
Influence of magnetic fields on the color screening masses

Claudio Bonati1,�, Massimo D’Elia2, Michele Mesiti2, Francesco Negro2, Andrea Rucci2,��, and
Francesco Sanfilippo3

1Dipartimento di Fisica e Astronomia dell’Università di Firenze and INFN Sez. Firenze, Via Sansone 1,
50019 Sesto Fiorentino (FI), Italy
2Dipartimento di Fisica dell’Università di Pisa and INFN Sez. Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy.
3INFN Sez. Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy.

Abstract. We present some recent results obtained in the study of the color magnetic
and electric screening masses in the QCD plasma. In particular, we discuss how the
masses get modified by strong external fields which are expected to be created in physical
situations such as heavy-ion collisions.

1 Introduction

Strong magnetic fields of the order of the QCD scale can be found in many physical situations and
phenomena such as the early universe [1, 2] or non-central heavy ion collisions [3, 4]. In these con-
texts, fields with intensities up to 1016 Tesla (|e|B ∼ 1 GeV2) are expected to be produced. They may
influence the properties of strongly interacting matter and many theoretical studies have been devoted
to this argument (see reviews in Refs. [5, 6]). As regards the color interaction, in several studies the
effects of a magnetic background on the static quark-antiquark potential has been investigated. [7–
9]. In recent lattice studies [10, 11] it has been shown that the potential gets modified and relevant
consequences may arise at the level of heavy meson production and spectrum (see [12, 13] and the
references herein). In particular, at zero temperature the interaction becomes anisotropic due to the
string tension σ which decreases in the direction parallel to the external field B, while it grows on the
orthogonal plane; at larger T , in the confined regime below the pseudo-critical temperature Tc, the
external field is responsible of a precocious loss of the deconfining properties, in agreement with the
picture of a decreasing Tc due to the field itself.

In our work, we investigated the properties of the heavy quark-antiquark interaction in the de-
confined region above Tc [13]. In the quark-gluon plasma, the color interaction gets screened by the
thermal medium and two different screening lengths (or masses) can be defined corresponding to the
contribution of color-electric and color-magnetic gluons. As a consequence, the production rate of
heavy quark bound states is expected to be suppressed. As argued in the seminal paper in Ref. [14],
the bound state formation gets hindered by the shortening of the screening length when it becomes
comparable to the mean radius of the state itself. Our effort has been devoted to the study, on the
lattice, of the possible effects of a strong magnetic background on the screening lengths.
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This document is organized as follows. In Section 2 we describe the recipe we followed to define
and extract the screening masses and the numerical setup. In Section 3 we show and discuss our
results. Then, we will draw our conclusions in Section 4.

2 Setup

2.1 Definitions

It is known that a perturbative definition of the screening masses in QCD, based on the study of the
pole structure of finite temperature gluon propagators, presents difficulties. With this approach, an
expression for the color-electric mass can be found at leading order, but the computation turns out to
get into troubles at higher order due to divergences of the obtained expressions [15–17]. This problem
has been overcome and it has been shown that a non-perturbative definition of the screening masses
can be obtained [16, 18, 19] by studying the large distance behaviour of suitable gauge-invariant
correlators. The correlator between Polyakov loop is traditionally used

CLL† (r, T ) =
〈
TrL(0)TrL†(r)

〉
, (1)

where

L(r) =
1

Nc
P exp

(
−ig
∫ 1/T

0
A0(x, τ)dτ

)
(2)

is the Polyakov loop operator, P is the path-order operator and Nc is the number of colors. The
correlator CLL† has been largely investigated on the lattice due to its relation [20] with the free energy
FQQ̄(r, T ) of a static quark-antiquark pair

FQQ̄(r, T ) = −T log CLL† (r, T ) . (3)

Therefore, this observable is the finite temperature counterpart of the Wilson loop which is commonly
used to extract the static potential in systems at zero temperature. In our analysis we also made use of
the correlator CLL whose definition retraces the one above,

CLL(r, T ) =
〈
TrL(0)TrL(r)

〉
, (4)

and whose large distance behaviour turns out to be substantially the same of ReCLL† (r,T) in the
deconfined regime [13].

