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Fault detection is fundamental to many industrial applications. With the development of system complexity, the number of sensors
is increasing, which makes traditional fault detection methods lose efficiency. Metric learning is an efficient way to build the
relationship between feature vectors with the categories of instances. In this paper, we firstly propose a metric learning-based fault
detection framework in fault detection. Meanwhile, a novel feature extraction method based on wavelet transform is used to obtain
the feature vector from detection signals. Experiments on Tennessee Eastman (TE) chemical process datasets demonstrate that the
proposed method has a better performance when comparing with existing methods, for example, principal component analysis
(PCA) and fisher discriminate analysis (FDA).

1. Introduction

Due to the fact that industrial systems are becoming more
complex, safety and reliability have become more critical
in complicated process design [1–3]. Traditional model-
based approaches, which require the process modeled by
the first principle or prior knowledge of the process, have
become difficult, especially for large-scale processes. With
significantly growing automation degrees, a large amount of
process data is generated by the sensors and actuators. In
this framework, the data-based techniques are proposed and
developed rapidly over the past two decades. Data-driven
fault diagnosis schemes are based on considerable amounts
of historical data, which take sufficient use of the information
provided by the historical data instead of complex process
model [4, 5]. This framework can simplify the design pro-
cedure effectively and ensure safety and reliability in the
complicated processes [6]. Many fault diagnosis techniques
have been used in the complicated industrial systems [7–9].
In this framework, PCA [10] and FDA [11] are regarded as
the most mature and successful methods in real industrial
applications.

PCA aims at dimensionality reduction, which captures
the data variability in an efficient way. In PCA method,
process variables are projected onto two orthogonal sub-
spaces by carrying out the singular value decomposition
on the sample covariance matrix. And cumulative percent
variance [12] is the standard to determine the number of
principal components. To detect the variability information
in two orthogonal subspaces, the squared prediction error
(SPE) statistic [13] and the 𝑇

2 statistic [14] are calculated.
PCA is a sophisticated method. However, PCA determines
the lower dimensional subspaces without considering the
information between the classes. FDA [15] is a linear dimen-
sionality reduction technique. It has advantages over PCA
because it takes into consideration the information between
different classes of the data. The aim of FDA is to maximize
the dispersion between different classes and minimize the
dispersion within each class by determining a group of
transformation vectors. In FDA method, three matrices are
defined to measure dispersion. The problem of determining
a set of linear transformation vectors is equal to the problem
of solving generalized eigenvalues [16]. However, FDA has
difficulty in dealing with online applications. Motivated by
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Algorithm 1: Learning Mahalanobis matrix by iterative algorithm.

the aforementioned studies, in this paper, we proposed a fault
detection scheme based on metric learning which has been
used extensively in the pattern classification problem. The
purpose of metric learning is to learn aMahalanobis distance
[17] which can represent an accurate relationship between
feature vector and categories of instances. The model focuses
on the divergence among classes, instead of extracting the
principal components. Meanwhile, the Mahalanobis distance
learned from the historical data can be utilized in online
detection without real-time update. So, metric learning is
more suitable than PCA and FDA for fault diagnosis theo-
retically.

In practice, selecting an appropriate metric plays a crit-
ical role in recent machine learning algorithms. Because
the scale of the Mahalanobis distance has no effect on
the performance of classification, Mahalanobis distance is
the most popular one among numerous metrics. Besides,
Mahalanobis distance takes into account of the correlations
of different features which can build an accurate distance
model. A good metric learning algorithm should be fast
and scalable. At the same time, a good metric learning
algorithm should emphasize the relevant dimensions while
reducing the influence of noninformative dimensions [18]. In
this paper, we adopt information-theoretic metric learning
(ITML) algorithm to learn Mahalanobis distance function
[19]. In ITML algorithm, the distances between similar pairs
are bounded in a small given value, while the distances
between dissimilar pairs are required to be larger than a
large given value in the algorithm.The algorithm is expressed
as a particular Bregman optimization problem. To avoid
overfitting problem, a method based on LogDet divergence
to regularize the target matrix to a given Mahalanobis matrix

t

f(t)

Ψ(t)
Ψ(t − k)

Ψ(t − 2k)
Ψ(t − 3k)
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Figure 1: Dilating and shifting of wavelet function.

is adopted. It is necessary to remark that a feature extraction
method based on wavelet transform is proposed to do the
data preprocessing of the algorithm.

