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Abstract

Background: Dramatic improvements in DNA-sequencing technologies and computational analyses have led to
wide use of whole exome sequencing (WES) to identify the genetic basis of Mendelian disorders. More than 180
novel rare-disease-causing genes with Mendelian inheritance patterns have been discovered through sequencing
the exomes of just a few unrelated individuals or family members. As rare/novel genetic variants continue to be
uncovered, there is a major challenge in distinguishing true pathogenic variants from rare benign mutations.

Methods: We used publicly available exome cohorts, together with the dbSNP database, to derive a list of genes
(n = 100) that most frequently exhibit rare (<1%) non-synonymous/splice-site variants in general populations. We
termed these genes FLAGS for FrequentLy mutAted GeneS and analyzed their properties.

Results: Analysis of FLAGS revealed that these genes have significantly longer protein coding sequences, a greater
number of paralogs and display less evolutionarily selective pressure than expected. FLAGS are more frequently
reported in PubMed clinical literature and more frequently associated with diseased phenotypes compared to the
set of human protein-coding genes. We demonstrated an overlap between FLAGS and the rare-disease causing
genes recently discovered through WES studies (n = 10) and the need for replication studies and rigorous statistical
and biological analyses when associating FLAGS to rare disease. Finally, we showed how FLAGS are applied in
disease-causing variant prioritization approach on exome data from a family affected by an unknown rare genetic
disorder.

Conclusions: We showed that some genes are frequently affected by rare, likely functional variants in general
population, and are frequently observed in WES studies analyzing diverse rare phenotypes. We found that the rate
at which genes accumulate rare mutations is beneficial information for prioritizing candidates. We provided a
ranking system based on the mutation accumulation rates for prioritizing exome-captured human genes, and
propose that clinical reports associating any disease/phenotype to FLAGS be evaluated with extra caution.
Background
Uncovering the genetic basis of human disease improves
care for affected patients and their families by providing
a diagnosis, refining genetic counseling, informing clin-
ical management (incl. decision making on appropriate
preventive measures and available treatments), and ul-
timately facilitation of unrelated affected families as well
identification of novel targets for treatment [1-3]. Rare
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Mendelian diseases are caused by altered function of sin-
gle genes and individually have a low prevalence (fewer
than 200,000 people in the United States, or fewer than 1
in 2,000 people in Europe) [4] but collectively these affect
millions of individuals worldwide [5-7]. The current best
estimate on the number of rare genetic disorders is be-
tween 6,000 to 7,000 [7] based on the catalogue Online
Mendelian Inheritance in Man (OMIM) [8], and a com-
prehensive reference portal for rare diseases (Orphanet)
[9]; however, taking into consideration that the human
phenome is far from fully characterized [10] together with
higher estimates on rare-disease-causing genes based on
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human mutation rate and the number of essential genes
[11], the number of rare genetic disorders is likely higher.
Next-generation sequencing (NGS) high-throughput

technologies have revolutionized the discovery of gene
defects causing rare human diseases by detecting genetic
variations at base-pair resolution within an individual
[12-14]. NGS is widely used to sequence either a portion
of the human genome (~1%) by capturing the protein-
coding sequences (known as whole exome sequencing,
WES), or to sequence the entire human genome (known
as whole genome sequencing, WGS). In particular, WES
technology had been widely used to identify genetic basis
of Mendelian disorders by sequencing the exomes of just
a few unrelated individuals or family members, and has
led to discovery of more than 180 novel rare-disease-
causing genes with Mendelian inheritance patterns, ac-
cording to the review published in November 2013 [7,15]
(the number continues to increase with some rapidity).
Considering the estimates that genetic basis has been de-
termined for about ~3,500 of the rare diseases [7], there
remain thousands of rare-disease-causing genes to be
uncovered.
With the increasing rate of the discovery of rare gen-

etic variants, WES has the potential to identify the ma-
jority of the remaining rare-disease-causing genes in the
near future. A major challenge in identification of the
true pathogenic variants lies in the differentiation be-
tween a large number of non-pathogenic functional vari-
ants and disease-causing sequence variants in a studied
family (in this study, the term “functional variant” is re-
stricted to missense/nonsense and splice site variants).
Current WES analyses of rare genetic disorders use simi-
lar approaches [16] to filter the observed variants to en-
rich for potential causal genes. Specifically, after the
reads are mapped, and variants are called and annotated,
the variants are compared against internal exome data-
bases as well as public databases, such as dbSNP [17],
Exome Variant Server (EVS), 1000 Genomes Project [18],
and HapMap project [19,20] to exclude variants that are
likely to arise from technological causes and variants that
are common (e.g. variants observed in more than 1%) in a
population. The variants are further prioritized based on
their predicted effect on protein function [21,22], where
silent and non-coding variants (except for splice-site af-
fecting variants) are typically excluded or ranked lower.
The still extensive lists of candidate disease-causing vari-
ants can be further refined based on the family history
and a hypothesized model of inheritance [7,15]. However,
it is well-established that a significant proportion of cod-
ing variants in each individual represent rare variants (ab-
sent from dbSNP or observed with frequency of ≤1%)
[17,20], and that genomes of healthy individuals contain
an average of ~100 loss-of-function variants [23]. The ana-
lyst must further consider the possibility that non-coding
variations (e.g. regulatory alterations) could be involved,
thus the filtered results may not contain the causal gene.
Thus, for many rare disorders, it is still challenging to sep-
arate the real disease-causing variant from the prioritized
set of rare, likely functional variants that are not account-
able for the investigated phenotype.
There are broadly used tools such as SIFT [21] and