In order to extract the color-electric and color-magnetic screening masses, symmetries can be
used to separate the two contributions. Under Euclidean time-reversal R : τ → −τ the gluon vector
and time components Ai(x, τ) and A0(x, τ) are even and odd, respectively. Using this property it is
straightforward to show that R : L → L† and hence one can define the following combinations of
Polyakov loops

LM =
1
2

(
L + L†

)
LE =

1
2

(
L − L†

)
(5)

which belong to the magnetic and electric sector, separately. These object can be further decomposed
by using the charge conjugation operator C which acts on the Polyakov loop as C : L → L∗. In this
way we can write

LM± =
1
2

(
LM ± L∗M

)
LE± =

1
2

(
LE ± L∗E

)
, (6)

2

EPJ Web of Conferences 175, 12005 (2018) https://doi.org/10.1051/epjconf/201817512005
Lattice 2017



This document is organized as follows. In Section 2 we describe the recipe we followed to define
and extract the screening masses and the numerical setup. In Section 3 we show and discuss our
results. Then, we will draw our conclusions in Section 4.

2 Setup

2.1 Definitions

It is known that a perturbative definition of the screening masses in QCD, based on the study of the
pole structure of finite temperature gluon propagators, presents difficulties. With this approach, an
expression for the color-electric mass can be found at leading order, but the computation turns out to
get into troubles at higher order due to divergences of the obtained expressions [15–17]. This problem
has been overcome and it has been shown that a non-perturbative definition of the screening masses
can be obtained [16, 18, 19] by studying the large distance behaviour of suitable gauge-invariant
correlators. The correlator between Polyakov loop is traditionally used

CLL† (r, T ) =
〈
TrL(0)TrL†(r)

〉
, (1)

where

L(r) =
1

Nc
P exp

(
−ig
∫ 1/T

0
A0(x, τ)dτ

)
(2)

is the Polyakov loop operator, P is the path-order operator and Nc is the number of colors. The
correlator CLL† has been largely investigated on the lattice due to its relation [20] with the free energy
FQQ̄(r, T ) of a static quark-antiquark pair

FQQ̄(r, T ) = −T log CLL† (r, T ) . (3)

Therefore, this observable is the finite temperature counterpart of the Wilson loop which is commonly
used to extract the static potential in systems at zero temperature. In our analysis we also made use of
the correlator CLL whose definition retraces the one above,

CLL(r, T ) =
〈
TrL(0)TrL(r)

〉
, (4)

and whose large distance behaviour turns out to be substantially the same of ReCLL† (r,T) in the
deconfined regime [13].

In order to extract the color-electric and color-magnetic screening masses, symmetries can be
used to separate the two contributions. Under Euclidean time-reversal R : τ → −τ the gluon vector
and time components Ai(x, τ) and A0(x, τ) are even and odd, respectively. Using this property it is
straightforward to show that R : L → L† and hence one can define the following combinations of
Polyakov loops

LM =
1
2

(
L + L†

)
LE =

1
2

(
L − L†

)
(5)

which belong to the magnetic and electric sector, separately. These object can be further decomposed
by using the charge conjugation operator C which acts on the Polyakov loop as C : L → L∗. In this
way we can write

LM± =
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LM ± L∗M

)
LE± =

1
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(
LE ± L∗E
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where the C eigenvalues are indicated by the subscripts ±. From the expression above we find that
TrLM− = TrLE+ = 0, meaning that there is no overlap with the magnetic odd and the electric even
sectors. Magnetic and electric correlators can now be defined as

CM+ (r, T ) =
〈
TrLM+ (0)TrLM+ (r)

〉
− |〈TrL〉|2 CE− (r, T ) = −

〈
TrLE− (0)TrLE− (r)

〉
, (7)

where in the second definition the sign is conventional and the disconnected term is not present due
to the charge conjugation symmetry. This decomposition has been introduced in Ref. [19] and the
correlators above have been studied recently in some lattice studies [21, 22]. In our case, we accessed
these objects in terms of the correlators CLL† and CLL which are related to the color-magnetic and
color-electric by the relations

CM+ = +
1
2

Re
[
CLL +CLL†

]
− |〈TrL〉|2 CE− = −

1
2

Re
[
CLL −CLL†

]
. (8)

Finally, from the large distance behaviour of these correlators it is possible to extract the screening
masses. Indeed, at very high temperatures it is expected [18, 19] that

CM+ (r, T )
∣∣∣∣
r→∞
∼ e−mM(T )r

r
CE− (r, T )

∣∣∣∣
r→∞
∼ e−mE (T )r

r
, (9)

where mE and mM are, respectively, the electric and magnetic masses.

