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Abstract We show that the Green’s functions in a non-
linear gauge in the theory of perturbative quantum gravity
is expressed as a series in terms of those in linear gauges.
This formulation also holds for operator Green’s functions.
We further derive the explicit relation between the Green’s
functions in the theory of perturbative quantum gravity in a
pair of arbitrary gauges. This process involves some sort of
modified FFBRST transformations which are derivable from
infinitesimal field-dependent BRST transformations.

1 Introduction

Since its inception, general relativity has had many strik-
ing similarities to gauge theories. For instance, both involve
the idea of local symmetry and therefore share a number
of formal properties. Moreover, consistent quantum gauge
theories are well established but as yet no satisfactory quan-
tum field theory of gravity has been found. The structures
of the Lagrangians of these theories are rather different.
The Yang–Mills Lagrangian contains only up to four-point
interactions, while the Einstein–Hilbert Lagrangian contains
infinitely many interactions. Despite these differences, string
theory provides us with sufficient reasons for claiming that
gravity and gauge theories can, in fact, be unified. For exam-
ple, the Maldacena conjecture [1,2] relates the weak coupling
limit of a gravity theory to a strong coupling limit of a special
supersymmetric gauge field theory. With this similarity, the
gauge theories are allowed to be used directly as a resource
for computations in perturbative quantum gravity.

The perturbative quantum gravity as a gauge theory is a
subject of extensive research [3–5]. For example, the mode
analysis and Ward identities for a ghost propagator for per-
turbative quantum gravity have been demonstrated [6]. The
Feynman rules and propagator for gravity in the physically
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interesting cases of inflation have been analyzed [7]. The
propagator for a gauge theory exists only after fixing a gauge.
For instance, the Landau and Curci–Ferrari type gauges have
their common uses in perturbation theory [8,9]. Being gauge-
fixed, the theory loses their local gauge invariance. However,
it possesses the rather different fermionic rigid BRST invari-
ance [10,11].

The BRST symmetry and the associated concept of BRST
cohomology provide the most used covariant quantization
method for constrained systems such as gauge and string the-
ories [12,13]. The BRST and the anti-BRST symmetries for
perturbative quantum gravity in flat spacetime have also been
investigated [14–16], which was summarized by Nakanishi
and Ojima [17]. Recently, the BRST formulation for the per-
turbative quantum gravity in general curved spacetime has
also been analyzed [18–20]. The usual infinitesimal BRST
transformation has been generalized by allowing the parame-
ter to be finite and field-dependent [21]. This FFBRST enjoys
the properties of the usual BRST except that it does not leave
the path integral measure invariant. For the FFBRST trans-
formations have been found several applications in gauge
field theories in flat spacetime [21–41] as well as in curved
spacetime [42,43]. The FFBRST formulation to connect the
Green’s function of Yang–Mills theory in a set of two other-
wise unrelated gauge choices has been established [45]. Nev-
ertheless, the FFBRST formulation to connect Green’s func-
tions has not been developed so far in the context of perturba-
tive quantum gravity. The development of a FFBRST formu-
lation to connect Green’s functions in perturbative quantum
gravity is the goal of the present investigation.

In this paper, we discuss the usual FFBRST transforma-
tion in perturbative quantum gravity to connect the linear
and non-linear gauges of the theory. Further, we establish a
connection between arbitrary Green’s functions (or opera-
tor Green’s functions) in two sets of gauges for the theory
of perturbative quantum gravity. In view of their extreme
importance, we choose these to be the linear (Landau) and
non-linear (Curci–Ferrari) type gauges. Here we find that
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to connect the Green’s functions of the theory rather than a
connection of gauges we require a different FFBRST trans-
formation. Finally, we establish a compact result expressing
an arbitrary Green’s function or operator Green’s function in
non-linear gauges with a closed expression involving similar
Green’s functions in Landau gauges.