PolyPhen-2 [24] that provide an interpretation of muta-
tion impacts. Many of these tools focus on the individual
variants. In the variant-focused studies, it has been noted
that variants tend to arise more frequently in long genes
(e.g. TTN and MUC16). In considering that researchers
often focus their interpretation of exome data on the
genic level initially, it might be advantageous to have
methods and ranking systems that integrate the individual
variants at the genic level more systematically to inform
variant prioritization. While there are long-standing
methods for ranking a set of genes based on their anno-
tations [25], there has been limited work on rankings
based on sequencing properties. One ranking system
based on the genic level is RVIS [26]. RVIS generates a
score based on the frequencies of observed common
coding variants compared to the total number of observed
variants in the same gene.
To further help in identification of disease-causing

variants from families affected by rare Mendelian disor-
ders, we expanded the current, common prioritization
parameters that focus mainly on frequency at which vari-
ants themselves are seen in normal population, to include
the frequency at which genes are found to be affected by
rare, likely functional variants. Using rare variations from
dbSNP and EVS, we introduced the concept of FLAGS
(FLAGS for FrequentLy mutAted GeneS). We showed
that these genes possess characteristics that make them
less likely to be critical for disease development, but are
more likely to be assigned causality for diseases than ex-
pected for protein-coding genes in general. We further
demonstrated FLAGS’ utility via a case study as well as lit-
erature review, and application in our in-house database.
Finally, we provided a ranking system from FLAGS to as-
sist in the prioritization of genes from exome/whole-gen-
ome clinical studies.
Methods
Terminologies used in this study
In this study, the term “functional variants” refers to vari-
ants that are missense, nonsense or fall within a splice site
window (see below for specifics). The length of a gene is
defined to be the longest open reading frame (ORF) of the
gene, thus excluding promoters, untranslated regions
and introns. All genes are referred to by their HGNC
(HUGO Gene Nomenclature Committee) [27] official
gene symbol.



Shyr et al. BMC Medical Genomics 2014, 7:64 Page 3 of 14
http://www.biomedcentral.com/1755-8794/7/64
Datasets
In the following sections, we provide detailed descrip-
tions of how the datasets were obtained or generated.
Table 1 lists the size and descriptive nature of the data-
sets used in this study. Each gene list referred to in this
report can be found in Additional file 1: Table S1.

a. FrequentLy mutAted GeneS (FLAGS)
Table

Name
datase

FLAGS

OMIM

HGMD

WES

Backgr
Variations from EVS hosted on the NHLBI Exome
Sequencing Project (ESP6500) were downloaded
on February 2014. The criteria used to generate
the variations are available online (http://evs.gs.
washington.edu/EVS/). Variations from dbSNPv138
[17] were downloaded from the NCBI website
(version date 20130806). Genomic annotations were
assigned to each variation using SNPeff v3.5g [29]
with the parameter –SpliceSiteSize 7 and human
genome version GRCh37.75. Variants were filtered
for allelic frequency <1% according to dbSNP’s
overall frequency and EVS’s combined population
frequency. Where a discrepancy in the reported
frequency arose between the two resources, we
took the higher frequency. Variants were further
filtered for “functional” coding mutations that
result in a change in the amino acid sequence
(i.e. missense/nonsense), or mutations that reside
within a putative splice site junction (with a window
size of 7, as supplied in the parameter for SNPeff).
The remaining mutations were excluded if they were
observed more than 10 times within our in-house
database consisting of 150 exomes and 13 whole
genomes (a list of filtered out variants are provided in
Additional file 2: Table S6 as VCF). This last step was
included because we noticed it is common to see
polymorphic mutations from dbSNPv138 without
1 Description of the datasets used in this study

of
ts

Size Description

100 The top 100 of FrequentLy mutAted GeneS with
rare (<1% allelic frequency) functional variants
from dbSNPv138 and ESP6500

3099 The list of protein-coding genes associated with
human diseases from Online Mendelian
Inheritance in Man [8]

2691 The list of protein-coding genes with damaging
mutations (<1% allelic frequency) from Human
Gene Mutation Database [28].

300 Downloaded from Boycott et al. (2013) [7] -
a list of novel genes implicated in human
disorders based on whole exome sequencing
studies, or novel/known pathogenic mutations
discovered by whole-exome sequencing.

ound 18580 The entire set of human protein-coding genes
that have complete start and end translation
annotations with a specified dN/dS ratio
an allelic frequency attached; filtering against an
in-house pipeline allowed us to remove polymorphic
variants that do not have an annotated frequency.
Among these remaining mutations, for each gene,
we counted the number of mutations observed
per gene. Only protein-coding genes with a fully
annotated translation start and end, and a valid
dN/dS ratio are included for consideration
(see Methodology section “Gene length and
dN/dS ratio”). From this ranked list, we selected
the top 100 genes (0.5% of the 19818 genes
overlapping between dbSNP and EVS) with the
most observed mutations as a focus for this
study. This set will be referred throughout the
manuscript as “FLAGS”. The entire ranked list is
available in Additional file 3: Table S4.
b. Disease genes datasets

