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Abstract We propose a class of two Higgs doublet models
where there are flavour changing neutral currents (FCNC) at
tree level, but under control due to the introduction of a dis-
crete symmetry in the full Lagrangian. It is shown that in this
class of models, one can have simultaneously FCNC in the
up and down sectors, in contrast to the situation encountered
in the renormalisable and minimal flavour violating 2HDM
models put forward by Branco et al. (Phys Lett B 380:119,
1996). The intensity of FCNC is analysed and it is shown
that in this class of models one can respect all the strong
constraints from experiment without unnatural fine-tuning.
It is pointed out that the additional sources of flavour and
CP violation are such that they can enhance significantly the
generation of the Bbaryon asymmetry of the Universe, with
respect to the standard model.

1 Introduction

Recently, there has been a special interest in the scalar sec-
tor of the standard model (SM) and some of its extensions,
motivated by the discovery by both ATLAS [2] and CMS [3],
of a particle which can be interpreted as the Higgs Boson of
the SM. A central question is whether the Higgs couplings
to quarks and leptons are like those in the SM or whether
Nature chooses instead a more complex scalar sector. The
simplest extension of the scalar sector consists of the addi-
tion of another Higgs doublet and the first two Higgs doublet
model (2HDM) was introduced by Lee [4] in order to achieve
spontaneous CP violation. The presence of extra symme-
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tries has an important impact on the possibility of generating
spontaneous CP violation, an aspect which has been recently
reviewed [5,6]. If no extra symmetries are introduced, the
general 2HDM has flavour changing neutral currents (FCNC)
at tree level which have to be suppressed in order to avoid
violation of the stringent experimental bounds. The simplest
way of avoiding FCNC in the scalar sector is by postulating
that quarks of a given charge receive contributions to their
mass only from one Higgs doublet. These selective couplings
[7,8] can easily be implemented in a natural way through
the introduction of a Z2 symmetry which leads to Natural
Flavour Conservation (NFC) in the scalar sector [7]. Another
way of eliminating FCNC at tree level is through the hypoth-
esis of alignment of Yukawa couplings in flavour space [9].
Various studies have been done on the constraints implied by
FCNC, in the framework of 2HDM [10–19].

A very interesting approach to the control of FCNC is pro-
vided by Branco–Grimus–Lavoura (BGL) models [1], where
there are FCNC at tree level but their flavour structure is con-
trolled by the elements of the Cabibbo–Kobayashi–Maskawa
(CKM) matrix V , with no other flavour parameters. Although
these models were proposed some years before the minimal
flavour violation (MFV) hypothesis [20–22] was put forward,
BGL models satisfy the MFV hypothesis of having all the
flavour structure of New Physics controlled by V [1,23].
BGL models are renormalisable, since the flavour structure
of the Yukawa couplings results from an exact symmetry of
the Lagrangian. The general 2HDM contains FCNC, with
their flavour structure parametrized by two complex matri-
ces Nd , Nu [24]. These matrices depend on a large number of
parameters, in particular on Ud

L ,Uu
L ,Ud

R and Uu
R , the unitary

matrices which enter in the diagonalization of the down and
up quark mass matrices. Having Nd , Nu to depend only on
V = Uu†

L Ud
L in a natural way looks like an impossible task.

Yet, this task is accomplished by BGL models, which were
first constructed for the quark sector and then generalized to
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the lepton sector [25]. There are six types of BGL models in
the quark sector and six (three) types in the lepton sector for
Dirac (Majorana) neutrinos, which can be combined to have
a total of 36 (18) BGL models, with different phenomenolog-
ical implications, which were thoroughly analysed [26–28].
An interesting feature of BGL models is the fact they contain
FCNC either in the up or the down sectors but not in both
sectors.

In this paper, we analyse the possibility of generalizing
BGL models, having in mind the following questions:

1. Can one have a framework based on 2HDM which keeps
the requirement of renormalisability and includes all 36
(18) models in a single model which contain each one of
the BGL models as special cases?

2. Is it possible to have renormalisable 2HDM with con-
trolled but non-vanishing FCNC in both the up and the
down quark sectors?

The paper is organised as follows. In order to settle the
notation, we consider in the next section the general 2HDM
with no symmetry introduced, beyond the gauge symmetry.
We briefly review BGL models and then propose a more
general framework denoted gBGL containing BGL models
in special limits. In Sect. 3 we examine Yukawa textures cor-
responding to gBGL models and show how they contain BGL
models as special cases. We also derive in this section weak
basis (WB) invariant conditions for having gBGL models. In
Sect. 4 we propose a convenient parametrisation of gBGL
models through the use of WB covariant projectors. In Sect.
5 we describe the scalar potential. In Sect. 6 we analyse the
intensity of FCNC in gBGL models, with particular empha-
sis, in Sect. 7, on models close to BGL models of types b
and t . In Sect. 8 the implications of gBGL models for the
Baryon Asymmetry of the Universe are discussed and our
conclusions are contained in the last section.

2 Generalising BGL models: gBGL

In order to settle the notation, we start by recalling the
structure of the Yukawa couplings in the quark sector of a
general 2HDM, with no extra symmetry introduced in the
Lagrangian:

LY=−Q̄0
L(�1�1+�2�2)d

0
R−Q̄0

L(�1�̃1+�2�̃2)u
0
R+h.c.,

(1)

with �̃ j = iσ2�
∗
j . Electroweak symmetry is spontaneously

broken via the vacuum expectation values

〈�1〉 =
(

0
eiθ1v1/

√
2

)
, 〈�2〉 =

(
0

eiθ2v2/
√

2

)
. (2)

Introducing as usual θ = θ2 − θ1, v2 = v2
1 + v2

2, cβ =
cos β ≡ v1/v, sβ = sin β ≡ v2/v and tβ ≡ tan β, the Higgs
doublets can be rotated into the “Higgs basis” [29–31]

(
H1

H2

)
=

(
cβ sβ
sβ −cβ

) (
e−iθ1�1

e−iθ2�2

)
, (3)

where

〈H1〉 =
(

0
v/

√
2

)
, 〈H2〉 =

(
0
0

)
. (4)

The Yukawa couplings in Eq. (1) read

LY = −
√

2

v
Q̄0

L(M0
d H1 + N 0

d H2)d
0
R

−
√

2

v
Q̄0

L(M0
u H̃1 + N 0

u H̃2)u
0
R + h.c., (5)

with the mass matrices M0
d , M0

u , and the N 0
d , N 0

u matrices
given by

M0
d = veiθ1

√
2

(cβ�1 + eiθ sβ�2),

N 0
d = veiθ1

√
2

(sβ�1 − eiθcβ�2), (6)

M0
u = ve−iθ1

√
2

(cβ�1 + e−iθ sβ�2),

N 0
u = ve−iθ1

√
2

(sβ�1 − e−iθcβ�2). (7)

It is clear from Eqs. (6)–(7) that N 0
d , N 0

u are complex matri-
ces containing a huge number of new parameters, including
FCNC which have strong experimental constraints. In order
to avoid FCNC, Glashow and Weinberg [7] introduced the
NFC principle, which constrains the Yukawa couplings so
that a quark of a given charge only receives mass from one
Higgs doublet. BGL models also control the size of FCNC,
while allowing for their appearance at tree level. They have
some remarkable features which can be summarized in the
following way.

(i) BGL models are renormalisable, since the pattern of
Yukawa couplings are dictated by a symmetry of the full
lagrangian.

(ii) In BGL models, the couplings of the physical neutral
scalars to the quark mass eigenstates only depend on V ,
tβ and the quark masses, with no other parameters.

(iii) In BGL models there are FCNC either in the up or down
sectors, but not in both. It has been shown [32] that if
one imposes a flavour symmetry such that the FCNC
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only depend on V and further assumes that the flavour
symmetry is abelian, then BGL models are unique.

Let us recall the symmetries used in order to construct BGL
models:

– up-type BGL models (uBGL in the following) are imple-
mented by the symmetry

QL3 �→ eiτ QL3 ,

dR �→ dR, �1 �→ �1,

uR3 �→ ei2τuR3 , �2 �→ eiτ�2, (8)

– down-type BGL models (dBGL in the following) are
implemented by the symmetry

QL3 �→ eiτ QL3 ,

dR3 �→ ei2τdR3 , �1 �→ �1,

uR �→ uR, �2 �→ eiτ�2, (9)

with τ 	= 0, π . It has been shown [25] that if one extends a
BGL model to the lepton sector, with Majorana neutrinos
and a realistic seesaw mechanism, then τ = π/2 and one
is led to a Z4 symmetry.