This paper is presented as follows. In Sect. 2, we present
the usual FFBRST transformation for a general gauge the-
ory. In Sect. 3, we recapitulate the FFBRST transformation to
connect the linear and non-linear gauges in linearized gravity.
In Sect. 4, we demonstrate a similar FFBRST transformation
to connect the Green’s functions of the perturbative quan-
tum gravity by a compact formula. In the last section, we
summarize the results motivated by future developments.

2 The usual FFBRST transformations

In this subsection, we recapitulate the FFBRST transforma-
tion for the general gauge theory in general curved spacetime
[46]. For this purpose, we first write the usual BRST trans-
formation,

δbφ(x) = sφ(x)δ�, (1)

where δ� is an infinitesimal and field-independent Grass-
mann parameter and φ(x) is the generic notation of fields
(h, c, c̄, b) involved in the theory of quantum gravity. One
observes for a BRST transformation that its basic prop-
erties do not depend on whether the parameter δ� is (i)
finite or infinitesimal, (ii) field-dependent or not, as long as
it is anticommuting and spacetime independent. This ren-
ders us the freedom to make the parameter δ� finite and
field-dependent without affecting its basic features. The first
step toward this goal is to make the infinitesimal parame-
ter field-dependent by interpolating a continuous parameter,
κ (0 ≤ κ ≤ 1), in the theory. The fields, φ(x, κ), depend
on κ; φ(x, κ = 0) = φ(x) is for the initial fields and
φ(x, κ = 1) = φ′(x) is for the transformed fields.

The infinitesimal field-dependent BRST transformation is
defined by [21]

dφ(x, κ) = s[φ(x)]�′[φ(κ)]dκ, (2)

where �′[φ(κ)]dκ is the infinitesimal but field-dependent
parameter. The FFBRST transformation is then obtained by
integrating this infinitesimal transformation from κ = 0 to
κ = 1, as follows:

φ′ ≡ φ(x, κ = 1) = φ(x, κ = 0) + s[φ(x)]�[φ], (3)

where

�[φ] = �′[φ]exp f [φ] − 1

f [φ] (4)

is the finite field-dependent parameter and f [φ] is given by

f [φ] =
∑

i

∫
d4x

δ�′[φ]
δφi (x)

sbφi (x). (5)

The resulting FFBRST transformation leaves the effective
action invariant but the functional integral changes non-
trivially under it [21]. Now we compute the Jacobian of the
path integral measure under the FFBRST transformation.

We first define the Jacobian of the path integral mea-
sure under such transformations with an arbitrary finite field-
dependent parameter, �[φ(x)], by

Dφ′ = J (κ)Dφ(κ). (6)

The Jacobian, J (κ), can be replaced within the functional
integral as

J (κ) → exp[i S1[φ(x, κ), κ]], (7)

where S1[φ(x), κ] is a local functional of the fields if and
only if the following condition is satisfied [21]:

∫
Dφ

[
1

J

dJ

dκ
− i

dS1[φ(x, κ), κ]
dκ

]
ei(SL [φ]+S1[φ,κ]) = 0.

(8)

The infinitesimal change in the Jacobian J (κ) is addressed
with the following formula [21]:

1

J

dJ

dκ
= −

∫
d4y

[
±sφ(y, κ)

δ�′[φ]
δφ(y, κ)

]
, (9)

where the + sign is used for bosonic fields φ and the − sign
is used for fermionic fields φ.

Recently, exactly similar FFBRST transformations have
also been considered and a general Jacobian has been cal-
culated explicitly in terms of the general finite parameter �

[47].

3 The FFBRST transformation in perturbative
quantum gravity: preliminaries

In this section we consider perturbative quantum gravity in
the framework of the FFBRST transformation. In particu-
lar we analyze the perturbative quantum gravity in linear and
non-linear gauges. Then we generalize the BRST transforma-
tion by making the transformation finite and field-dependent.
Furthermore, we establish the connection between these two
gauges using the FFBRST transformation [46].
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3.1 The linearized quantum gravity

Let us start by writing the classical Lagrangian density for
gravity in general curved spacetime,