The remainder of this paper is organized as follows.
In Section 2, we give background knowledge of ITML.
Then, wavelet transform is described in Section 3. Section 4
illustrates TE process [20] and gives the experimental results
on TE process dataset to demonstrate the good effect of the
proposed algorithm. Finally, we draw conclusions and point
out future directions in Section 5.

2. Related Work

ITML is ametric learning algorithmwithout eigenvalue com-
putations or semidefinite programming. And the strategy of
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Figure 2: Observations of fault 12 in the TE process.

regularizing metric in ITML is to minimize the divergence
between the target matrix and a given matrix.

Given a dataset {𝑥
𝑘
} with 𝑥

𝑘
∈ 𝑅
𝐷, 𝑘 = 1, 2, . . . , 𝑛. The

Mahalanobis distance between 𝑥
𝑖
and 𝑥

𝑗
can parameterized

by a matrix𝐻 as follows:

𝐷
𝐻
(𝑥
𝑖
, 𝑥
𝑗
) = (𝑥

𝑖
− 𝑥
𝑗
)
𝑇
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𝑖
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𝑗
) . (1)

In ITML, pair constraints are used to represent the rela-
tionship of data in the same or different categories. If𝑥

𝑖
and𝑥
𝑗

are in the same categories, theMahalanobis distance between
them should be smaller than a given value 𝑠. Similarly,
if 𝑥
𝑖
and 𝑥

𝑗
are in different categories, the Mahalanobis

distance between them should be larger than a given value 𝑏.

The purposeof the ITML is to find a matrix𝐻 ∈ 𝑅
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satisfies the following pair constraint sets:

𝐻 ∈ 𝑅
𝐷×𝐷

,

s.t. 𝐷
𝐻
(𝑥
𝑖
, 𝑥
𝑗
) ≤ 𝑠 (𝑖, 𝑗) ∈ 𝑆,

𝐷
𝐻
(𝑥
𝑖
, 𝑥
𝑗
) ≥ 𝑏 (𝑖, 𝑗) ∈ 𝐷,

(2)

where 𝑆 and 𝐷 represent the set of pairs of data in the same
and different categories, respectively.

It deserves pointing out that there will be not only one
matrix𝐻 ∈ 𝑅

𝐷×𝐷which satisfies all the constraints. To ensure
the stability of the metric learning, the target matrix 𝐻 is
regularized to a given function 𝐻

0
. The distance between 𝐻
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Figure 3: Results of the wavelet transform.

and 𝐻
0
can be expressed as a type of Bregman matrix diver-

gence [21] as follows:

𝐷
𝜙
(𝐻,𝐻

0
) = 𝜙 (𝐻) − 𝜙 (𝐻

0
) − tr ((∇𝜙 (𝐻

0
))
𝑇

(𝐻 − 𝐻
0
)) ,

(3)

in which tr(𝐻) denotes the trace of matrix 𝐻 and 𝜙(𝐻) is
a given strictly convex differentiable function that plays a
determinant role in the properties of the Bregman matrix
divergence. Taking the advantages of different differentiable
functions into account, 𝜙(𝐻) is chosen as 𝑙𝑜𝑔(det(𝐻)). And
the corresponding, Bregman matrix divergence 𝐷

𝜙
(𝐻,𝐻

0
)

is called LogDet divergence. According to the further gen-
eralization, the LogDet divergence keeps invariant when
performing the invertible linear transformation𝐾, expressed
as [22]

𝐷LD (𝐻,𝐻
0
) = tr (𝐻𝐻

−1

0
) − log (det (𝐻𝐻

−1

0
)) − 𝑛,

𝐷LD (𝐻,𝐻
0
) = 𝐷LD (𝐾

𝑇
𝐻𝐾,𝐾

𝑇
𝐻
0
𝐾) .