2.2 Numerical setup

We used stout smeared staggered fermions (with Nf = 2 + 1 at physical point) and a Symanzik tree-
level improved gauge action [23, 24]. The partition function in the presence of an external magnetic
field reads as

Z(B) =
∫
DUe−SY M

∏
f=u,d,s

det (Df
st[B])1/4 , (10)

with DU integration measure of the SU(3) gauge links and S Y M is the tree-level improved gauge
action

S Y M = −
β

3

∑
i;µ�ν

(
5
6

W1×1
i;µν −

1
12

W1×2
i;µν

)
, (11)

where the Ws are the real parts of the trace of square and rectangular loops. The fermion matrix is

(Df
st)i, j = amf δi, j +

4∑
ν=1

ηi;ν

2

(
u f

i;νU
(2)
i;ν δi, j−ν̂ − u f ∗

i−ν̂;νU
(2)†
i−ν̂;νδi, j+ν̂

)
, (12)

where U(2) are two times stout-smeared gauge links with isotropic smearing parameter ρ = 0.15 [25]
and the us are the abelian parallel transports representing the external magnetic field. We considered
a constant and uniform magnetic field pointing along the ẑ direction. In this case, a possible choice of
the U(1) gauge links is

uf
i;y = eia2q f Bzix , u f

i;x

∣∣∣∣
ix=Lx
= e−ia2q f Lx Bziy , (13)

with the remaining links set to the identity, where q f is the fermion charge. Notice that, on a lattice
with periodic boundary conditions, the magnetic field must verify the quantization condition |e|Bz =

6πbz/(a2NxNy) where bz ∈ Z.
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In our Monte-Carlo simulations we considered bare parameters given by β = 3.85, ms/ml = 28.15
and ams = 0.0394 corresponding to a lattice spacing a � 0.0989 fm, corresponding to physical
pion mass [26–28]. We used lattices with volumes 483 × Nt with Nt = 6, 8, 10 which correspond
to a physical size of about 5 fm and temperatures T � 330 MeV, 250 MeV, 200 MeV respectively.
For each system we collected statistics of ∼ 5 × 103 configurations separated by five trajectories of
molecular dynamics. Statistical noise have been reduced applying a step of HYP smearing [29, 30].

For B = 0 correlators have been computed by averaging over all lattice directions, while in the
presence of the external field along ẑ we measured separately the correlators in the xy plane and those
along the z axis, i.e. the orthogonal plane and the parallel axis with respect to the magnetic field B.

3 Results

Color-magnetic and color-electric correlators as defined in Eq. (7) have been computed for several
temperatures and magnetic field intensities. An example of the results we obtained is shown in Fig. 1.
As can be seen, when the magnetic field is turned on both the correlators decay faster, suggesting that
the associated screening masses are increased. Moreover, a slight anisotropy emerge in the correlators
and it seems more pronounced in the magnetic case where the signal is larger and less noisy with
respect to the electric one. As regards the role of the temperature, our data suggest that the magnetic
effects are reduced when the T grows [13].
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Figure 1. Comparison of both the color-electric CE− (r, T ) (left) and color-magnetic CM+ (r, T ) (right) correlators
without magnetic field and with |e|B � 1.30 GeV2 at our lowest temperature T � 200 MeV. At B = 0 data
have been obtained averaging over all the directions, while in the presence of the external field we separated the
contributions along the magnetic field (Z) and on the orthogonal plane (XY).

Our data have been fitted using the model in Eq. (9). In order to take into account correlation
between data, a boostrap resampling approach has been applied. The stability of the regression results
has been checked by considering several fit intervals which allowed us to give an estimate of the
systematic uncertainties associated to the procedure. The results we obtained are shown in Fig. 2. At
B = 0 our data agree with the expected behaviour, the masses growing linearly with the temperature
and keeping the correct hierarchy mE > mM . Our findings are also in accordance with the results
obtained on the lattice in Ref. [22] with the same discretization adopted in our work. In the presence
of an external magnetic field, our data suggest that the screening masses grow as a function of |e|B,
according to the observations pointed out previously by looking at the behaviour of the magnetic and
electric correlators. In both cases, mE and mM turns out to increase roughly linearly with similar slope.
This behaviour can be noticed also by looking at the ratio mE(T, B)/mM(T, B) in Fig. 3: it is essentially

4

EPJ Web of Conferences 175, 12005 (2018) https://doi.org/10.1051/epjconf/201817512005
Lattice 2017



In our Monte-Carlo simulations we considered bare parameters given by β = 3.85, ms/ml = 28.15
and ams = 0.0394 corresponding to a lattice spacing a � 0.0989 fm, corresponding to physical
pion mass [26–28]. We used lattices with volumes 483 × Nt with Nt = 6, 8, 10 which correspond
to a physical size of about 5 fm and temperatures T � 330 MeV, 250 MeV, 200 MeV respectively.
For each system we collected statistics of ∼ 5 × 103 configurations separated by five trajectories of
molecular dynamics. Statistical noise have been reduced applying a step of HYP smearing [29, 30].