To obtain a list of reliable disease-associated genes,
we drew from multiple resources. The first list of
disease-associated genes was downloaded from
OMIM website on March 2014 using the provided
file “morbidmap”. This list will be referred
throughout the manuscript as “OMIM genes”.
A second list contains pathogenic variations
downloaded from the HGMG professional version
(file date 20130927) [28]. To focus on likely
high-penetrance pathogenic alleles, we filtered
the variations in this file by the same frequency
criteria as we performed for obtaining FLAGS
(see Methodology section “FrequentLy mutated
GeneS”), and limited to only the mutations
annotated as “DM” (damaging mutations). The
affected genes from those remaining variations are
compiled, and will be referred throughout this
manuscript as “HGMD genes”. A third disease set
was downloaded from the Supplemental file
published by Boycott et al. (2013) [7], which
provided a compiled list of novel genes and/or
novel phenotypes associated with known disease-
genes discovered through exome sequencing. For
all three disease-associated-gene lists, we mapped
the gene symbols to their official HGNC gene
symbol (and discarded the ones that could not be
mapped), retained only protein-coding genes with
a fully annotated translation start and end, and
a valid dN/dS ratio. OMIM and HGMD (Human
Gene Mutation database) overlap with the top
100 FLAGS by 42 and 37 genes respectively
(Additional file 4: Table S2A, S2B).
c. Background dataset

The complete list of human-coding genes was
downloaded from Ensembl [30] Biomart on March
2014 using version Ensembl Genes 75 with genome
version GRCh37.p13. Protein-coding genes without

http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/
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HGNC gene symbol, a proper translation start and
translation end annotation according to this
genome version were discarded. Genes without a
valid dN/dS ratio were removed (i.e. without any
observed synonymous polymorphisms according to
dbSNPv138 and EVS). This last step was done for
two reasons: 1) to ensure there is no bias when
evaluating dN/dS ratio in our results, 2) to ensure
the genes selected in this study have been covered
in NGS studies, since any gene without at least one
observed synonymous mutation is presumably not
sufficiently captured in either exome or whole-
genome studies. The Background set overlaps
FLAGS completely.
The comparison analyses in the Results section are
done without removing the overlap between the
gene datasets.
Gene length and dN/dS ratio
We calculated the selection pressures acting on genes
by comparing non-synonymous substitution per non-
synonymous site (dN) to the synonymous substitutions
per synonymous site (dS). This ratio of the number of
non-synonymous substitutions per non-synonymous site
to the number of synonymous substitutions per syn-
onymous site (dN/dS) was calculated using the formula
of observed non−synonymous substitutions

of possible non−synonymous site
of observed synonymous substitutions
of possible synonymous substitutions

[31]. The number of possible

synonymous and non-synonymous mutations was de-
rived by examining the longest annotated coding tran-
script per gene (transcript length based upon Ensembl
Biomart described above). Only transcripts with anno-
tated start and end positions were considered. The
number of observed synonymous and non-synonymous
mutations was calculated from the same dbSNPv138
and EVS datasets as described above. We verified that
our methodology provides a comparable dN/dS ratios
to the ratios reported previously [31] (Additional file 5:
Table S5). Gene length was derived by converting the
same transcript that was used to calculate the dN/dS
ratio into amino acid sequences. In this study, the term
“gene length” is defined to be the ORF of the gene, thus
excluding promoters, untranslated regions and introns.

Paralogs
The paralogous relationships for human genes were de-
rived from the Ensembl Comparative Genomics API using
version Ensembl Genes 75, GRCh37.p13. A custom Perl
script was written to extract the paralogs for every gene.

Gene-to-disease phenotypic terms
We used MeSHOP software [32] to identify over-
represented disease terms associated with each gene.
MeSHOP returns a list of MeSH (Medical Subject Head-
ing) terms for each gene with a p-value for each term.
Each p-value was calculated by an over-representation
(compared to control) of the MeSH terms assigned to the
set of articles within PubMed that are associated with the
gene (based on relationships defined in gene2pubmed; ar-
ticles considered include up to March 2013). From this
output, for each gene, the non-disease related MeSH
terms were filtered out, and the remaining MeSH terms
were selected for significance (using the Bonferroni cor-
rection and a significance threshold of 0.05). To derive
gene-to-disease relationships with an independent source,
we extracted phenotypic diseased terms per gene from
Human Phenotype Ontology website [33] by downloading
the file “genes_to_diseases.txt” (version April 2014).

Publication record analysis
For our publication analysis on the relationship between a
gene and its frequency of citation(s) within biomedical lit-
erature, we used Gene Reference into Function (GeneRIF),
a manually curated list of experimentally validated gene
functions available as part of NCBI’s EntrezGene database.
Each entry in GeneRIF contains a short description of a
gene function and a PubMed identifier for the publication
documenting the evidence of the described function.
Therefore, we were able to count the number of papers
published on a gene’s functionality by counting the num-
ber of PubMed records associated to the gene. The follow-
ing are the detailed steps of our publication calculation.
First, two flat files necessary for our analysis were down-
loaded via FTP from NCBI Gene on April 2014: GeneRIF
(available at ftp://ftp.ncbi.nih.gov/gene/GeneRIF/generifs_
basic.gz) and EntrezGene entries for human (ftp://ftp.ncbi.
nih.gov/gene/DATA/Homo_sapiens.gene_info.gz). Second,
because GeneRIF refers to each gene by its EntrezGene
ID, we mapped the gene symbol of all genes on our lists
(FLAGS, OMIM, HGMD, Background) to EntrezGene ID
using EntrezGene entries downloaded in the previous
step. Third, for each gene of interest, we counted the
number of PubMed IDs (PMIDs) associated with its
EntrezGene ID in GeneRIF. Because GeneRIF does not
guarantee one-to-one relationship between a GeneRIF
entry and a PMID (http://www.ncbi.nlm.nih.gov/books/
NBK3840/#genefaq.Why_does_the_number_of_GeneRIFs),
we filtered out duplicates in the list of PMIDs linked to a
gene. Last, to filter the PMIDs by their publication date,
we collected the publication date of each PMID via quer-
ies into PubMed using the ESummary query provided
within the Entrez Programming Utilities (E-utilities).