(4)

The metric learning problem can be translated into a
LogDet optimization problem as follows:

min
𝐻≥0

𝐷LD (𝐻,𝐻
0
) ,

s.t. tr (𝐻(𝑥
𝑖
− 𝑥
𝑗
) (𝑥
𝑖
− 𝑥
𝑗
)
𝑇

) ≤ 𝑠 (𝑖, 𝑗) ∈ 𝑆,

tr (𝐻 (𝑥
𝑖
− 𝑥
𝑗
) (𝑥
𝑖
− 𝑥
𝑗
)
𝑇

) ≥ 𝑏 (𝑖, 𝑗) ∈ 𝐷.

(5)

It is worth pointing out that distance constraints
𝐷
𝐻
(𝑥
𝑖
, 𝑥
𝑗
) ≤ 𝑠 are equivalent to the linear constraints

tr(𝐻(𝑥
𝑖
− 𝑥
𝑗
)(𝑥
𝑖
− 𝑥
𝑗
)
𝑇
) ≤ 𝑠. To guarantee the existence

of the feasible solution to (5), Kulis proposed an iterative
algorithm which introduce slack variable in it [21]. In this
way, an iterative equation to update theMahalanobis distance
function is found as follows:

𝐻
𝑡+1

= 𝐻
𝑡
+ 𝜇𝐻
𝑡
(𝑥
𝑖
− 𝑥
𝑗
) (𝑥
𝑖
− 𝑥
𝑗
)
𝑇

𝐻
𝑡
, (6)

where 𝜇 is a parameter mentioned in Algorithm 1. In the
algorithm, the slack variable 𝛽 balanced the satisfaction of
min
𝐻≥0

𝐷LD(𝐻,𝐻
0
) and the linear constraints. Learning the
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Figure 4: The Tennessee Eastman chemical process.
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Figure 5: The classification accuracy of fault 1 dataset for PCA method.

Mahalanobis matrix𝐻 based on the given matrix𝐻
0
, we can

classify the data using k-nearest neighbor classifier to realize
failure diagnosis.

3. Fault Diagnosis Using ITML

In the data-driven fault diagnosis system based on the ITML,
the system is sensitive to values of the datasets. However,
the faults are reflected in vibration amplitude or variation
tendency in certain situations. Wavelet transform performs
multiscale analysis to the dataset by dilating and shifting the
wavelet functions. It transforms the discrepancies of vibration
amplitude or variation tendency into the discrepancies of
values.

Wavelet functions are localized in time and frequency.
Wavelet transform has two main advantages. Firstly, the

analysis window changes itself rather than other complex
exponential. Secondly, the duration of the analysis window
is not fixed. The wavelet functions are created from the
waveletmother function, by dilating and shifting the window.
The wavelet mother function 𝜓(𝑡) is a function with zero
meanwhich has limited duration and salutatory duration and
amplitude. The wavelet functions can be express as [23]

𝜓
𝑎, 𝑏

(𝑡) =
1

√𝑎
𝜓(

𝑡 − 𝑏

𝑎
) , (7)

where 𝑎 is scaling factor and 𝑏 is translation factor, with 𝑎, 𝑏 ∈

𝑅, 𝑎 ≥ 0. Through increasing the scaling factor 𝑎, the wavelet
function is expanded and is conducive to analysis signals
with low frequency and long duration. Correspondingly, by
reducing the scaling factor 𝑎, the wavelet function is shrunk
and is conducive to analysis signals with high frequency
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Figure 6:The classification accuracy of fault 1 dataset for 2methods. (a)The experimental results based on FDAmethod. (b)The experimental
results based on ITML method.

and short duration. By changing the translation factor 𝑏, the
wavelet functions can realize the traversal along the time axis
to get the information of time domain.Thewavelet transform
can study different scale features and information of time
domain which can be expressed as in Figure 1.

