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We present the quantization process for Schwarzschild space-time in the context of Teleparallel gravity. In order to achieve such a
goal we use the Weyl formalism that establishes a well-defined correspondence between classical quantities which are realized by
functions and quantum ones which are realized by operators. In the process of quantization we introduce a fundamental constant
that is used to construct what we call the quantum of matter by the imposition of periodic conditions over the eigenfunction.

1. Introduction

The dynamical behavior of physical systems can be real-
ized essentially by two descriptions of reality, the classical
approach to which the physical world evolves determin-
istically and the quantum one which describes nature by
means of the concept of probabilities. The quantum descrip-
tion is usually obtained from classical description through
appropriate processes, the so-called quantization procedures
[1–3]. The first ideas about quantization emerged in 1925,
with Heisenberg who proposed a description of quantum
mechanics based solely on terms of observable quantities
[4]. Thus Heisenberg used an amplitude multiplication rule
that later Born has identified to a matrix calculation [5]. In
such a formalism scope, important results have been yielded,
among them we point out the quantization of the harmonic
oscillator solution and the achievement of a commutation
relation between position and its conjugated momentum.
Born included Jordan in such a discussion and together they
have generalizedwhatwas known so far for systemswith arbi-
trary degrees of freedom, they have introduced the canonical
transformations for this context as well [5]. In 1926, Pauli
gave his contribution to the development of the quantization
procedure by showing how to obtain the hydrogen spectrum
from this formalism [6]. Dirac, independently, was able
to establish the connection between classical and quantum
mechanics, relying on the Hamilton-Jacobi formulation of

classical mechanics and using an algebraic formalism [6, 7].
Born and Wiener have focused on matrix approach which
has led to the representation of the Hamiltonian (until then a
classical function) in terms of operators; in this sense, arose
the first quantization procedure as discussed in [4, 7] and in
the references therein.

Since then, the process of quantizing a physical system
has become a controversial subject and several methods
have been proposed; among them stand out the canonical
quantization, path integral quantization, and Weyl quanti-
zation which will be focused in this paper. The first two
methods are based on Dirac rules and Feynman generating
functional, respectively [8]. Both have some problems such
as the noninvariance under canonical transformations and
they seem to be not extendable to noneuclidian phase spaces.
Particularly the canonical quantization method leads to
difficulties in the understanding of the quantum-classical
limit. On the other hand, the Weyl quantization procedure,
developed in 1927 [9], is a more robust approach; in such
a method there is a well-defined mathematical operation
with a clear correspondence rule between classical functions
and quantum operators. Even though these methods are
largely used to quantize a classical field, such processes are
far from being unanimously accepted; for instance the arising
operators order is very controversial [8, 10].

We would like to implement the Weyl quantization
procedure to construct a quantum theory of gravitation. So
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far every attempt to address the problem of quantum gravity
is based on General Relativity which is the most receptive
theory of gravitation in the scientific community. Such an
approach is revealed to be ill defined; for instance we point
out the problem of time in loop quantum gravity [11] and the
nonrenormalization problem [12, 13]. In our opinion those
problems arise from the fact that General Relativity is not
a self-consistent theory since it presents some difficulties
that has not been overcome over the years such as the
problem of gravitational energy [14–16]. Therefore we will
work with an alternative theory of gravitation, the so-called
Teleparallelism Equivalent to General Relativity. The reason
for such a choice is very simple indeed: Teleparallel gravity
allows the existence of a gravitational energy-momentum
vector. Such a feature is not present in General Relativity,
although both theories are equivalent when it comes to
the dynamics of the gravitational field. The geometry in
which Teleparallel gravity is constructed is richer than the
Riemannian geometry; this yields a wider point of view for
Teleparallelism in the analysis of what is going on in the
space-time, mainly in the definition of conserved quantities.
Teleparallel gravity has been developed and tested over the
years in what concerns its classical features [17–23] and in
our opinion it seems to be a plausible theory of gravitation.
However there are few attempts to quantize this theory;
for instance we refer the set of papers [24–27] which were
developed as an application of Dirac’s method to TEGR.
Hence we intent to give our contribution in this process by
analyzing the quantum version of Schwarzschild’s solution of
field equations that arises from the identification H = 𝑒𝑡