Statistical analyses
Unless stated otherwise, all statistical analyses and plots
were carried out in R [34] version 2.15.3. Non-parametric
Mann–Whitney U one-tailed test was executed by wilcox.

ftp://ftp.ncbi.nih.gov/gene/GeneRIF/generifs_basic.gz
ftp://ftp.ncbi.nih.gov/gene/GeneRIF/generifs_basic.gz
ftp://ftp.ncbi.nih.gov/gene/DATA/Homo_sapiens.gene_info.gz
ftp://ftp.ncbi.nih.gov/gene/DATA/Homo_sapiens.gene_info.gz
http://www.ncbi.nlm.nih.gov/books/NBK3840/#genefaq.Why_does_the_number_of_GeneRIFs
http://www.ncbi.nlm.nih.gov/books/NBK3840/#genefaq.Why_does_the_number_of_GeneRIFs


Figure 1 The word cloud of FLAGS. A text file was created using a
custom Perl script to reflect the frequency of mutation per gene in
FLAGS. The Tagxedo (http://www.tagxedo.com/) was then used to
generate the word cloud. The size of the words reflects how frequently
they are found to bear rare, likely functional variants in the general
population. As expected TTN and MUC16 are the top two genes.
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test function with parameter exact = TRUE. Violin plots
were generated with Vioplot package. The input files to
the analyses are available in Additional file 6: Table S9A
and 9B.

Mutation Detection using WES – a case study
A 3-year old female patient, born as an only child to
non-consanguineous parents of Turkish descent after an
uncomplicated pregnancy and delivery, presented with
profound early-onset developmental delay, microcephaly,
seizures, dysmorphic features, myopia, bone marrow dys-
plasia with lymphopenia, neutropenia, aplastic anemia and
combined immunodeficiency (B and T cell) was enrolled
into the TIDEX gene discovery project, approved by the
Ethics Board of the Faculty of Medicine of the University
of British Columbia (H12-00067).
Extensive clinical investigations were performed ac-

cording to the TIDE diagnostic protocol [35] to deter-
mine the etiology of patient’s condition. These included:
chromosome micro array analysis for copy number vari-
ants (CNVs) (Affymetrix Genome-Wide Human SNP
Array 6.0); telomere length analysis; CT and MRI scans
and comprehensive metabolic testing.
Genomic DNA was isolated from the peripheral blood

of the patient as well as parents using standard tech-
niques. Whole exome sequencing was performed for the
index patient and her unaffected parents using the Ion
AmpliSeq™ Exome Kit and Ion Proton™ System from Life
Technologies (Next Generation Sequencing Services,
UBC, Vancouver, Canada) at 120X coverage. An in-house
designed bioinformatics pipeline (Additional file 7: Text S3)
was used to align the reads to the human reference
genome version hg19 and to identify and assess rare
variants for their potential to disrupt protein function.
The candidate variants were further confirmed using
Sanger re-sequencing in all the family members. Primer
sequences and PCR conditions are available on request.
Deleteriousness of the candidate variants was assessed
using Combined Annotation–Dependent Depletion (CADD)
scores [36].

Results
FLAGS: genes frequently affected by rare, likely-functional
variants in public exomes
It has been previously reported that TTN and MUC16
appear in multiple exome analyses due to their length
[37-41]; researchers are aware of these genes and are
cautious when encountering rare likely functional (mis-
sense, nonsense, splice site) variants in WES analyses
[37-41]. In a study of 53 independent families suffering
from distinct rare inborn errors of metabolism (compris-
ing of 150 whole exomes and 13 whole genomes; http://
www.tidebc.org; Additional file 8: Text S4 and Additional
file 9: Table S7), we confirmed that rare/novel, likely
functional variants affecting TTN and MUC16 repeat-
edly passed all the prioritization steps of our pipeline
and appeared in ~5% of our candidate disease-gene
lists. However, other genes were repeatedly observed in
multiple families affected with different phenotypes (e.g.
DST). This motivated us to compile a set of FLAGS (Fre-
quentLy mutAted GeneS) to understand their properties
and facilitate better interpretation of phenotypes associ-
ated with these variants. The FLAGS list was generated by
ranking genes based on number of rare (<1%) functional
variants affecting these genes in general populations
(NHLBI Exome Sequencing Project (ESP6500) and
dbSNPv138). As expected, TTN and MUC16 are the
top two genes based on the number of rare functional
variants; however, other genes that were frequently af-
fected by rare, likely functional variants in multiple TIDE
families with unrelated phenotypes were also observed to
be frequently mutated in general population (Additional
file 10: Table S8). To explore the properties of these fre-
quently mutated genes, we focused our analysis on the top
100 from this ranked list, which we hereafter refer to as
FLAGS (Figure 1).