The wavelet transform aims at getting a linear combina-
tion of the wavelet functions to describe the features in the
signal. The value of the wavelet transform is generated by
different scaling factors and translation factors. The wavelet
transform is defined as [23]

WT
𝑎, 𝑏

=
1

√𝑎
∫
𝑅

𝑥 (𝑡) 𝜓
∗
(
𝑡 − 𝑏

𝑎
)𝑑𝑡. (8)

Wavelet transform performs multiscale analysis to the
dataset which is conducive to the results of ITML. In order to
verify this, a wavelet transform to the dataset of TE process is
constructed. TE process is introduced in Section 4. Selecting
the corresponding 20 consecutive observations of the 9
variables of fault 12 dataset in the TE process randomly, the
results of the wavelet transform are shown in Figures 3 and 4.
The red lines in Figures 2 and 3 represent the value of fault-
free dataset and the blue lines represent the value of fault 12
dataset.

The results of wavelet transform show that features in the
signal are converted into the discrepancies of values. Wavelet
transformperformswell in doing the feature extraction of the
ITML.

4. Experimental Results

4.1. Dataset. The designed method of the data-driven fault
diagnosis system proposed in this work is applied on the
Tennessee Eastman chemical process.

TE process is a chemical plant using as an industrial
benchmark process; the schematic flow diagram and instru-
mentation of which are shown in Figure 4 [24]. TE process
gets two products from four reactants. All the 52 variables

Table 1: Manipulating variables in TE plant.

Variable number Variable name
XMV (1) D feed flow (stream 2)
XMV (2) E feed flow (stream 3)
XMV (3) A feed flow (stream 1)
XMV (4) A and C feed flows (stream 4)
XMV (5) Compressor recycle valve
XMV (6) Purge valve (stream 9)
XMV (7) Separator pot liquid flow (stream 10)
XMV (8) Stripper liquid product flow (stream 11)
XMV (9) Stripper steam valve
XMV (10) Reactor cooling water flow
XMV (11) Condenser cooling water flow

contained in the process are 11 control variables and 41
measurement variables, respectively, as listed in Table 1 [16]
and Table 2 [16].

20 process faults and a valve fault are defined in TE
process, as shown in Table 3 [16]. In the work of Chiang
et al. [15], a widely used dataset of TE process is given.
To copy the measurements of 52 variables for 24 hours, 22
training datasets are contained in the dataset corresponding
to the fault-free operating condition and 21 fault operating
conditions. Simultaneously, 22 test datasets are contained in
the dataset, in which the measurements of 52 variables for 48
hours are collected. It is worth pointing out that the faults
in the 22 test datasets are added after 8 simulation hours.
The sampling time of both of 22 training datasets and 22 test
datasets is 3 minutes.

4.2. Performance Comparing with Classical Methods. To
demonstrate the advantages of the proposed fault detection
method, we compare it to two classical1 methods, PCA and
FDA. We carried out experiments on the dataset of TE
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Table 2: Measured variables in TE plant.

Variable number Variable name
XMEAS (1) A feed (stream 1)
XMEAS (2) D feed (stream 2)
XMEAS (3) E feed (stream 3)
XMEAS (4) A and C feed (stream 4)
XMEAS (5) Recycle flow (stream 8)
XMEAS (6) Reactor feed rate (stream 6)
XMEAS (7) Reactor pressure
XMEAS (8) Reactor level
XMEAS (9) Reactor temperature
XMEAS (10) Purge rate (stream 9)
XMEAS (11) Product separator temperature
XMEAS (12) Product separator level
XMEAS (13) Product separator pressure
XMEAS (14) Product separator underflow (stream 10)
XMEAS (15) Stripper level
XMEAS (16) Stripper pressure
XMEAS (17) Stripper underflow (stream 11)
XMEAS (18) Stripper temperature
XMEAS (19) Stripper steam flow
XMEAS (20) Compressor work
XMEAS (21) Reactor cooling water outlet temperature
XMEAS (22) Separator cooling water outlet temperature
XMEAS (23) Component A (stream 6)
XMEAS (24) Component B (stream 6)
XMEAS (25) Component C (stream 6)
XMEAS (26) Component D (stream 6)
XMEAS (27) Component E (stream 6)
XMEAS (28) Component F (stream 6)
XMEAS (29) Component A (stream 9)
XMEAS (30) Component B (stream 9)
XMEAS (31) Component C (stream 9)
XMEAS (32) Component D (stream 9)
XMEAS (33) Component E (stream 9)
XMEAS (34) Component F (stream 9)
XMEAS (35) Component G (stream 9)
XMEAS (36) Component H (stream 9)
XMEAS (37) Component D (stream 11)
XMEAS (38) Component E (stream 11)
XMEAS (39) Component F (stream 11)
XMEAS (40) Component G (stream 11)
XMEAS (41) Component H (stream 11)