In this paper, we address ourselves to the question whether it
is possible to generalise BGL models so that the new class of
models, called generalised BGL (gBGL), keep some of the
interesting features of BGL models, like renormalisability,
but allow for FCNC both in the up and the down sectors.
The gBGL models are implemented through a Z2 symmetry,
where uR and dR are even and only one of the scalar doublets
and one of the left-handed quark doublets are odd:

QL3 �→ −QL3 ,

dR �→ dR, �1 �→ �1,

uR �→ uR, �2 �→ −�2. (10)

The above gBGL model includes all BGL models as spe-
cial cases. Indeed gBGL models have some new parameters
and when some of these free parameters are set to zero, one
obtains a BGL model and the Lagrangian acquires a larger
symmetry, namely Z4.1 It is worth emphasizing that gBGL
models are implemented through a Z2 symmetry, as it is also
the case in the Glashow–Weinberg model with NFC. The
only difference is that the left-handed quark families trans-
form differently in the two models. In words, one may say
that the principle leading to gBGL constrains the Yukawa

1 In the present work, we focus on the generalisation of BGL models
in the quark sector and do not address in the detail the inclusion of the
leptonic sector.

couplings so that each line of � j , � j couples only to one
Higgs doublet.

3 Yukawa textures

Imposing the Z2 symmetry in Eq. (10), the Yukawa matrices
in these models have the general form

�1 =
⎛
⎝× × γ13

× × γ23

0 0 0

⎞
⎠ , �2 =

⎛
⎝ 0 0 0

0 0 0
γ31 γ32 ×

⎞
⎠ ,

�1 =
⎛
⎝× × δ13

× × δ23

0 0 0

⎞
⎠ , �2 =

⎛
⎝ 0 0 0

0 0 0
δ31 δ32 ×

⎞
⎠ , (11)

where ×, γi j and δi j stand for arbitrary complex parameters.
In Eq. (11), the γi j and δi j entries have been singled out in
order to show how gBGL contain BGL models as special
cases: it is evident that taking γi j = 0, we obtain dBGL
models, where

�1 =
⎛
⎝× × 0

× × 0
0 0 0

⎞
⎠ , �2 =

⎛
⎝0 0 0

0 0 0
0 0 ×

⎞
⎠ ,

�1 =
⎛
⎝× × ×

× × ×
0 0 0

⎞
⎠ , �2 =

⎛
⎝0 0 0

0 0 0
× × ×

⎞
⎠ , (12)

while taking δi j = 0 we obtain uBGL models, with

�1 =
⎛
⎝× × ×

× × ×
0 0 0

⎞
⎠ , �2 =

⎛
⎝0 0 0

0 0 0
× × ×

⎞
⎠ ,

�1 =
⎛
⎝× × 0

× × 0
0 0 0

⎞
⎠ , �2 =

⎛
⎝0 0 0

0 0 0
0 0 ×

⎞
⎠ . (13)

That is, this class of renormalisable gBGL models includes
both up- and down-type BGL models, as we were looking for.
It is also clear that FCNC are present both in the up and in the
down sectors: the appearance of FCNC in one sector depends
on the Yukawa couplings of that sector alone, without regard
to the Yukawa couplings in the other sector. In these gBGL
models, both up and down sectors have the FCNC-inducing
structure that in BGL models is confined to one and only one
sector.

3.1 Weak basis invariant conditions

As a summary of the previous discussion, gBGL models are
defined by aZ2 symmetry or by the following matrix textures:
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�1 =
⎛
⎝× × ×

× × ×
0 0 0

⎞
⎠ , �2 =

⎛
⎝0 0 0

0 0 0
× × ×

⎞
⎠ ,

�1 =
⎛
⎝× × ×

× × ×
0 0 0

⎞
⎠ , �2 =

⎛
⎝0 0 0

0 0 0
× × ×

⎞
⎠ . (14)

Obviously, these zero texture structures are valid in a partic-
ular set of Weak Basis (WB), the WB where the definition of
the symmetry applies—WB transformations are discussed in
detail in Sect. 4.1. Introducing the projection operator P3,

P3 =
⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠ , P3P3 = P3, (1 − P3)P3 = 0, (15)

it is straightforward to check that imposing the textures in
Eqs. (14) is equivalent to the following definition of gBGL
models:

P3�1 = 0, P3�2 = �2,

P3�1 = 0, P3�2 = �2. (16)

BGL models, are defined by more relations: in terms of P3,
uBGL models satisfy

P3�1 = 0, P3�2 = �2,

P3�1 = 0, P3�2 = �2, (17)

�1P3 = 0, �2P3 = �2,

while dBGL models satisfy

P3�1 = 0, P3�2 = �2,

P3�1 = 0, P3�2 = �2, (18)

�1P3 = 0, �2P3 = �2.

The last two conditions in Eqs. (17) and (18) give the block
diagonal form of the Yukawa matrices in the corresponding
sector (up in uBGL and down in dBGL models), enforcing
the absence of FCNC in that sector. From these conditions
valid in a set of WB, we can get WB independent matrix
conditions for all three types of models. The conditions of
interest for gBGL models are

�
†
2�1 = 0, �

†
2�1 = 0,

�
†
2�1 = 0, �

†
2�1 = 0. (19)

Notice that Eqs. (19) are satisfied trivially in case �1 = �1 =
0 or in the case �2 = �2 = 0, which correspond to 2HDM of
types I or X; note, however, that this kind of models are not
of the gBGL type. Coming back to Eqs. (19), it is straightfor-
ward to show that they are necessary conditions for gBGL
models since, from Eq. (16),

�
†
2�1 = (P3�2)

†�1 = (�
†
2P3)�1 = �

†
2(P3�1) = 0, (20)

and similarly for the remaining conditions in Eq. (19). The
sufficiency of these conditions in order to have gBGL models
is shown in Appendix A, where the relation with 2HDM of
type I is also analysed.

4 Parametrisation of gBGL models

It is clear that gBGL models have a great reduction in
the number of free parameters, with respect to the general
2HDM. In this section, we use projection operators to sug-
gest some convenient parametrisations of gBGL models.

4.1 Weak basis invariant projectors

Let us recall that under a WB transformation we have

Q0
L �→ Q0′

L = WLQ
0
L ; d0

R �→ d0′
R = WdRd

0
R; u0

R �→ u0′
R

= WuRu
0
R, (21)

and

�i �→ �′
i = W †

L�iWdR ; �i �→ �′
i = W †

L�iWuR , (22)

with WL, WdR and WuR unitary matrices.
If we now take the gBGL definition through projectors in

Eq. (16) for �i and �i , and go to an arbitrary weak basis, we
have

W †
LP3WLW

†
L�1WdR = 0, W †

LP3WLW
†
L�2WdR = W †

L�2WdR ,

W †
LP3WLW

†
L�1WuR = 0, W †

LP3WLW
†
L�2WuR = W †

L�2WuR .

(23)

These equations are valid for any weak basis. Introducing
the projector

P [WL]
3 = W †

LP3WL, (24)

we have

P [WL]
3 �′

1 = 0, P [WL]
3 �′

2 = �′
2,

P [WL]
3 �′

1 = 0, P [WL]
3 �′

2 = �′
2, (25)

for an arbitrary WB (from now on, we drop the primes). If
we choose, for convenience,

W †
L = Uu

LU , (26)

whereUu†
L appears in the usual bi-diagonalisationUu†

L M0
uUu

R= Mu (see Sect. 4.3), then U is an arbitrary unitary matrix
and we have a general WB invariant parametrisation in terms
of that arbitrary U and of Uu†

L ; Eqs. (24) and (25) read

P [uL ]
U3 = Uu

L(UP3U†)Uu†
L (27)
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and

P [uL ]
U3 �1 = 0, P [uL ]

U3 �2 = �2,

P [uL ]
U3 �1 = 0, P [uL ]

U3 �2 = �2. (28)

Notice that this Uu
L dependence reminds us of uBGL models.