Lc = √−g(R − 2λ), (10)

where R is the Ricci scalar curvature and λ is a cosmolog-
ical constant. Here units are settled in such a manner that
16πG = 1. In the weak approximation the full metric g f

ab
can be written as a sum of the fixed metric of background
spacetime gab and the small perturbations around it, denoted
by hab. This fluctuation is considered as a quantum field that
needs to be quantized. Therefore, numerically

g f
ab = gab + hab. (11)

Incorporating such a decomposition, the Lagrangian density
given in (10) described in terms of hab remains invariant
under the following coordinate transformation:

δ�hab = ∇a�b + ∇b�a + £(�)hab, (12)

where the Lie derivative of hab with respect to the vector
field �a is defined by

£(�)hab = �c∇chab + hac∇b�
c + hcb∇a�

c. (13)

The gauge invariance reflects the redundancy in physical
degrees of freedom. Such a redundancy in gauge degrees of
freedom produces constraints in the canonical quantization
and leads to divergences in the generating functional. In order
to fix the redundancy we choose the following gauge-fixing
condition satisfied by the quantum field:

G[h]a = (∇bhab − β∇ah) = 0, (14)

where the parameter β �= 1. This is so because β = 1
leads to vanishing conjugate momentum corresponding to
h00 and therefore the generating functional diverges. This
gauge-fixing condition on the quantum level comes about by
adding the following term in the classical action:

Lg f = √−g[iba(∇bhab − β∇ah)]. (15)

The induced (Faddeev–Popov) ghost term is then defined by

Lgh = √−gc̄aMabc
b, (16)

where the Faddeev–Popov matrix operator Mab has the fol-
lowing expression:

Mab = i∇c[δcb∇a + gab∇c − 2βδca∇b + ∇bh
c
a

−hab∇c − hcb∇a − βgcag
ef (∇bhef + heb∇ f + h f b∇e)].

(17)

Henceforth, the effective action for perturbative quantum
gravity in curved spacetime dimensions (in linear gauge)
reads

SL =
∫

d4x(Lc + Lg f + Lgh), (18)

which is invariant under the following BRST transforma-
tions:

shab = (∇acb + ∇bca + £(c)hab),

sca = −cb∇bca, sc̄a = ba, sba = 0. (19)

Here we observe that the gauge-fixing and the ghost parts of
the effective Lagrangian density are BRST-exact. Therefore,

Lg = Lg f + Lgh,

= is
√−g[c̄a(∇bhab − β∇ah)],

= s
. (20)

The gauge-fixed fermion (
) then has the expression


 = i
√−g[c̄a(∇bhab − β∇ah)]. (21)

However, the gauge-fixing and ghost terms in the non-linear
Curci–Ferrari gauge condition are written

L′
g = L′

g f + L′
gh,

= √−g
[
iba(∇bhab − β∇ah) − i c̄b∇bc

a(∇chac

−β∇ah) + c̄aMabc
b + α

2
bb∇bc̄

aca

−α

2
c̄c∇cc

b∇bc̄
aca − α

2
b̄b∇bb

aca

−α

2
c̄b∇bc̄

acd∇dca − α

2
bab

a + αc̄abb∇bca

+αc̄a c̄bcd∇b∇dca
]
, (22)

where α is a gauge parameter. For instance, the effective
action, having such gauge-fixing and Faddeev–Popov ghost
terms, in a non-linear gauge is given by

SNL =
∫

d4x(Lc + L′
g), (23)

which remains unchanged under the following BRST trans-
formations:

s hab = ∇acb + ∇bca + £(c)hab,

s ca = − cb∇bca,

s c̄a = ba − c̄b∇bc
a,

s ba = − bb∇bc
a − c̄bcd∇b∇dc

a .

(24)

3.2 FFBRST transformation for linear to non-linear gauge

We construct the FFBRST transformation for perturbative
quantum gravity utilizing the BRST transformation (19) as
follows:
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f hab = (∇acb + ∇bca + £(c)hab) �[φ],
f ca = −cb∇bca �[φ],
f c̄a = ba �[φ],
f ba = 0, (25)

where �[φ] is an arbitrary finite field-dependent parame-
ter. To establish the connection between the Landau and
the (non-linear) Curci–Ferrari gauge we opt for the finite
field-dependent parameter constructed from the following
infinitesimal field-dependent parameter:

�′[φ]= i
α

2

√−g
∫

d4y
(
c̄b∇bc̄aca − c̄aba−c̄a c̄b∇bca

)
.