process and the classification accuracy of 𝑘-nearest neighbor
is chosen to evaluate the performance of classification.

The experiments are conducted on 6 datasets in the TE
process, fault-free dataset, fault 1 dataset, fault 2 dataset, fault
4 dataset, fault 6 dataset, and fault 7 dataset, respectively. The
feature extraction method of the datasets of TE process is
selected as wavelet transform. To balance the performance
of the feature extraction with the amount of delay, every 7
consecutive samples are collected to do a wavelet transform.

Table 3: Process faults in TE plant.

Fault number Process variable
IDV (1) A/C feed ratio, B composition constant
IDV (2) B composition, A/C ration constant
IDV (3) D feed temperature
IDV (4) Reactor cooling water inlet temperature
IDV (5) Condenser cooling water inlet
IDV (6) A feed loss
IDV (7) C header pressure loss-reduced availability
IDV (8) A, B, C feed composition
IDV (9) D feed temperature
IDV (10) C feed temperature
IDV (11) Reactor cooling water inlet temperature
IDV (12) Condenser cooling water inlet temperature
IDV (13) Reaction kinetics
IDV (14) Reactor cooling water valve
IDV (15) Condenser cooling water valve
IDV (16) Unknown
IDV (17) Unknown
IDV (18) Unknown
IDV (19) Unknown
IDV (20) Unknown
IDV (21) The valve fixed at steady state position

The slack variable used to avoid the overfitting problem is set
as 𝛽 = 10

−3 and all results presented are the average over 10
runs. The experimental results of fault 1 dataset are given in
Figures 5 and 6.

Figure 5 shows the result of fault detection of fault 1
dataset for PCA method when fault occurs in both of the
two orthogonal subspaces, which can be successfully detected
by 𝑆𝑃𝐸 and 𝑇

2 statistics. And the fault detection accuracy of
fault 1 dataset for PCAmethod is 0.99. PCAmethod provides
a satisfactory fault detection rate, but it cannot estimate
fault types because it determines the lower dimensional
subspaces without considering the information between the
classes. Figure 6(a) indicates that the classification accuracy
of FDA method float in line with the order of model and the
classification accuracy are not totally satisfactory. Figure 6(b)
illustrates that the ITML method gives higher fault detection
rate than FDA method and it remains stable for different
𝑘th nearest neighbor. Furthermore, ITML method takes
advantages of PCA method that it can estimate fault types
directly.

Experimental results are summarized in Figure 7 and
these results reveal that ITML method is more robust than
PCA and FDA. Considering the ability of estimating fault
types directly, ITML method achieves the best classification
accuracy across all datasets. And the performance and effec-
tiveness of the wavelet transform based feature extraction are
demonstrated by the results of the experiment.
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Figure 7: The classification accuracy of 5 different datasets for 3
methods.

5. Conclusion

In this paper, we proposed a fault detection scheme based on
information-theoretic metric learning. ITML performs well
in learning Mahalanobis distance function. In the proposed
framework, the feature vector is firstly extracted by applying
wavelet transform. After that, we apply the ITML algorithm
in fault detectionmethod to improve fault detection accuracy
and estimate fault types. Comparing with the fault detection
schemes based on PCA and FDA, experiments on TE process
dataset demonstrate that the proposed method is more
robust. The performance and effectiveness of the wavelet
transform-based feature extraction are demonstrated by the
results of the experiments at the same time.
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