An alternative parametrisation is obtained taking

W †
L = Ud

LU ′, (29)

where in this case Ud†
L comes from the down mass matrix

diagonalisation Ud†
L M0

dUd
R = Md , with

P [dL ]
U ′3 = Ud

L (U ′P3U ′†)Ud†
L , (30)

and

P [dL ]
U ′3 �1 = 0, P [dL ]

U ′3 �2 = �2, (31)

P [dL ]
U ′3 �1 = 0, P [dL ]

U ′3 �2 = �2, (32)

where now the Ud
L dependence reminds us of dBGL models.

Identifying Eqs. (26) and (29),

W †
L = Uu

LU = Ud
LU ′, (33)

and it is straightforward to conclude that one can use equiv-
alently one parametrisation or the other of the same model
provided

V † = Ud†
L Uu

L = U ′U†, i.e. UU ′† = V . (34)

4.2 Weak basis covariant parametrisation

We have in the general 2HDM

N 0
d = tβM

0
d − (tβ + t−1

β )
v√
2
eiθ�2, (35)

N 0
u = tβM

0
u − (tβ + t−1

β )
v√
2
e−iθ�2. (36)

Assuming the existence of the projection operator P [qL ]
X3 sat-

isfying

P [qL ]
X3 �1 = 0, P [qL ]

X3 �2 = �2, (37)

P [qL ]
X3 �1 = 0, P [qL ]

X3 �2 = �2, (38)

with X and P [qL ]
X3 to be specified later,

P [qL ]
X3 M0

d = P [qL ]
X3

v√
2
(cβ�1 + eiθ sβ�2)

= veiθ√
2
sβ P

[qL ]
X3 �2 = veiθ√

2
sβ�2 , (39)

P [qL ]
X3 M0

u = P [qL ]
X3

v√
2
(cβ�1 + e−iθ sβ�2)

= ve−iθ

√
2

sβ P
[qL ]
X3 �2 = ve−iθ

√
2

sβ�2 . (40)

Equations (35) and (36) can then be rewritten as the general
WB covariant gBGL parametrisation

N 0
d =

[
tβ1 − (tβ + t−1

β )P [qL ]
X3

]
M0

d , (41)

N 0
u =

[
tβ1 − (tβ + t−1

β )P [qL ]
X3

]
M0

u . (42)

We can choose the up parametrisation for P [qL ]
X3 ,

P [qL ]
X3 = P [uL ]

U3 = Uu
L(UP3U†)Uu†

L , (43)

or, equivalently, we can choose the down parametrisation for

P [qL ]
X3 ,

P [qL ]
X3 = P [dL ]

U ′3 = Ud
L (U ′P3U ′†)Ud†

L , (44)

with V = UU ′†, to completely define the model. Let us
analyse the details of these parametrisations, after we finally
rotate the quark fields to the mass basis.

4.3 Parametrisations in the quark mass basis

Quark fields are rotated in the following manner:

u0
L = Uu

LuL , u0
R = Uu

RuR, d0
L = Ud

LdL , d0
R = Ud

RdR, (45)

with unitary Uq
X (q = u, d, X = L , R), such that

Uu†
L M0

uUu
R = Mu = diag(mu,mc,mt ),

Ud†
L M0

dUd
R = Md = diag(md ,ms,mb). (46)

N 0
u and N 0

d are transformed accordingly,

N 0
u �→ Nu = Uu†

L N 0
uUu

R, N 0
d �→ Nd = Ud†

L N 0
dUd

R, (47)

and, following Eqs. (41)–(42),

Nd =
[
tβ1 − (tβ + t−1

β )Ud†
L P [qL ]

X3 Ud
L

]
Md , (48)

Nu =
[
tβ1 − (tβ + t−1

β )Uu†
L P [qL ]

X3 Uu
L

]
Mu . (49)

If we choose the down parametrisation in Eq. (44), Eqs. (48)–
(49) give

Nd =
[
tβ1 − (tβ + t−1

β )U ′P3U ′†] Md , (50)

Nu =
[
tβ1 − (tβ + t−1

β )VU ′P3U ′†V †
]
Mu, (51)
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while, if we choose the up parametrisation in Eq. (43),
Eqs. (48)–(49) give

Nd =
[
tβ1 − (tβ + t−1

β )V †UP3U†V
]
Md , (52)

Nu =
[
tβ1 − (tβ + t−1

β )UP3U†
]
Mu . (53)

Equations (50)–(51) and (52)–(53) are of course equivalent,
since V = UU ′†. At this point it is important to discuss a
central question: it may appear that there is a large arbitrari-
ness in the definition of the model since there is a completely
arbitrary unitary matrix U involved in Eqs. (52)–(53). Nev-
ertheless, there is much less freedom since the quantities
involving U are

[UP3U†]i j = Ui3U∗
j3, (54)

that is, only the elements of the third column ofU , which form
a unitary complex vector, are needed to define the model. To
stress this fact, we introduce

n̂[u]i ≡ Ui3, and n̂[d]i = U ′
i3, with n̂[u] j = Vji n̂[d]i ,

(55)

where the subindex [u] or [d] specifies the parametrisation
under consideration. The matrix elements of Nu and Nd in
Eqs. (48) and (49) can be written, explicitly,

[Nd ]i j = tβδi jmdi − (tβ + t−1
β )n̂[d]i n̂∗[d] jmd j , (56)

[Nu]i j = tβδi jmui − (tβ + t−1
β )n̂[u]i n̂∗[u] jmu j . (57)

Since n̂[u] j = Vji n̂[d]i , one is free to rewrite Eqs. (50)–(51)
as

[Nd ]i j = tβδi jmdi − (tβ + t−1
β )n̂[d]i n̂∗[d] jmd j , (58)

[Nu]i j = tβδi jmui − (tβ + t−1
β )ViaV

∗
jbn̂[d]an̂∗[d]bmu j . (59)

or Eqs. (52)–(53) as

[Nd ]i j = tβδi jmdi − (tβ + t−1
β )n̂[u]an̂∗[u]bV ∗

ai Vbjmd j , (60)

[Nu]i j = tβδi jmui − (tβ + t−1
β )n̂[u]i n̂∗[u] jmu j . (61)

One can now identify easily all the usual BGL models with
this parametrisation. The notation is straightforward, for
example, BGL model “s” corresponds to ŝ, and so on:

– dBGL models in the down parametrisation,

d̂[d] =
⎛
⎝1

0
0

⎞
⎠ , ŝ[d] =

⎛
⎝0

1
0

⎞
⎠ , b̂[d] =

⎛
⎝0

0
1

⎞
⎠ , (62)

– uBGL models in the up parametrisation,

û[u] =
⎛
⎝1

0
0

⎞
⎠ , ĉ[u] =

⎛
⎝0

1
0

⎞
⎠ , t̂[u] =

⎛
⎝0

0
1

⎞
⎠ , (63)

– dBGL models in the up parametrisation,

d̂[u] =
⎛
⎝Vud
Vcd
Vtd

⎞
⎠ , ŝ[u] =

⎛
⎝Vus
Vcs
Vts

⎞
⎠ , b̂[u] =

⎛
⎝Vub
Vcb
Vtb

⎞
⎠ ,

(64)

– uBGL models in the down parametrisation,

û[d] =
⎛
⎝V ∗

ud
V ∗
us

V ∗
ub

⎞
⎠ , ĉ[d] =

⎛
⎝V ∗

cd
V ∗
cs

V ∗
cb

⎞
⎠ , t̂[d] =

⎛
⎝V ∗

td
V ∗
ts

V ∗
tb

⎞
⎠ .

(65)

It is also possible to give a graphical description of the gBGL
class of models, as shown in Fig. 1. Since a model is defined
by a complex unitary vector n̂, |n̂1|2 + |n̂2|2 + |n̂3|2 = 1,
and (|n̂1|, |n̂2|, |n̂3|) is located on the sphere of unit radius
(specifically, on an octant of that sphere). Furthermore, there
are two physical complex phases, since one can readily see
that n̂i n̂

∗
j is unaffected by a global rephasing of n̂, which can

be used to remove one out of the three initial phases in the n̂
components. This is illustrated in Fig. 1(c), where no explicit
reference to up, down or other parametrisations is made.2 Fig-
ure 1a, b illustrate the situation for down and up parametri-
sations, including the usual BGL models in Eqs. (62)–(65).

