIM-NIM coupler, these dispersion relations
show a bandgap [10]. Let us fix two values of detuning to
be δ+,− = ±δ0 in the linear case such that the center of
the bandgap corresponds to δ = 0. Next, from (15) we
find that in the case of positive nonlinear coefficients (self-
focusing Kerr nonlinearity) the “δ − q” dispersion relations
shift towards negative values of δ leading to asymmetry of
the center of the bandgap with respect to δ+ and δ− and, as
a result, different dependences of the output field intensity
on input field power on either side of the bandgap [7]. In
contrast, in the case of negative nonlinear coefficients (self-
defocusing Kerr nonlinearity) the “δ−q” dispersion relations
shift towards positive values of δ and the dependences of the
output field intensity on input field power reverse. Indeed, if
now we plot the output power P1(L) as a function of input
power P1(0) when κ = 8 and γ1 = γ2 = −5 (self-defocusing
nonlinearity only in the first channel) with different values
of phase mismatch δ: solid black curve: δ = 0; blue curve:
δ = 10; dashed red curve: δ = −10 (see Figure 4), we
find that the curves corresponding to positive and negative
detuning interchanged as compared to those in Figure 3.

4. Discussion

Although the analysis of the PIM-NIM coupler in this work
was based on coupled-mode equations assuming effective
medium parameters for the dielectric permittivity and
magnetic permeability of MMs, in practice such an NIM
channel (which is the most challenging part of the proposed
device) can be realized in at least two configurations: (i)
using double-negative resonant MMs and (ii) using strongly
anisotropic MM waveguides. Such waveguides were shown
to support negative-index propagating modes [11, 12]. For

these modes, the wave propagation is in a direction opposite
to the phase velocity. As a result, the waveguide behaves as a
2-dimensional counterpart of 3-dimensional negative index
material. Such a waveguide can be designed using alternating
metal and dielectric subwavelength layers with positive and
negative permittivities, respectively. As a nonlinear optical
material, we envision incorporate chalcogenide glasses or
nonlinear polymers that possess relatively high nonlinear
refractive indices. Theoretical design and experimental real-
ization of such devices will be discussed elsewhere.

In conclusion, we found a generalized analytical solution
for nonlinear wave interactions in PIM-NIM couplers in
the presence of phase mismatch and for arbitrary values of
nonlinear coefficients in both channels. These results offer a
practical tool for designing novel MM-based couplers based
on either double-negative or strongly anisotropic MMs that
are likely to enable ultracompact optical storage and memory
components for photonics on chip applications.
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