FLAGS tend to have longer ORFs
In this study, the assignment of gene length refers to the
longest open reading frame. Genes with longer ORFs are
expected to have more mutations than shorter genes. To
confirm this, we determined the distribution of gene

http://www.tidebc.org
http://www.tidebc.org
http://www.tagxedo.com/
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lengths based on the longest annotated open reading
frame for each gene. FLAGS have an average length of
4653 ± 3605 aa (amino acids). The high variance is due
to two genes (TTN andMUC16) having extremely long
lengths (35992 and 14508 aa respectively) compared to
the rest of the protein coding genes. Excluding the 2
outlying genes, the remaining FLAGS genes (n = 98)
have an average ORF length of 4233 ± 1399 aa. Figure 2a
shows the distribution of ORF lengths across different
evaluated datasets (with outliers removed to show the
distribution clearer). The entire FLAGS have overall
much higher ORF length than HGMD, OMIM and
Background (HGMD, OMIM comparisons each yield a
p-value <2.2e−16, Background comparison yields a p-value
of 0.00027). This is aligned with our expectation that
FLAGS are frequently mutated from exome analysis be-
cause they correspond to genes with long coding regions.
a

c

Figure 2 Properties of FLAGS. (a) Violin distribution of open reading fram
in terms of amino acids for the longest annotated transcript per gene. Outlier
gene across the evaluated gene sets. Y-axis shows the violin distribution of pa
the plot. (c) Cumulative distribution of dN/dS ratio across the evaluated gene
probability according to the cumulative distribution function.
FLAGS tend to have paralogs
The presence of paralogs may increase tolerance for
otherwise phenotype-inducing functional variations due
to functional compensation [42,43]. We calculated the
number of paralogs per gene reported by the Ensembl
Compara database [30], and compared this property be-
tween different gene sets. FLAGS overall have an average
of 4 paralogs per gene. Figure 2b shows the distribution of
the number of paralogs across the different gene sets.
Aligned with our expectation, FLAGS have more para-
logs than genes from OMIM, HGMD and Background
(OMIM p-value = 7.2e−05, HGMD p-value = 7.4e−05,
Background p-value = 8.1e−09). While the existence of
paralogs may cause read mapping challenges that leads to
an increased frequency of false variant predictions, most
of these technical errors will be eliminated by a filter for
variant frequency, as they will arise recurrently.
b

e lengths across the evaluated gene sets. Y-axis shows the length defined
s are excluded from the plot. (b) Distribution of number of paralogs per
ralogs based on Ensembl Compara database. Outliers are excluded from
sets. X-axis is limited from 0 to 2, and Y-axis plots the corresponding



Shyr et al. BMC Medical Genomics 2014, 7:64 Page 7 of 14
http://www.biomedcentral.com/1755-8794/7/64
FLAGS tend to have higher dN/dS ratios
Genes which exhibit many functional genetic variations
(missense/nonsense/splice site) may have a higher toler-
ance for variations and thus a reduced likelihood of phe-
notypes subject to negative selection. For each gene, we
calculated the dN/dS ratio as a proxy indicator of the
amount of selective pressure acting on protein-coding
genes. FLAGS have an average dN/dS ratio of 0.65 ± 0.18.
Overall these genes have significantly higher ratio com-
pared to genes from HGMD, OMIM, and Background
(each individual comparison yields a p-value <0.005).
Figure 2c shows the relative densities from cumulative
distribution functions for each gene set. The trend indi-
cates that frequently mutated genes have higher dN/dS
ratio on average than expected.

Variants detected in FLAGS tend to be predicted as less
deleterious
We explored the possibility that the FLAGS genes are af-
fected by less deleterious rare variants compared to other
genes. If the variants in FLAGS are less likely to be in-
volved in diseases, then we would expect the variants to
have lower predicted damage scores. To calculate this, we
used the Phred-scaled Combined Annotation Dependent
Depletion (CADD) score developed by Kircher et al.
(2014) to rank the deleteriousness of each single nu-
cleotide variant [36]. The method objectively integrates
diverse annotations into a single measurement for each
variant by training upon ~15 million genetic variants
separating humans from chimpanzees against a simulated
set of variants not exposed to selection. This method was
chosen over other variant prediction tools because of its
superior performance [36] and its ability to quantify the
severity of a variant by a ranking system. This ranking sys-
tem compares the candidate variant against other possible
variants in the genome and assigns it a score based on this
comparison; other variant prediction tools do not take
into account other possible mutations in the genome [44].
Also, the CADD method includes ranking of nonsense
and splice site variants, while other tools only handle mis-
sense [36]. For each gene, we calculated the proportion of
variants with CADD Phred-scaled score <10, between 10
and 20, and above 20. We found that FLAGS are more
enriched for variants with low scores, compared to OMIM
and HGMD (Figure 3a; p-values = 2.6e−11, 2.9e−12 respect-
ively). Likewise, OMIM and HGMD are more enriched
for variants with high impact score (>20) than FLAGS
(Figure 3b; p-values = 2.4e−09, and 1.2e−10 respectively).
These results are aligned with our expectation. We add-
itionally analyzed the genic tolerance of FLAGS to func-
tional genetic variants, using residual variation intolerance
score (RVIS) published by Petrovski et al. (2013) [26] and
observed trends in the same direction (Additional file 11:
Text S2).
FLAGS tend to be reported in PubMed and associated
with disease phenotypes
We sought to determine if there is a publication bias for
pathogenic mutations in the frequently mutated genes.
For each gene, we calculated the number of publications
related to human diseases and biological functions using
GeneRIF annotations (Figure 4). FLAGS have an average
of 51 articles per gene, which is lower than for genes
from HGMD and OMIM (OMIM p-value = 0.00087,
HGMD p-value = 0.0035). However, FLAGS have more
publications than the Background set (p-value = 6.3e−12).
We next considered if the frequently mutated genes are