5 The scalar sector

The scalar potential, imposing invariance under �2 �→ −�2

in Eq. (10), is

V (�1,�2) = μ2
11�

†
1�1 + μ2

22�
†
2�2 + λ1(�

†
1�1)

2

+ λ2(�
†
2�2)

2 + 2λ3(�
†
1�1)(�

†
2�2)

+ 2λ4(�
†
1�2)(�

†
2�1)+ [λ5(�

†
1�2)

2 + h.c.].
(66)

Obviously, this scalar potential coincides with the one in
Glashow–Weinberg model [7], since in both cases a Z2 sym-
metry is introduced. In BGL models where instead of Z2 one
uses a larger symmetry, namely Z4, the term in λ5 is not Z4

invariant and therefore cannot be introduced. This leads to

2 Notice that one can trivially adopt spherical coordinates with, for
example, (|n̂1|, |n̂2|, |n̂3|) = (sin θ cos φ, sin θ sin φ, cos θ).
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b̂

ŝd̂

n̂[d]

û ĉ

t̂

(V ∗
ud, V ∗

us, V ∗
ub)

(V ∗
cd, V ∗

cs, V ∗
cb)

(V ∗
td, V ∗

ts, V ∗
tb)

(a) Down parametrisation.

t̂

ĉû

n̂[u]

d̂ ŝ

b̂

(Vud, Vcd, Vtd)
(Vus, Vcs, Vts)

(Vub, Vcb, Vtb)

(b) Up parametrisation.

(0, 0, 1)

(0, 1, 0)(1, 0, 0)

n̂

φ

θ

n̂1

n̂2

n̂3

ϕ1

ϕ2

(c) Generic parametrisation.

Fig. 1 gBGL models

a global symmetry which upon spontaneous breaking would
lead to a Golstone boson. This difficulty can be avoided by
softly breaking the discrete symmetry through the addition of
a term (m2

12�
†
1�2+h.c.). The scalar potential of Eq. (66) does

not lead to new sources of CP violation. But when the above
bilinear term is introduced, one can have either spontaneous
[33] or explicit CP breaking in the scalar sector. Expanding

� j = eiθ j
(

ϕ+
j

(v j + ρ j + iη j )/
√

2

)
, (67)

then the rotation to the Higgs basis in Eq. (3) identifies the
Goldstone boson interpretation of G± and G0 as the longi-
tudinal degrees of freedom of the W± and Z0 gauge bosons,

H1 =
(

G+
(v + H0 + iG0)/

√
2

)
, H2 =

(
H+

(R0 + i A)/
√

2

)
,

(68)

and(
H0

R0

)
=

(
cβ sβ
sβ −cβ

) (
ρ1

ρ2

)
. (69)

The scalar potential in Eq. (66) is in general CP conserving
in such a way that the physical CP even states do not mix
with the CP odd one; then the physical scalars are a linear
combination of ρ1 and ρ2,

(
H
h

)
=

(
cos α sin α

− sin α cos α

) (
ρ1

ρ2

)
, (70)

and we will have in general
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(
H0

R0

)
=

(
cβα sβα

sβα −cβα

)(
H
h

)
, (71)

where the relevant angle is β − α and cβα ≡ cos(β − α),
sβα ≡ sin(β − α). The field A is a physical pseudoscalar.
Notice that the Yukawa couplings become

LY = −
√

2

v
H+ū(V NdγR − N †

u V γL)d + h.c.

− 1

v
H0(ūMuu + d̄Mdd)

− 1

v
R0

[
ū(NuγR + N †

uγL)u + d̄(NdγR + N †
dγL)d

]

+ i

v
A

[
ū(NuγR − N †

uγL)u − d̄(NdγR − N †
dγL)d

]
,

(72)

in such a way that, for h → H0, h becomes “the standard
Higgs”, coupling to fermions like the SM Higgs does. That is,
when sβα = 1 we have h aligned with H0 with SM couplings.

6 The intensity of FCNC in gBGL

FCNC are extremely constrained by experimental data, con-
sequently we have to worry about their intensity in gBGL
models. It is worthwhile to mention that BGL are Minimal
Flavour Violating (MFV) models, meaning that FCNC are
controlled by the deviation of the CKM matrix V from 1. As
a result, in the limit V = 1, there are no FCNC in BGL mod-
els at tree level. However, this is not the case in gBGL models,
where FCNC are no longer controlled by the deviations of
V from unity. The Yukawa couplings of gBGL models are
given, following Eqs. (72) and (71), by

LhNqq = −
∑

i, j=d,s,b

hd̄Li Y
D
i j dR j −

∑
i, j=u,c,t

hūLi Y
U
i j uR j , (73)

with

YD
i j = 1

v

[
sβα(Md)i j + cβα(Nd)i j

]
,

YU
i j = 1

v

[
sβα(Mu)i j + cβα(Nu)i j

]
, (74)

with Nq given in Eqs. (56)–(57), which generically can be
written

(Nq)i j =
[
tβδi j − (tβ + t−1

β )n̂[q]i n̂∗[q] j
]
mqj . (75)

So, the flavour changing intensities are controlled by Nq with
the following factors.

Table 1 CKM suppression in FCNC transitions in BGL models

Model d s b

Transition

u ↔ c VudV
∗
cd ∼ λ VusV

∗
cs ∼ λ VubV

∗
cb ∼ λ5

u ↔ t VudV
∗
td ∼ λ3 VusV

∗
ts ∼ λ3 VubV

∗
tb ∼ λ3

c ↔ t VcdV
∗
td ∼ λ4 VcsV

∗
ts ∼ λ2 VcbV

∗
tb ∼ λ2

Model u c t

Transition

d ↔ s V ∗
udVus ∼ λ V ∗

cdVcs ∼ λ V ∗
td Vts ∼ λ5

d ↔ b V ∗
udVub ∼ λ3 V ∗

cdVcb ∼ λ3 V ∗
td Vtb ∼ λ3

s ↔ b V ∗
usVub ∼ λ4 V ∗

csVcb ∼ λ2 V ∗
ts Vtb ∼ λ2

– In an qR j → qLi and in qLi → qR j transitions there
is a factor mqj /v. Notice that in qRi → qL j and in
qL j → qRi transitions the factor is instead mqi /v. That
is, in general, for a q j → qi vertex, there is a suppres-
sion factor given by the heaviest of the two quarks mass,
max(mqi ,mqj ). This suppression factor is a very rele-
vant one except, obviously, for any transition where the
top quark is present.

– A factor cβα(tβ + t−1
β ); from perturbative unitarity

requirements on the scalar sector, is constrained to be at
most one [28,34–37]. Notice that in the limit cβα → 0,
the FCNC associated to the standard Higgs h disappear,
and the ones associated to the remaining scalars can be
suppressed by making them heavier. Therefore, this is the
quantity which, in a global approach, is bounded from
above by Higgs mediated FCNC processes.

– Finally, there is the factor n̂[q]i n̂∗[q] j , which ranges from
0 to 1/2 (which is only reached when only one tran-
sition is allowed). We recall that in BGL models, the
analogous factor is ViqV

∗
jq . With the naive bounds

on cβα(tβ + t−1
β ) from meson mixings in [28], one

can compare and analyse how the suppression fac-
tors change in these new gBGL models. We collect
the suppression factors for the different transitions in
all BGL models in Table 1 (with the corresponding
power counting in Wolfenstein’s parameter λ). One
has to compare the maximum value of |n̂[q]i n̂∗[q] j |max

= 1/2 with λ, which corresponds to the less suppressed
transition in some BGL models. This means that the most
stringent constraint on BGL models obtained in [28] for
|cβα(tβ + t−1

β )| should be reduced by a factor 2λ. In this
way, taking into account the analysis of [28] and the con-
straints in [38], one can conclude that the gBGL models
are safe, over the entire parameter space, provided

∣∣∣cβα(tβ + t−1
β )

∣∣∣ ≤ 0.02. (76)
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This constraint arises from D0–D̄0 mixing and it turns
out to be more stringent than the K 0–K̄ 0 one. It is worth
mentioning that in some regions of the parameter space,
this constraint will be relaxed. For example, in all BGL
models this constraint is much weaker as shown in Ref.
[28], and in some of them |cβα(tβ + t−1

β )| can span the
entire theoretically allowed parameter space, arriving to
values of order 1.