For B = 0 correlators have been computed by averaging over all lattice directions, while in the
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constant in the regime of magnetic field we explored, meaning also that |e|B do not seems to alter the
mass hierarchy. As also guessed above, the magnetic mass mM shows an anisotropic behaviour, its
value on the plane orthogonal to the external field being larger than that on the parallel direction.
Conversely, in the case of the electric mass this effect is not observed, but the effect could be hindered
by the larger noise. In all cases, as can be seen by looking at the masses plotted against T (see Fig. 2),
all the magnetic effects seem to reduce when the temperature grows.
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Figure 2. Behaviour of the ratios mE/T (left) and mM/T (right) as a function of the magnetic field |e|B (up), the
temperature T (center) and against the dimensionless ratio |e|B/T 2 (down). In all cases data are shown separately
for the direction parallel (Z) and orthogonal (XY) to the magnetic field. Curves associated to the data points are
obtained by a regression with the model in Eq. (14) with the parameters reported in Tab. 1.
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Figure 3. Ratio mE/mM of the screening masses as a function of |e|B for several different temperatures and
separating data along the direction parallel and orthogonal to the magnetic field.

We tried to find a model describing the observed behaviour of our data. In order to do so, we
looked at a functional form in the variables T and |e|B retracing the main properties shown by the
data: at B = 0 the ratios mM/T and mE/T are essentially constant with respect to the temperature; at
large B both masses grow almost linearly. In addition to these, it can be also seen that both masses
seem to be sensitive only to the dimensionless ratio |e|B/T 2. The goodness of this hypothesis can
be checked by looking at the behaviour of the masses in Fig. 2: both mE and mM essentially lie
on a single curve, sharing the same shape for each temperature. Finally, it is reasonable to add the
requirement that the functional form must be an analytic function of B, so that at small magnetic fields
the dependence should be quadratic. A possible ansatz that fulfills all these requirements is

md
E,M

T
= ad

E,M

[
a + cd

E,M;1
|e|B
T 2 atan

(cd
E,M;2

cd
E,M;1

|e|B
T 2

)]
(14)

where d indicates the spatial direction and the parameters ad
E,M , cd

E,M;1 and cd
E,M;2 are determined

by the regression procedure. The way we wrote the ansatz above makes the interpretation of these
parameters simple: the constant a represents the ratio m/T at B = 0, while the c1 and c2 coefficients
are, respectively, the asymptotic linear slope and the quadratic constant describing the behaviour of
the masses as a function of |e|B/T 2. The results of the regression are reported in Tab. 1, while the best
fit curves are shown together with numerical data in Fig. 2. As can be seen, the fit results confirm
what pointed out before: the large B slope of the two masses is compatible and, in the color-magnetic
case, an anisotropy emerges. At the same time, noise affects the color-electric masses and the small
magnetic field regime, so as to reduce the precision of the parameters of the model.

Table 1. Regression parameter obtained fitting the model in Eq. (14).

a c1 c2 χ2/d.o.f

mXY
M 4.964(82) 0.137(19)×10−1 0.141(55)×10−2 1.06

mZ
M 4.935(79) 0.099(20)×10−1 0.094(49)×10−2 1.10

mXY
E 9.24(21) 0.120(47)×10−1 0.069(38)×10−2 0.63

mZ
E 9.34(20) 0.17(28) ×10−1 0.039(21)×10−2 0.85
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4 Conclusions

We have shown that the screening masses in QCD are deeply modified by the presence of a strong
external magnetic field. Our results, obtained on the lattice at a single lattice spacing, agree previous
determinations of the masses and suggest that they grow almost linearly in B keeping the mass hierar-
chy. Anisotropies emerge especially in the magnetic mass, while in the electric case the effect may be
hindered by the large relative errors. Magnetic effects are reduced when the temperature increase and
the essential properties of the masses are well described in terms of the dimensionless ratio |e|B/T 2.

Our data agree qualitatively the results expected by perturbative calculations [31, 32]. In addition,
the results we obtained resembles the behaviour observed in the finite temperature regime below the
pseudo-critical temperature Tc [11]. Indeed, in the deconfined region the magnetic field is respon-
sible of a early suppression of the confining properties while it enhances the screening effect in the
deconfined regime. The main clue comes from the interpretation of a decreasing Tc as a function of B
[33], so that at low temperatures the system approaches the transition earlier, while gets farther from
it above. Finally, as also pointed out initially in the introduction to our study, the modifications of
the screening masses may have a relevant role in heavy-ion collisions, especially in the production of
heavy mesons. However, quantitative predictions may be done only carrying on an in-depth investi-
gation of the features of the magnetic fields produced in the collisions and of their effect on the bound
states.
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