associated with greater diversity of disease phenotypes
compared to disease-associated genes. Our expectation is
that if the frequently seen genes are arising as candidates
in more studies, and are less likely to be truly pathogenic,
then they could be associated to a wider range of pheno-
types in the literature (we recognize the association could
also be due to pleiotropy [45], see Limitations). To analyze
if FLAGS have been frequently correlated to human dis-
eases, we used two different computational resources
(MeSHOP [32], HPO [33]) to extract known significant
relationship(s) between genes and human disease pheno-
types based on published scientific articles. Figures 5a and
b show the distribution of the number of disease terms
from HPO and MeSHOP per gene within gene sets. From
MeSHOP results, we see that FLAGS have slightly fewer
MeSH diseased terms per gene than genes from OMIM
(mean 8.1 vs. 10.2; p-value = 0.013), and significantly
fewer terms per gene than HGMD genes (mean 8.1 vs.
9.5; p-value = 2.3e−12). FLAGS have more MeSH terms
than Background genes (mean 8.1 vs. 3.1; p-value =
1.3e−15). These observations are consistent with the results
based on HPO annotations, where we again see that while
FLAGS have fewer disease phenotypic terms than genes
from OMIM and HGMD (mean 2.1 vs. 3.7 and 3.8 re-
spectively; p-values <0.0001), FLAGS exhibit more terms
than the Background (mean 2.1 vs. 0.6; p-value = 3.7e−14).
To adjust for the potential bias that genes with more arti-
cles are likely to have more MeSH and HPO terms at-
tached, we repeated the analysis by normalizing the MeSH
and HPO terms to the number of publications in Gen-
eRIF. The normalized observations are consistent with the
results if no normalization was applied (Additional file 12:
Text S5).

FLAGS recently implicated in rare-Mendelian disorders
We sought to determine which FLAGS have been re-
ported with pathogenic mutations in NGS clinical studies.
Boycott et al. (2013) provided a compilation of 178 novel
genes discovered to be disease-associated through exome
sequencing [7], of which three overlapped with FLAGS
(KMT2D/MLL2, HERC2, and DST). To explore the prop-
erties of those 3 genes, we analyzed the ratio between



a b

Figure 3 FLAGS genes are affected by rare variants predicted to be less deleterious than the variants affecting known disease-genes.
(a) A boxplot distribution of proportion of variants with CADD score <10. The Y-axis plots the proportion of variants within each gene set having
a Phred-scaled CADD score of <10. The proportion was calculated per individual gene. (b) A boxplot distribution of proportion of variants with
CADD score >20. The Y-axis plots the proportion of variants within each gene set having a Phred-scaled CADD score of >20. The proportion was
calculated per individual gene.

Shyr et al. BMC Medical Genomics 2014, 7:64 Page 8 of 14
http://www.biomedcentral.com/1755-8794/7/64
number of rare variants and gene length, as well as pres-
ence of putative essential protein domains by assessing the
distribution of rare variants across the gene. We found
that among the FLAGS, KMT2D and HERC2 have the
lowest ratios of number of rare variants compared to gene
length, while DST is one of the three genes among the
FLAGS set with significant non-uniform distribution of
rare variants across the gene (p-value = 1.2e-04; the other
two are EPPK1 and HRNR; see Additional file 13: Text S1
for more details on methodology and rationale). If we
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were to expand this 178 novel-rare-disease gene list from
Boycott et al. (2013) to include the exome studies
reporting on already-known disease-associated genes
with known/novel pathogenic mutations, then this ex-
panded set (n = 300) overlapped FLAGS by an additional
7 genes (TTN, RYR1, PKHD1, RP1L1, ASPM, SACS,
ABCA4). In the discussion we provide our thoughts
and literature analysis on why these genes have been re-
ported as disease-associated despite being among the
frequent genes to harbor rare functional variants.
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Figure 5 FLAGS tend to be associated with disease phenotypes. (a) Violin distribution of number of HPO disease terms across the evaluated
gene sets. Y-axis is the violin distribution showing the number of HPO terms per gene. Outliers are excluded from the plot. (b) Violin distribution
of number of MeSH disease terms from program MeSHOP across the evaluated gene sets. Y-axis is the violin distribution showing the number of
MeSH terms per gene. Outliers are excluded from the plot.
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Applying FLAGS to prioritize candidate variants
Case study
To demonstrate a disease-causing variant prioritization
approach using FLAGS and whole exome sequencing
data, we selected one family from our TIDE cohort af-
fected by an unknown rare genetic disorder. Through
WES performed for the index and her unaffected parents
(Methodology - Mutation Detection using WES – a case
study), rare variants were identified and assessed for their
potential to disrupt protein function. Only those variants
predicted to be functional (missense, nonsense and frame-
shift changes, as well as in-frame deletions and splice-
site effects) were subsequently screened under a series
of inheritance models. In total, we identified six rare
“functional” homozygous, and eight rare “functional”
compound heterozygous candidates. Of those, only two
genes affected by missense variants were considered
functional candidates:
(1)VPS13B gene (MIM 607817) had been found to bear
homozygous or compound heterozygous mutations
in patients with Cohen syndrome (MIM 216550).
Cohen syndrome is characterized by developmental
delay/intellectual disability, facial dysmorphism,
microcephaly, neutropenia, and weak muscle tone
(hypotonia). The features of Cohen syndrome vary
widely in presence and severity among affected
individuals. Additional features, perhaps patient-
specific, appear in the reports; myopia and small
hands and feet are observed in our patient. In
our WES analysis, we identified two rare variants
affecting this gene in the index, suggesting compound
heterozygous inheritance. Neither of the variants was
found in more than 160 in-house exomes; one of the
variants was predicted to be deleterious using the
CADD scores [36] with a score higher than 20, while
the second variant was given the score of less than 5.
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Sanger re-sequencing confirmed that mother is a
carrier of one variant, while the father is the carrier
of the second variant and the index is compound
heterozygous making the VPS13B gene a candidate
disease-gene in this family.