A final remark is related to the absence of the mass sup-
pression factor on t ↔ q transitions in gBGL models. In
this case, the relevant bounds come from rare top decays
t → hu, hc, which give [28]

BR(t → hq) = 0.13

∣∣∣n̂[u]q n̂∗[u]t
∣∣∣2

|Vtb|2
(
cβα(tβ + t−1

β )
)2

. (77)

Considering the experimental bounds from ATLAS [39,40]
and CMS [41,42], this yields

∣∣∣cβα(tβ + t−1
β )

∣∣∣ ≤ 0.4, (78)

for the maximal value3 |n̂[u]q n̂∗[u]t | = 1/2.
We conclude that the whole class of gBGL models does

not lead to much larger flavour changing transitions than the
ones arising in BGL models. This is in spite of having simul-
taneously FCNC in the up and in the down sectors. In the
next sections we discuss other important differences.

7 Near the top and the bottom models

BGL top and bottom models are the only renormalisable
2HDM that verify the MFV principle in any of the differ-
ent versions one can find in the literature [23]. We devote
this section to an analysis in more detail the properties of
gBGL models that are “close” to these models, that is, they
depart from the top or bottom models by a “small amount”.
Let us recall that the FCNC in the down and the up sectors
of the top model are controlled by

(Nd)i j = (tβ + t−1
β ) t̂[d]i t̂∗[d] j md j ,

(Nu)i j = (tβ + t−1
β ) t̂[u]i t̂∗[u] j mu j , (79)

and, following Eqs. (63)–(65), t̂[u] and t̂[d] = V † t̂[u], are

t̂[u] =
⎛
⎝0

0
1

⎞
⎠ , t̂[d] =

⎛
⎝V ∗

td
V ∗
ts

V ∗
tb

⎞
⎠ . (80)

3 The maximal value of |n̂[u]q n̂∗[u]t | cannot be obtained, obviously, for
both t → hu and t → hc simultaneously.

It is clear that the BGL top model does not have FCNC in
the up sector. Let us now consider small deviations from
t̂[d] near the top model parameterised in terms of a complex
vector δ = (δd , δs, δb) (with the appropriate normalisation):

t̂[d] + δ̂t [d] ∼
⎛
⎝V ∗

td(1 + δd)

V ∗
ts(1 + δs)

V ∗
tb(1 + δb)

⎞
⎠ . (81)

The elements of t̂[d]+ δ̂t [d] control the flavour structure of the
New Physics contributions to K 0–K̄ 0, B0

d–B̄0
d and B0

s –B̄0
s .

In particular, the leading order contributions to the different
meson mixings M12 have the following form:

M12[K 0] ∝ (V ∗
tdVts)

2[1 + 2(δ∗
s + δd)],

M12[B0
d ] ∝ (V ∗

tdVtb)
2[1 + 2(δ∗

b + δd)],
M12[B0

s ] ∝ (V ∗
tsVtb)

2[1 + 2(δ∗
b + δs)]. (82)

Therefore, taking into account the phases of the dominant
terms (V ∗

ti Vt j )
2, we can conclude that these “near top” mod-

els will give the same contribution to meson mixings pro-
vided

Re (δd) ∼ Re (δs) ∼ Im (δs) ≤ O(λ2), and

Im (δd) ∼ Im (δb) ≤ O(λ3). (83)

Notice that we are not stating that these models do not have
any contribution to the meson mixings, the point is, rather,
that these models are “like the top BGL” in the sense that they
give the same contributions to K 0–K̄ 0, B0

d–B̄0
d and B0

s –B̄0
s

mixings. The immediate question is then: do these models
produce too strong FCNC in the up sector, in particular in
D0–D̄0 or in top decays? FCNC in the up sector are con-
trolled by

t̂[u] + δ̂t [u] = V †(t̂[d] + δ̂t [d]) ∼
⎛
⎝ O(λ5)

δbVcbV
∗
tb

1 + δb

⎞
⎠ . (84)

It is clear that M12[D0] will have a suppression given by

(δbλ
5VcbV

∗
tb)

2 ≤ λ18, (85)

much smaller than any of the contributions in dBGL models.
To analyse t → hc we have to compare the maximal value

1/4 of
∣∣∣n̂[u]q n̂∗[u]t

∣∣∣2
in Eq. (77) with the value obtained in the

present case,
∣∣(1 + δb)δbVcbV

∗
tb

∣∣2 ∼ O(λ8). The conclusion
is evident in the whole parameter space: these models will
produce t → hc still below the actual experimental bounds.
The same conclusion applies to t → hu. In the next section
we will see that these models can depart in a sizeable way
from the top BGL model in different physical observables.
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The bottom dBGL model is specified by b̂ (Eqs. (62) and
(64)):

b̂[d] =
⎛
⎝0

0
1

⎞
⎠ , b̂[u] =

⎛
⎝Vub
Vcb
Vtb

⎞
⎠ . (86)

This model generates FCNC in the up sector, and in particular
it contributes to D0–D̄0 mixing but not to K 0–K̄ 0, B0

d–B̄0
d

and B0
s –B̄0

s ; gBGL models close to the b̂ model that keep its
essential properties are obtained with

b̂[u] + δ̂b[u] ∼
⎛
⎝Vub(1 + δu)

Vcb(1 + δc)

Vtb(1 + δt )

⎞
⎠ , (87)

where

δu ∼ δc ∼ δt ≤ O(λ2), (88)

as before. To see what happens with the important constraints
in the down sector, we show, as before, that b̂[d] + δ̂b[d] =
V (b̂[u] + δ̂b[u]),

b̂[d] + δ̂b[d] ∼
⎛
⎝V ∗

tdVtb(δt − δc) + V ∗
udVub(δu − δc)

V ∗
tsVtb(δt − δc)

|Vtb|2(1 + δt )

⎞
⎠ (89)

is the relevant quantity. With values as in Eq. (88), it turns
out that the contributions to the mixing in the down sector
are much smaller than in any uBGL model. Nevertheless,
we will also see, in the next section, that there are important
differences with respect to the bottom dBGL model in other
observables while considering the same kind of parameter
values close to the bottom model.

8 Baryon asymmetry of the Universe

8.1 The leading gBGL contribution

The presence of additional sources of flavour and CP viola-
tion in the gBGL models can enhance the contribution to the
Baryonic Asymmetry of the Universe (BAU) with respect to
SM expectations. Having Nu and Nd in addition to Mu and
Md , a weak basis invariant with a non-zero imaginary part

already arises [43] at the 4th order:4,5

Im
(

Tr
{
N 0
d M

0†
d M0

u M
0†
u

})
. (90)

Considering N 0
d in Eq. (41),

Im
(

Tr
{
N 0
d M

0†
d M0

u M
0†
u

})

= (tβ + t−1
β )Im

(
Tr

{
P [qL ]
X3 M0

d M
0†
d M0

u M
0†
u

})
. (91)

For P [qL ]
X3 = P [dL ]

U ′3 , that is, in the down parametrisation,
Eq. (44),

(tβ + t−1
β )Im

(
Tr

{
Ud
L (U ′P3U ′†)Ud†

L Ud
L MdM

†
dUd†

L Uu
LMuM

†
uUu†

L

})

= (tβ + t−1
β )Im

(
Tr

{
(U ′P3U ′†)MdM

†
d V

†MuM
†
u V

})
. (92)

Notice that, according to Eq. (46), MuM
†
u = diag(m2

u j
) =

diag(m2
u,m

2
c,m

2
t ), MdM

†
d = diag(m2

d j
) = diag(m2

d ,m
2
s ,m

2
b).

Following Eq. (55),

(U ′P3U ′†)i j = n̂[d]i n̂∗[d] j , (93)

and thus

Tr
{
(U ′P3U ′†)MdM

†
d V

†MuM
†
u V

}

=
∑
i, j,k

m2
d j
m2

uk n̂[d]i n̂∗[d] j Vki V ∗
k j , (94)

to obtain, finally

Im
(

Tr
{
N 0
d M

0†
d M0

u M
0†
u

})

= i

2
(tβ + t−1

β )
∑
i, j,k

(m2
di − m2

d j
)m2

uk n̂[d]i n̂∗[d] j Vki V ∗
k j .

(95)

Although the discussion has relied on the use of the down
parametrisation (from Eq. (92) onwards), completely analo-
gous results are obtained if the up parametrisation is used
instead.

In order to estimate the enhancement in the BAU due to
Im

(
Tr

{
N 0
d M

0†
d M0

u M
0†
u

})
, let us first retain only potentially

leading contributions in terms of masses and powers of the
Wolfenstein parameter λ [46],

4 To be compared with the 12th order usual one,

− i
6 Tr

{
[MuM

†
u , MdM

†
d ]3

}
[44].