(26)

Exploiting Eqs. (9) and (26) we calculate the change in Jaco-
bian as

1

J (κ)

dJ (κ)

dκ
= −i

α

2

√−g
∫

d4x
[
−bb∇bc̄aca

+ c̄d∇dcb∇bc̄aca + c̄b∇bbaca + c̄b∇bc̄acd∇dca

+ bab
a − 2c̄abb∇bca − 2c̄a c̄bcd∇b∇dca

]
. (27)

The local functional S1 in the expression (7) is written by

S1[φ(κ), κ] =
∫

d4x
[
ξ1bb∇bc̄aca + ξ2c̄

d∇dcb∇bc̄aca

+ ξ3c̄b∇bbaca + ξ4c̄b∇bc̄acd∇dca

+ ξ5bab
a + ξ6c̄

abb∇bca + ξ7c̄
a c̄bcd∇b∇dca

]
, (28)

where the parameters ξi (i = 1, 2, . . . , 7) depend explicitly
on the parameter κ as follows [46]:

ξ1 = α

2

√−gκ, ξ2 = −α

2

√−gκ, ξ3 = −α

2

√−gκ,

ξ4 = −α

2

√−gκ,

ξ5 = −α

2

√−gκ, ξ6 = α
√−gκ, ξ7 = α

√−gκ. (29)

With these identifications of ξi (κ) the expression of S1

becomes

S1[φ(κ), κ]=κ

∫
d4x

√−g
[α

2
bb∇bc̄aca− α

2
c̄d∇dcb∇bc̄aca

− α

2
c̄b∇bbaca − α

2
c̄b∇bc̄acd∇dca

− α

2
bab

a + αc̄abb∇bca + αc̄a c̄bcd∇b∇dca
]
. (30)

Therefore, the FFBRST transformation (25) changes the
effective action in a functional integration as

SL+S1(κ = 1) =
∫

d4x
[
Lc+i

√−gba(∇bhab−β∇ah)

+√−gc̄aMabc
b

+ α

2

√−gbb∇bc̄aca − α

2

√−gc̄d∇dcb∇bc̄aca

− α

2

√−gc̄b∇bbaca − α

2

√−gc̄b∇bc̄acd∇dca

− α

2

√−gbab
a + α

√−gc̄abb∇bca

+α
√−gc̄ac̄bcd∇b∇dca

]
. (31)

After performing a shift in the Nakanishi–Lautrup field by
c̄b∇bca , the above expression reduces to

SL + S1(κ = 1) =
∫

d4x
[
Lc + i

√−gba(∇bhab − β∇ah)

− i
√−gc̄b∇bc

a(∇bhab − β∇ah)

+√−gc̄aMabc
b
]
,= SNL , (32)

which is nothing but the effective action for perturbative
quantum gravity in a Landau gauge.

4 Relation between Green’s function for linear and
non-linear gauges

In this section, we establish a procedure for a FFBRST trans-
formation that transforms the generating functional (Green’s
function) in one kind of a gauge choice to the generating
functional in another kind of a gauge choice. For this purpose
we define the generating functional for perturbative quantum
gravity in a linear gauge,

WL =
∫

Dφ ei SL [φ], (33)

which transforms under a FFBRST transformation φ′(x) =
φ(x) + sφ�[φ] defined in (25) as follows:

WNL =
∫

Dφ′ ei SL [φ′] = WL . (34)

Now, we want to implement this transformation to connect
the Green’s functions in the two gauges for quantum gravity
theory. According to the standard procedure, n-point Green’s
functions in a non-linear gauge under the FFBRST transfor-
mation transform as

GNL
i1,...,in =

∫
Dφ′

n∏

r=1

φ′
ir ei SN L [φ′],

=
∫

Dφ

n∏

r=1

(φir + sir φ�[φ])ei SL [φ′],

= GL
i1,...,in + GL

i1,...,in , (35)
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where GL
i1,...,in

refers to the difference between the n-point
Green’s functions in the two sets of gauges. This may involve
additional vertices corresponding to insertions of operators
sir φ. But it seems technically incorrect for the following rea-
sons.