(2)SENP1 gene (MIM 612157) product is one of the
desumoylating enzymes [46] which is important for
proper development and survival in mice. SENP1
was found to regulate expression of GATA1 in mice
and subsequent erythropoiesis [47]. Furthermore,
SENP1 was found to be essential for the development
of early T and B cells through regulation of STAT5
activation [48]. To date, germline mutations in SENP1
had not been described in any human diseases. Our
WES analysis identified a rare missense homozygous
variant in the index. The variant was not found in
more than 160 in-house exomes and was predicted
to be the most deleterious of all homozygous
variants using the CADD scores [36]. The Sanger
re-sequencing of the genomic DNA confirmed that
index is homozygous for the variant, while both
parents are carriers.

To further prioritize between these two genes, we con-
sider a FLAGS-based approach. The VPS13B gene is one
of the FLAGS (top 100, rank 67) and is frequently seen
to be affected by rare, likely functional variants in gen-
eral population. On the other hand, SENP1 is rarely af-
fected by functional variants in the general population
(rank 11,947). In addition, VPS13B is a frequently seen
in the TIDE cohort of patients, 22 of 160 individuals
have rare, likely functional alleles in the VPS13B gene
that pass our prioritization filters. In contrast, the family
reported here is the only family from the TIDEX cohort
of patients with a rare, likely functional variant affecting
the SENP1. In none of the other 160 exomes did the var-
iants in SENP1 pass our prioritization filters for rare,
likely functional variants. Together with the fact that
VPS13B does not fit well to her severe hematologic find-
ings and bone marrow dysplasia, FLAGS helped us select
SENP1 as candidate gene for our experimental validation
studies. The case report will be published separately. We
further applied prioritization of FLAGS on an in-house
WES/WGS database and illustrated how trio-based exome
families have Mendelian recessive and dominant candi-
dates overlapping with the FLAGS. The FLAGS ranking
can be fed into the candidate identification process and
highlight genes that should be considered as high-risk
candidates for false positives [Additional file 14].

Discussion
WES/WGS studies can identify hundreds to thousands
of rare protein-coding mutations per individual. Genes
vary in their frequency of appearance; genes that are
more likely to harbor rare-coding variants by chance are
less likely to be involved in human diseases, especially in
the context of rare Mendelian disorders. Previous studies
have reported that TTN and MUC16, the two longest
genes in the human genome, should be interpreted with
care due to their long lengths [37-41]. In this study, we
compiled a list of frequently mutated genes (FLAGS)
based upon analysis of rare coding mutations from dbSNP
and Exome Variant Server ESP6500. We compared the
biological properties of FLAGS against genes from disease
databases (HGMD, OMIM) that represent the currently
best reliable curated resources for disease-associated
genes. We further demonstrated the clinical utilities of
FLAGS as a gene prioritization tool. The discussion will
illustrate additional clinical benefits of FLAGS, and
conclude with ideas for future directions and project
limitations.

FLAGS are less likely to be disease-associated
Consistent with our expectations, FLAGS have signifi-
cantly longer coding lengths, higher average dN/dS ra-
tios, and more paralogs than genes from OMIM and
HGMD. Paralogs have been cited as capable to partially
compensate for the loss of gene function [42,43], so the
greater frequency of paralogs could mean that mutations
are less likely to have a critical impact on phenotype. In
the examination of the research literature for FLAGS,
we observed fewer disease annotations compared to dis-
ease genes, but elevated rates compared to background
genes, suggesting that FLAGS have been associated to
human disease more frequently than the rest of the
protein-coding genes.

Clinical utilization of FLAGS for prioritization
Prioritizing candidates in rare disease studies is import-
ant; as it takes substantial time of experts to review each
gene [49], getting better specificity without loss of sensi-
tivity has real value. We demonstrated the utility of
FLAGS as a prioritization tool by overlapping FLAGS
against candidates from clinical exomes in TIDE, with-
out loss of ultimately identified causal genes. We further
illustrated with a single clinical case how when multiple
equally attractive candidates are under consideration,
FLAGS provide a way for clinicians and researchers to
decide which gene to focus on first.