5 The rephasing invariance in the Higgs sector [31] imposes the require-
ment that the complete invariant should include the H†

2 H1 coefficient
in the Lagrangian: (μ2

11 − μ2
22)sβcβ [45]. This does not introduce new

phases.
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Im
(

Tr
{
N 0
d M

0†
d M0

u M
0†
u

})

� i

2
(tβ + t−1

β )
{
n̂[d]2n̂∗[d]1m2

s

[
m2

cVcsV
∗
cd + m2

t VtsV
∗
td

]

+ n̂[d]3n̂∗[d]1m2
b

[
m2

cVcbV
∗
cd + m2

t VtbV
∗
td

]

+ n̂[d]3n̂∗[d]2m2
b

[
m2

cVcbV
∗
cs + m2

t VtbV
∗
ts

] }
(96)

that is,

Im
(

Tr
{
N 0
d M

0†
d M0

u M
0†
u

})

∼ i(tβ + t−1
β )

{
n̂[d]2n̂∗[d]1m2

s

[
m2

cλ + m2
t λ

5
]

+ n̂[d]3n̂∗[d]1m2
b

[
m2

cλ
3 + m2

t λ
3
]

+ n̂[d]3n̂∗[d]2m2
b

[
m2

cλ
2 + m2

t λ
2
] }

. (97)

In the SM, the BAU is proportional to [47,48]

BAUSM ∼ m4
t m

4
bm

2
cm

2
s

E12 J, (98)

where J is the rephasing invariant imaginary part of the CKM
quartets [49], J = Im

(
V ∗
csVtsV

∗
tbVcb

) � 3 × 10−5 and E ∼
100 GeV an energy of the order of the electroweak scale one.
In Eq. (97), we have contributions like the last one, giving

BAUgBGL ∼ (tβ + t−1
β )

m2
t m

2
b

E4 Im
(
n̂[d]3n̂∗[d]2VtbV ∗

ts

)
. (99)

This simple enhancement estimate with respect to Eq. (98),
in terms of α = arg(n̂[d]3n̂∗[d]2VtbV ∗

ts) and |n̂[d]3n̂∗[d]2| (which
has a maximal value of 1/2), is

BAUgBGL

BAUSM
∼ (tβ + t−1

β )
∣∣n̂[d]3n̂∗[d]2

∣∣ sin α
|Vts |
J

E8

m2
t m

2
bm

2
cm

2
s

∼ 1016(tβ + t−1
β )

∣∣n̂[d]3n̂∗[d]2
∣∣ sin α, (100)

showing that there is margin for substantial enhancement
of the BAU with respect to the SM, and with respect to
BGL models too [43] (see also [50,51] for BAU analyses
in 2HDM). In Appendix B it is shown that we do not expect
relevant constraints coming from electric dipole moments
(EDM).

8.2 The vanishing BGL limits

In BGL models, the previous contribution is vanishing: let
us explicitly check this well-known result [43]. For dBGL
models, with n̂d in Eq. (62), only one component is non-

vanishing and Im
(

Tr
{
N 0
d M

0†
d M0

u M
0†
u

})
= 0. The situation

is slightly more involved for uBGL models. From Eq. (65),

for an uBGL model of type q, n̂[d]i = V ∗
qi . Then, going back

to Eq. (94),

Tr
{
(U ′P3U ′†)MdM

†
d V

†MuM
†
u V

}

=
∑
i, j,k

m2
d j
m2

uk V
∗
qi Vq j Vki V

∗
k j , (uBGL q). (101)

Since, from unitarity of V ,
∑

i V
∗
qi Vki = δqk , Eq. (101) gives

Tr
{
(U ′P3U ′†)MdM

†
d V

†MuM
†
u V

}

=
∑
j

m2
d j
m2

uq |Vq j |2, (uBGL q), (102)

and thus Im
(

Tr
{
N 0
d M

0†
d M0

u M
0†
u

})
= 0.

8.3 Rephasing invariance

Although we have already mentioned that there are only two
physical phases in n̂[d] or n̂[u], it is important to check that the
invariant in eq. (95) is, at it should, invariant under individual
rephasings of the different quark fields:

d �→ eiϕ1d, s �→ eiϕ2s, b �→ eiϕ3b,

Vqd �→ eiϕ1Vqd , Vqs �→ eiϕ2Vqs, Vqb �→ eiϕ3Vqb. (103)

The origin of the rephasing of the CKM matrix is straightfor-
ward: since V = Uu†

L Ud
L , the rephasing of the down quarks

corresponds to

Ud
L �→ Ud

L

⎛
⎝eiϕ1 0 0

0 eiϕ2 0
0 0 eiϕ3

⎞
⎠ . (104)

Then, since in Eq. (92) P [dL ]
U ′3 = Ud

L (U ′P3U ′†)Ud†
L ,

U ′ �→
⎛
⎝e−iϕ1 0 0

0 e−iϕ2 0
0 0 e−iϕ3

⎞
⎠ U ′ (105)

to keepUd
LU ′ invariant; as a consequence, under the rephasing

in Eq. (103),

n̂[d] j �→ e−iϕ j n̂[d] j , (106)

and Eq. (95) is clearly rephasing invariant.
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8.4 Enhancements in models near the top and the bottom
models

The BAU generated in the top BGL model is proportional to
[43]

Im
(

Tr
{
MdN

†
d MdM

†
d MuM

†
u MdM

†
d

})

= −(tβ + t−1
β )(m2

b − m2
s )(m

2
b − m2

d)(m
2
s − m2

d)

× (m2
c − m2

u)Im
(
V ∗
csVtsV

∗
tbVcb

)
, (107)

in such a way that the ratio to the SM BAU is, for E ∼ 100
GeV,

BAUBGL−t

BAUSM
= (tβ + t−1

β )
E4

m4
t

∼ 1. (108)

Therefore, as far as CP violation is concerned, the top model
suffers the same problem as the SM in not being able to
generate sufficient BAU. There is no enhancement in the top
BGL 2HDM. We can now consider a small departure from
the top BGL model as in Eq. (81) and apply it to Eq. (100).
With

n̂∗[d]3 ∼ V ∗
tb(1 + δb), n̂∗[d]2 ∼ Vts(1 + δ∗

s ), (109)

Im
(
n̂∗[d]2n̂∗[d]3VtbV ∗

ts

) ∼ |Vts |2Im
(
δb + δ∗

s

)
, (110)

and Eq. (81) gives

BAUnear t

BAUSM
= 1016(tβ + t−1

β )|Vts |Im
(
δb + δ∗

s

)
, (111)

that can produce an enhancement as large as 1012. Even if
we are close to a top BGL model we find that, contrary to
what happens with top model itself, there can be enough CP
violation in this class of models to generate the BAU. In an
analogous way, the BAU generated in the bottom BGL model
is proportional to

Im
(

Tr
{
MuN

†
u MuM

†
u MdM

†
d MuM

†
u

})

= −(tβ + t−1
β )(m2

t − m2
c)(m

2
t − m2

u)(m
2
c − m2

u)

× (m2
s − m2

d)Im
(
V ∗
csVtsV

∗
tbVcb

)
, (112)

and the ratio to the SM BAU, for E ∼ 100 GeV, is

BAUBGL−b

BAUSM
= (tβ + t−1

β )
E4

m4
b

∼ 105. (113)

In a pure bottom model there is still not enough CP
violation—coming from the Yukawa sector—to generate the
BAU. But, if we depart from an exact bottom BGL model in
the manner explained in Eq. (87), with

n̂[d]3 ∼ |Vtb|2(1 + δt ), n̂∗[d]2 ∼ VtsV
∗
tb(δ

∗
t − δ∗

c ), (114)

then

Im
(
n̂[d]3n̂∗[d]2VtbV ∗

ts

) ∼ |Vtb|4|Vts |2Im
(
δ∗
t − δ∗

c

)
, (115)

and we obtain, for the models near the bottom BGL one,

BAUnear b

BAUSM
= 1016(tβ + t−1

β )|Vts |Im
(
δ∗
t − δ∗

c

)
, (116)

that is, a potential enhancement of 1013 with respect to the
SM.