A priori, it is not obvious that if condition (8) (for replac-
ing the Jacobian to ei S1 ) holds for quantum gravity; then an
equation modified to include an arbitrary operator O[φ] of
type
∫

DφO[φ]
[

1

J

dJ

dκ
− i

dS1[φ(x, κ), κ]
dκ

]

ei(SL [φ]+S1[φ,κ]) = 0 (36)

would also hold. Of course it does not hold in general for
the reason discussed in [45]. For this reason, to connect the
Green’s functions for the two type of gauges we need an
elaborate treatment of the FFBRST transformation.

We begin with a general Green’s function in non-linear
gauge defined by

G =
∫

Dφ′O[φ′]ei SN L [φ′], (37)

where O[φ′] is an arbitrary operator. Therefore, (37) covers
both the arbitrary operator Green’s functions and the arbi-
trary ordinary Green’s functions. Specifically, for O1[φ′] =
h′
abh

′
cd , Eq. (37) describes the gauge graviton propagator,

however, forO2[φ′] = h′
abc̄

′cc′
c it describes the 3-point prop-

agator. We want to express the Green’s function (G) of per-
turbative gravity entirely in terms of the linear type gauge
Green’s functions (and possibly involving vertices from sφ).
So we define

G(κ) =
∫

DφO[φ(κ), κ]ei(SL [φ]+S1[φ,κ]), (38)

where the form of operator O[φ(κ), κ] demands

dG

dκ
= 0. (39)

Under a FFBRST transformation (κ = 1), it reflects that

G(1) =
∫

Dφ′O[φ′, 1]ei SN L [φ′], (40)

which coincides with (37), whereas at κ = 0 this reads

G(0) =
∫

DφO[φ, 0]ei SL [φ], (41)

and is numerically equal to (40). Now, we need to determine
the form of O[φ(κ), κ] in (38) so that the condition (39)
gets satisfied. For this purpose, we perform the field trans-
formation from φ(κ) to φ(κ + dκ) through an infinitesimal
field-dependent BRST transformation defined in (2), which
leads to

G(κ) =
∫

Dφ(κ + dκ)
J (κ + dκ)

J (κ)

×
(
O[φ(κ + dκ), κ + dκ] − sφ�′ δO

δφ
dκ + ∂O

∂κ
dκ

)

×
(

1 − i
dS1

dκ
dκ

)
ei SL [φ(κ+dκ)]+i S1[φ(κ+dκ),κ+dκ],

=
∫

Dφ(κ + dκ)

(
1 + 1

J

dJ

dκ
dκ

)

×
(
O[φ(κ + dκ), κ + dκ] − sφ�′ δO

δφ
dκ + ∂O

∂κ
dκ

)

×
(

1 − i
dS1

dκ
dκ

)
ei SL [φ(κ+dκ)]+i S1[φ(κ+dκ),κ+dκ],

= G(κ + dκ), (42)

if and only if
∫

Dφ(κ)

([
1

J

dJ

dκ
−i

dS1

dκ

]
O[φ(κ), κ]−sφ�′ δO

δφ
+ ∂O

∂κ

)

ei SL [φ(κ)]+i S1[φ(κ),κ] = 0. (43)

So we get precisely the correct expression (43) for replac-
ing the Jacobian of the path integral measure in the Green’s
function of quantum gravity as ei S1 instead of the incorrect
one (36).