Cautionary indicator
While we are not claiming every gene in FLAGS is
non-pathogenic, we do wish to make it clear that greater
biological evidence is required when interpreting the func-
tional impacts of rare variants in frequently mutated
genes. Among the 300 genes with putative pathogenic
mutations identified via exome sequencing compiled
by Boycott et al. (2013) [7], ten genes intersected with
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FLAGS. We evaluated the gene-level and variant-level
evidence for causality based upon the guideline for in-
vestigation of causality published by MacArthur et al.
(2014) [23]. We found that many results are derived based
upon single-gene sequencing, rather than taking the less
biased exome or whole-genome approach [50-52]. In
addition, many studies reported the mutations as patho-
genic simply due to segregation pattern within the family,
rare allelic frequency and bioinformatics impact predic-
tions [41,53-55], thus lacking experimental validation at
both the variant and gene levels. The screen for rare alleles
is further complicated when some of the studies look at
minor ethnic populations that are not well represented in
the population databases [52,54,55]. The evidence behind
missense variants is especially doubtful when many mis-
sense variants are predicted by CADD [36] to be benign
with a lower impact rank than the rare mutations ob-
served from dbSNP and ESP6500. Altogether, these obser-
vations could explain why these genes harbor frequent
rare functional variations despite being reported in dis-
eases. To avoid false-positive reports of causality, espe-
cially for FLAGS, it will be very important for reports to
follow the recently published guidelines [56] when assign-
ing pathogenicity to new variants identified as well as add-
itional variants identified in genes previously linked to a
particular disease. An example of a good paper would be
the one where the variant is identified in a genome-wide
screening approach with statistical methods applied to
compare the distribution of variants in patients against a
large matched control cohorts, where the evidence is
assessed at both the candidate gene and candidate variant
levels, and where the authors recognize the importance of
combining both computational comparative approaches
and experimental assays for validating the impact of the
variant.

Going beyond the top 100 and what the future entails
Genes with frequent rare variants need to be appropri-
ately ranked in order to reduce false associations and
streamline clinical analysis. Our current results are limited
to the top 100 frequently mutated genes. While it may be
insightful to study the characteristics of the genes at the
other end of the spectrum (the bottom 100 or alternatively
sets of genes with low mutation rates and gene-focused
publications to exclude genes with poor coverage in ex-
ome capture kits), we perceive the greatest long-term util-
ity to be in the incorporation of the complete set of
rankings into the exome interpretation process. To make
our prioritization ranking accessible to the broad research
community, we provide the FLAGS ranking for the genes
represented in both dbSNP and EVS.
The novelty that we bring forth is a ranking that uti-

lizes public control exomes/genomes, which clinicians
can readily apply to their clinical cases. As discussed
above, the ranking is correlated with gene length, evolu-
tionary constraint, and paralogous gene counts.
The high accumulation rate of mutations can be

interpreted partially as genes being under less selective
constraint. A utility of the FLAGS ranking is that it
provides, albeit indirectly, a gene-level indication of
the selective constraint upon a gene, while most existing
metrics such as phastCons [57] or PhyloP [58] provide a
position-specific value. While the FLAGS ranking is not a
substitute for the more direct measures, the genic level in-
formation complements them.
Current prioritization tools lack the ability to evaluate

at both genic and variant level simultaneously. Ultim-
ately, a scoring mechanism integrating biological and
technological features at both the genic and variant level
should be developed. A future direction is to improve
upon methodologies like RVIS [26] and expand beyond
the rate of mutation by employing statistical machine
learning techniques to incorporate the genic and allelic
features as highlighted in this study and previous works
to summarize them into a single computational score.
Such a new quantitative measurement should improve
the ranking of pathogenicity for each gene, and highlight
skeptical candidates to accelerate the clinical translation
of genomic research findings. The mechanism itself (e.g.
the weights of features) would also shed light on the
exact nature of the causes of excess mutation rates and
facilitate better biological understanding.
In the long-term, the accumulation of more exomes

and whole genomes will provide an increasingly rich
body of data for the generation of FLAGS rankings.
Limitations
In the study we relied upon manually-curated GeneRIFs
to extract the publications for each gene. One could
argue for more sophisticated PubMed queries in com-
bination with semantic rules to increase the sensitivity
for assigning human-disease related publications [59,60].
We also recognize that neither MeSHOP nor HPO cap-
ture gene-to-disease terms perfectly. A possible direction
is to explore other gene-disease databases such as HuGE
Navigator [61]. We further acknowledge that the inter-
pretation of MesHOP and HPO could be influenced by
pleiotropic genes. Similarly, we used Ensembl for extract-
ing the paralogous relationships for each gene, but there
are other available extraction algorithms and databases for
inferring paralogy [62-64]. Additionally, our present study
is restricted to genes with both an HGNC symbol and a
fully annotated translation start and end. We recognize
that not all protein-coding genes fit these criteria, and we
are excluding non-coding genes (as well as 5′ and 3′
UTRs of coding genes) from this analysis.
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Conclusion
While most complex disorders generally can confirm the
strength of their findings by comparing against a matched
background cohort, the nature of studying rare mono-
genic disorders mean that there is often insufficient sam-
ple size to conduct a rigorous statistical analysis on the
strength of the finding. In this study, we extracted a list of
frequently mutated genes based on rare variants from
dbSNP and Exome Variant Server. Our results revealed
the biological properties of these genes that could explain
why they are frequently mutated, and why extra discretion
in statistical and biological interpretation needs to be
taken when trying to relate these genes to clinical pheno-
types. We propose that the ranking of how frequent a
gene is mutated in next-generation sequencing studies is
useful for the prioritization of candidate genes.

Consent
Written informed consent was obtained from the pa-
tient’s guardian/parent/next of kin for the publication of
this report.
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