9 Phenomenological implications

The most relevant phenomenological implication and the dis-
tinguishing signature of all this class of models is, of course,
the presence of FCNC at tree level, in the Higgs sector and
at an important rate. This result is already present in BGL
models, which are particular cases of the ones studied here.
It is important to stress that in those BGL models one has
either FCNC in the up or in the down sectors, but never in
both. In those BGL models one has the important correla-
tions that we present in Fig. 2a, b [28], where the largest
values of the branching ratios correspond to the largest val-
ues of cβα(tβ + t−1

β ). In generalized BGL models one has,
in general, FCNC both in the up and in the down sectors
simultaneously. To show this new fact, we can first plot in
different colours some trajectories in the space of models that
connect some up-type (û, ĉ, t̂) with some down-type mod-
els (d̂, ŝ, b̂), and some up-type and some down-type models
among themselves.6 These trajectories are represented in Fig.
3. Now, following these trajectories, we can plot in the same
plane the simultaneous prediction for processes mediated by
FCNC both in the up and in the down sectors as in Fig. 4.

We present the values of the corresponding branching
ratios along the trajectories—in model space—represented
in Fig. 3. For example, following the dotted line in Fig. 4a,
4b one can see the transition among the t̂ and the ŝ models
in correspondence with the specific trajectory in Fig. 3. In
Fig. 4a, it is clear that approaching model t̂ (on the left), we
obtain Br(h → bs) at the level of a few times 10−4, while
approaching, along the same dotted line, the ŝ model (at the
bottom), we obtain Br(t → hc) ∼ 10−4. Apart from those
asymptotic, BGL limits, one can obtain larger values for the
branching ratios of both processes h → bs and t → hc

6 Out of simplicity, the trajectories are described in terms of a single
parameter, either through standard one parameter rotations for trajecto-
ries up → up and down → down, or with an additional unitary rotation
interpolating in terms of one parameter between the identity 1 and the
CKM matrix V (for example by scaling the SM values of the standard
CKM parameters with a common parameter which varies between 0
and 1).
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Fig. 2 FCNC processes in BGL models [28]. The two-letter label asso-
ciated to each line, e.g. “sμ”, corresponds to the BGL model. The hor-
izontal dashed lines are “naive” upper bounds (a factor 10 to 100 too

strict) arising from meson mixings; each dashed line bound only applies
to the models indicated by the letter on the arrow

t̂

ĉû d̂ ŝ

b̂

Fig. 3 Trajectories in the space of gBGL models

along that t̂ ↔ ŝ line, something that cannot occur in any
BGL model. The different lines in Fig. 4, as indicated in the
figure, correspond to the different correlations associated to
the lines in the space of models in Fig. 3.

In Figs. 5 and 6 we show how the correlations presented
in Figs. 2(a) and 2(b) change when going from one model
to another. The dots in Figs. 5 and 6 represent special, BGL,
models. In some cases the lines appear to be cut: in fact, they
arrive at a return point. In Fig. 5 we display FCNC in the
up sector, similarly 6 corresponds to the down sector. It has
to be stressed that we obtained the general bound cβα(tβ +
t−1
β ) ≤ 0.02 in Eq. (76) in order to be safe in any model

but, of course, there are many models where one can exceed
this general bound because, for example, there is no relevant
contribution to D0–D̄0 mixing. This remark explains why
we have presented plots for values of cβα(tβ + t−1

β ) = 0.1, 1
in order to show that in those gBGL models we can have
quite large flavour changing processes induced directly by

the Higgs Yukawa couplings both in the up and in the down
sectors. In particular, it is clear that in this framework we
can still have Br(t → hq) as large as the actual upper bound
O(10−3) [39–42] and simultaneously very large Br(h →
bs) ∼ O(10−4)−O(10−3). Although we have not presented
explicitly the extension of these models to the leptonic sector,
we know from the subset of BGL models that in the leptonic
sector there will be models that additionally have very large
h → μτ up to the actual upper bound level, Br(h → μτ) ∼
10−3 [52–54].

Conclusions

We have analysed the question of FCNC in the framework
of 2HDM. In this paper, it has been shown that BGL mod-
els can be readily generalized to gBGL models which keep
the nice feature of renormalisability, but no longer belong to
the minimal flavour violation framework. Contrary to BGL
models, gBGL models contain four extra flavour parameters
beyond the CKM matrix V , in spite of the drastic reduction
in the number of parameters in gBGL, when compared to
those present in the general 2HDM. It has been shown that in
gBGL models FCNC are present at tree level, but in a con-
trolled manner, rendering them plausible extensions of the
SM. In fact they can have simultaneously FCNC in the up
and in the down sector, a difference with BGL models that
have FCNC in one of the sectors only.

The flavour structure of Yukawa couplings in gBGL is
achieved, in a natural way, through the introduction of a Z2

symmetry, at the Lagrangian level. So gBGL models use the
same symmetry as proposed by Glashow and Weinberg in
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cβα(tβ + t−1
β ) = 1.0

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

Br(h → bd)

B
r(

h
→

bs
)

(a) Br(h → bq), cβα(tβ + t−1
β ) = 1.

t̂

ĉ
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Fig. 6 Br(h → bs) vs. Br(h → bd) FCNC processes in gBGL models
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NFC models, the only difference lies in the way the quark
fields transform under Z2. gBGL models contain BGL mod-
els as special cases, in the sense that in the parameter space of
gBGL there are regions where one comes close to particular
BGL models. Note that in the limit where a BGL is reached,
the Lagrangian acquires a larger symmetry, namely a Z4 or a
U (1) symmetry, dictated by the corresponding neutrino type
(either Majorana or Dirac) of the BGL model.

It is well known that the SM does not generate sufficient
baryon asymmetry of the Universe (BAU) at the electroweak
phase transition. One of the reasons for this is the fact that in
the SM CP violation is too small. This stems from the fact
that the WB invariant [44,49] controlling CP violation in the
SM is of order mass to the 12th. We have analysed in detail
how lower order CP odd invariants appear in gBGL models.
It turns out that they arise at a much lower mass order which
leads to the possibility of generating a much higher BAU,
compared to that in the SM.
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A Appendix A: Necessary and sufficient conditions for
gBGL

We complete in this appendix the proof of the sufficient
conditions in the following general result: the WB invariant
matrix conditions

�
†
2�1 = 0, �

†
2�1 = 0,

�
†
2�1 = 0, �

†
2�1 = 0, (19)

are the necessary and sufficient conditions to define gBGL
models or a type I 2HDM7, provided there are no massless
quarks.

7 Since we are not specifying the leptonic sector, with type I we also
refer to type X 2HDM.

It is always possible, in general, to write

�i = Wdi Ddi U
†
di

, �i = Wui Dui U
†
ui , (117)

where Wdi , Wui , Udi and Uui are unitary matrices, and Ddi

and Dui are diagonal ones. From �
†
2�1 = 0 it is straight-

forward that [�1�
†
1,�2�

†
2] = 0 and thus one can choose

Wu1 = Wu2 = Wu, (118)

while from �
†
2�1 = 0 it follows that [�1�

†
1, �2�

†
2] = 0 and

therefore we can also choose

Wd1 = Wd2 = Wd . (119)

Now, in �
†
2�1 = 0, Wu simplifies away and we have

D†
u2

Du1 = 0, (120)

and similarly, for �
†
2�1 = 0,

D†
d2

Dd1 = 0. (121)

If there are no massless quarks, there are two kinds of solu-
tions for Eq. (120),

(a) type I 2HDM

Du1 =
⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠ , Du2 =

⎛
⎝u1 0 0

0 u2 0
0 0 u3

⎞
⎠ , (122)

with ui 	= 0 in order to have massive up quarks. Notice
that interchanging Du1 � Du2 will give rise to the same
model, as explained later.

(b) gBGL

Du1 =
⎛
⎝u1 0 0

0 0 0
0 0 0

⎞
⎠ , Du2 =

⎛
⎝0 0 0

0 u2 0
0 0 u3

⎞
⎠ , (123)

with ui 	= 0 again. As above, exchanging Du1 � Du2

does not introduce new models. We should also take into
account the possibility that u1 	= 0 is in a different posi-
tion in the diagonal of Du1 while respecting D†

u2 Du1 = 0,
which is ensured with a corresponding permutation of the
diagonal elements of Du2 .