Exploiting the information of above expression, the
required condition for the κ-independence of G is
∫

Dφ(κ)ei SL [φ(κ)]+i S1[φ(κ),κ]
(

∂O
∂κ

+
∫

(∇acb + ∇bca

+ £(c)hab)�
′ δO
δhab

−
∫

cb∇bca�
′ δO
δca

+
∫ [

ba − κ c̄b∇bc
a
]
�′ δO

δc̄a

)
= 0. (44)

Now, we construct the operator O to satisfy

∂O
∂κ

+
∫

(∇acb + ∇bca + £(c)hab)�
′ δO
δhab

−
∫

cb∇bca�
′ δO
δca

+
∫ [

ba − κ c̄b∇bca
]
�′ δO

δc̄a
= 0.

(45)

Then condition (44) automatically is satisfied. Now, we con-
sider a new set of fields (h̃ab, c̃a, ˜̄ca, b̃a) having the following
infinitesimal field-dependent BRST transformation:

δh̃ab
δκ

= (∇ac̃b + ∇bc̃a + £(c̃)h̃ab) �′[φ̃],
δc̃a

δκ
= −c̃b∇bc̃a �′[φ̃],

δ ˜̄ca
δκ

= B̃a �′[φ̃],
δ B̃a

δκ
= 0,

(46)
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where B̃a = b̃a − κ ˜̄cb∇bc̃a . These new fields satisfy the
following boundary condition: ˜φ(1) = φ(1). The condition
(45) for O[φ̃(κ), κ] instead of O[φ(κ), κ] reads

dO[φ̃(κ), κ]
dκ

= 0. (47)

Now utilizing O[φ̃(1), 1] = O[φ(1), 1] = O[φ′] we obtain

O[φ̃(κ), κ] = O[φ′], (48)

which tells us how the operatorO[φ(κ), κ] evolves. To derive
the FFBRST transformation corresponding to (46), we first
define the modification in f of (5) as follows:

f [φ̃, κ] = f1[φ̃] + κ f2[φ̃]. (49)

Therefore,

d�′[φ̃(κ)]
dκ

= ( f1[φ̃] + κ f2[φ̃])�′[φ̃(κ)]. (50)

Performing an integration from 0 to κ , we have

�′[φ̃(κ)] = �[φ] exp

(
κ f1[φ] + κ2

2
f2[φ]

)
. (51)

Similarly, integrating (46) we get the FFBRST transforma-
tion, written compactly as

φ′ = φ +
[
(δ̃1[φ] + δ̃2[φ])

∫
dκ exp

×
(

κ f1[φ] + κ2

2
f2[φ]

)]
�′[φ],

= φ + δφ[φ]. (52)

Now we apply the FFBRST transformation (52) on the
Green’s function in non-linear gauge (37)

G =
∫

Dφ′O[φ′]ei SN L [φ′],

=
∫

DφO[φ + +δφ[φ]]ei SL [φ],

=
∫

DφO[φ]ei SL [φ]

+
∫

Dφ
[
(δ̃1[φ] + δ̃2[φ])

×
∫

dκ exp

(
κ f1[φ]+ κ2

2
f2[φ]

)]
�′[φ]δO[φ]

δφ
ei SL [φ].

(53)

Further, it can be written by

〈O〉NL = 〈O〉L +
∫ 1

0
dκ

∫
Dφ(δ̃1[φ]

+ δ̃2[φ])�′[φ]δO[φ]
δφ

ei SM , (54)

where i SM == i SL + κ f1[φ] + κ2

2 f2[φ]. In this way, we
establish the connection between the Green’s function in two
gauges in perturbative quantum gravity.

5 Concluding remarks

In this work, unlike the usual FFBRST transformation we
have demonstrated a different FFBRST transformation in
the case of perturbative quantum gravity to relate the arbi-
trary Green’s functions of the theory corresponding to two
different gauges. For concreteness, we have considered the
linear and the non-linear gauges from the point of view of
their common usage in gravity theory. The Green’s functions
in a non-linear gauge in the theory of perturbative quantum
gravity is expressed as a series in terms of those in linear
gauges. In this context we have shown the remarkable differ-
ence between the modified FFBRST transformation and the
usual one. Further, being related to the usual FFBRST for-
mulation, this modified FFBRST transformation is obtained
by integration of (46). We hope that the final result, put in a
simple form, will be very useful from a computational point
of view in the theory of perturbative quantum gravity.
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