Similarly to the up sector, we have different solutions of
Eq. (121), and we consider three possibilities.
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(a) First,

Dd1 =
⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠ , Dd2 =

⎛
⎝d1 0 0

0 d2 0
0 0 d3

⎞
⎠ , (124)

with di 	= 0. Notice that Eq. (122) together with Eq. (124)
with interchanged Dd1 � Dd2 do not match in order to
be a solution of Eqs. (19).

(b) Second, Dd1 and Du1 have equal rank, and we could con-
sider in general permutations of the diagonal elements,
for example

Dd1 =
⎛
⎝0 0 0

0 d2 0
0 0 0

⎞
⎠ , Dd2 =

⎛
⎝d1 0 0

0 0 0
0 0 d3

⎞
⎠ . (125)

Then, of course, the rank of Dd2 is equal to the rank of
Du2 .

(c) Third, Dd1 and Du1 have different rank (and therefore
Dd2 and Du2 also have different rank), for example

Dd1 =
⎛
⎝d1 0 0

0 d2 0
0 0 0

⎞
⎠ , Dd2 =

⎛
⎝0 0 0

0 0 0
0 0 d3

⎞
⎠ . (126)

We have to explore now which solutions to Eqs. (19) arise
from the available possibilities in Eqs. (122)–(123) and
Eqs. (124)–(126).

– Dd1 = 0 if and only if Du1 = 0, which corresponds to
a type I or X 2HDM. The proof is simple: if Dd1 = 0,
Dd2 has rank 3, and thus �2 has rank 3. Since �

†
2�1 =

0, all column vectors of �1 are in the null-space of �
†
2

(they are all non-zero vectors transformed into the zero
or null vector), but since rank(�

†
2) = 3, according to the

rank-nullity theorem, the null-space of �
†
2 has dimension

3 − 3 = 0, and thus �1 = 0, that is, Du1 = 0. Equation
(19) are then trivially verified. Of course, there is also the
solution Dd2 = Du2 = 0, which is completely equivalent
with a trivial relabelling of the scalar doublets �1 � �2.

– Next we show that concerning Eqs. (123) and (125)–
(126), the ranks of the Yukawa matrices should match
in the following manner: rank(Dd1) = rank(Du1) and
rank(Dd2) = rank(Du2). Consider for definiteness Du1

and Du2 as in Eq. (123). First, since �
†
2�1 = 0 and

�
†
2�1 = 0, with W = W †

u Wd ,

D†
u2

W Dd1 = 0, D†
d2
W † Du1 = 0. (127)

D†
u2W has rank 2, and thus its null-space has dimension

1; according to the first equation above, if Dd1 had rank 2,

then the null-space of D†
u2W would have at least dimen-

sion 2 in contradiction with the first statement: conse-
quently, the rank of Dd1 has to be 1. Then rank(Dd1) =
rank(Du1) = 1 and rank(Dd2) = rank(Du2) = 2.
That is, the matrices in Eq. (125) match the ones in
Eq. (123) for solutions of Eq. (19) while Eqs. (125) and
(123) do not match. Finally, relabelling of scalar doublets
�1 � �2 gives equivalent solutions with rank(Dd1) =
rank(Du1) = 2 and rank(Dd2) = rank(Du2) = 1.

– The following step is to show that the most general case
can be taken to be

Du1 =
⎛
⎝u1 0 0

0 0 0
0 0 0

⎞
⎠ , Du2 =

⎛
⎝0 0 0

0 u2 0
0 0 u3

⎞
⎠ ,

Dd1 =
⎛
⎝d1 0 0

0 0 0
0 0 0

⎞
⎠ , Dd2 =

⎛
⎝0 0 0

0 d2 0
0 0 d3

⎞
⎠ . (128)

It is trivial to check that with the insertion of

P12 =
⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠ , (129)

in �i = Wd P12P12 Ddi P12P12 U
†
d = W ′

d (P12 Ddi P12)

U ′†
d , one can redefine W ′

d = Wd P12 and U ′
d = Ud P12,

while P12 in P12 Ddi P12 permutes the first and second
elements in the diagonal. This would take, for example,
Eq. (125) into the desired form, matching with Eq. (123).

– Finally, substituting eq. (128) in D†
u1 W Dd2 = 0,

u∗
1

⎛
⎝0 d2 W12 d3 W13

0 0 0
0 0 0

⎞
⎠ = 0, (130)

we get W12 = W13 = 0, while from D†
u2 W Dd1 = 0,

d1

⎛
⎝ 0 0 0
u∗

2W21 0 0
u∗

3W31 0 0

⎞
⎠ = 0, (131)

we haveW21 = W31 = 0. ThenW has the block structure

W = W †
u Wd = eiω

⎛
⎝1 0 0

0 W22 W23

0 W32 W33

⎞
⎠ . (132)
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One can now complete the proof; going back to Eq. (117):

�1 = Wu

⎛
⎝u1 0 0

0 0 0
0 0 0

⎞
⎠U †

u1
= Wu

⎛
⎝× × ×

0 0 0
0 0 0

⎞
⎠ ,

�2 = Wu

⎛
⎝0 0 0

0 u2 0
0 0 u3

⎞
⎠U †

u2
= Wu

⎛
⎝0 0 0

× × ×
× × ×

⎞
⎠ , (133)

�1 = Wd

⎛
⎝d1 0 0

0 0 0
0 0 0

⎞
⎠U †

d1
= Wu W

⎛
⎝× × ×

0 0 0
0 0 0

⎞
⎠

= Wu

⎛
⎝× × ×

0 0 0
0 0 0

⎞
⎠ ,

�2 = Wd

⎛
⎝0 0 0

0 d2 0
0 0 d3

⎞
⎠U †

d2
= Wu W

⎛
⎝0 0 0

× × ×
× × ×

⎞
⎠

= Wu

⎛
⎝0 0 0

× × ×
× × ×

⎞
⎠ . (134)

With a WB transformation given by QL �→ Wu QL we
arrive at the equivalent gBGL structures in Eqs. (14).

Appendix B: Electric dipole moments

Attending to the explicit form of the Nd and Nu matrices in
Sect. 4 and the discussion in Sect. 8, it is clear that gBGL
models include new sources of CP violation. Although the
dedicated analysis of Sect. 6 addresses the controlled nature
of the FCNC, one might still be concerned with the possibility
that too large contributions to EDMs are present, induced in
particular by the couplings to the charged scalar H+ or by the
(flavour) diagonal couplings to the neutral scalars, present in
Eqs. (72).

For the latter, let us consider for the moment a generic
generation j of the up sector (for the down sector the reason-
ing is identical); the flavour diagonal couplings in Eqs. (72)
are controlled by [Mu] j j and [Nu] j jγR + [N †

u ] j jγL for the
neutral scalars H0 and R0, and by i[Nu] j jγR − i[N †

u ] j jγL
for the pseudoscalar A. Following Eq. (57),

[Nu] j j = tβmu j − (tβ + t−1
β )n̂[u] j n̂∗[u] jmu j

= (tβ − (tβ + t−1
β )|n̂[u] j |2)mu j = [N †

u ] j j , (135)

and hence, for the coupling to R0,

[Nu] j jγR +[N †
u ] j jγL = (tβ −(tβ + t−1

β )|n̂[u] j |2)mu j , (136)

while for the coupling to A,

i[Nu] j jγR − i[N †
u ] j jγL = i(tβ − (tβ + t−1

β )|n̂[u] j |2)mu j γ5.

(137)

In general we have

Im
([Nu] j j

) = Im
([Nd ] j j

) = 0 (138)

and

Im
(

Tr
{
NuM

†
u

})
= Im

(
Tr

{
NdM

†
d

})
= 0. (139)

With such couplings, the flavour diagonal quark interactions
with the different neutral scalars are not CP violating [55,
56], and no contribution to the EDMs arises. This applies to
one loop contributions, to two loop Barr–Zee contributions
[57], to two loop contributions to the three gluon Weinberg
operator [58] and to effective four fermion operators [59].
Notice that, although H0 and R0 are not the physical scalars,
this conclusion remains unchanged when they are rotated
into the mass eigenstates H and h in Eq. (71).

For the charged scalar H+, one loop diagrams and con-
tributions to the three gluon operator are not CP violat-
ing. Furthermore, the charged Higgs Barr–Zee contribu-
tions which are expected to be dominant [60] (see also
[61]), are also CP conserving because their proportionality
to Im

([Nu]t t [Nq ] j j
) = 0.
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