(0)0

in Weyl’s prescription.
The paper is organized as follows. In Section 2, the

Weyl quantization procedure is detailed and some basic
ideas of Teleparallel gravity are presented. In Section 3, we
develop our version of a quantum theory of gravitation for
Schwarzschild’s solution. Thus we introduce a new funda-
mental constant, necessary for the quantization procedure,
which leads to the definition of a quantum of matter. Finally
we present our concluding remarks.

Notation. Space-time indices 𝜇, ], . . . and SO(3,1) indices
𝑎, 𝑏, . . . run from 0 to 3. Time and space indices are indicated
according to 𝜇 = 0, 𝑖, 𝑎 = (0), (𝑖). The tetrad field is denoted
by 𝑒𝑎𝜇 and the determinant of the tetrad field is represented
by 𝑒 = det(𝑒𝑎𝜇). The tetrad field is related to the metric by
𝑒

𝑎
𝜇𝑒𝑎] = 𝑔𝜇]. In addition we adopt units, where 𝐺 = 𝑐 = 1,
unless otherwise stated.

2. Theoretical Framework

2.1.WeylQuantization. In this subsection,we present a quan-
tization procedure called Weyl quantization. We would like
to remark that Weyl quantization, in opposition to canonical
procedure, is a well-defined mathematical framework and
can be extended to study of noneuclidian phase spaces.
Furthermore, using Weyl procedure, we can observe easily
the correspondence principle. In this sense, we consider
a classical system described by 𝑛 variables which will be

denoted by 𝑧1, 𝑧2, . . . , 𝑧𝑛; those variables would be quantized
by the prescription:

(𝑧1, 𝑧2, . . . , 𝑧𝑛) 󳨀→ (𝑧̂1, 𝑧̂2, . . . , 𝑧̂𝑛) . (1)

When the classical variables 𝑧1, 𝑧2, . . . , 𝑧𝑛 are quantized by
the above rule, the functions 𝑓 defined on those variables are
immediately quantized. This quantization of the functions 𝑓
occurs by Weyl’s map,W : 𝑓 →

̂
𝑓 = W[𝑓], which is given

by

W [𝑓] (𝑧1, 𝑧2, . . . , 𝑧𝑛)

:=

1

(2𝜋)

𝑛 ∫𝑑
𝑛
𝑘𝑑

𝑛
𝑧𝑓 (𝑧1, 𝑧2, . . . , 𝑧𝑛) exp(𝑖

𝑛

∑

𝑙=1

𝑘𝑙 (𝑧̂𝑙 − 𝑧𝑙)) .

(2)

This quantum-classical correspondence is called Weyl quan-
tization. Under the formal mathematical viewpoint, the
Weyl method is used to formulate the Groenewold-Moyal
quantum mechanics [28]. The kernel of this transformation
is given by

Δ (𝑧̂, 𝑧) =

1

(2𝜋)

𝑛 ∫𝑑
𝑛
𝑘 exp(𝑖

𝑛

∑

𝑙=1

𝑘𝑙 (𝑧̂𝑙 − 𝑧𝑙)) . (3)

In this way, the Weyl map is written by

W [𝑓] (𝑧1, 𝑧2, . . . , 𝑧𝑛) := ∫𝑑
𝑛
𝑧Δ (𝑧̂, 𝑧) 𝑓 (𝑧1, 𝑧2, . . . , 𝑧𝑛) .

(4)

Formally the set of operators 𝑧̂𝑖 form anoncommutative space
[9]. The construction of this noncommutative space is given
by the replacement of local coordinates 𝑧𝑖 by the Hermitian
operators 𝑧̂𝑖, which leads to the following commutation
relation:

[𝑧̂𝑖, 𝑧̂𝑗] = 𝑖𝛼𝑖𝑗, (5)

where 𝑧̂𝑖 are operators of a noncommutative algebra and 𝛼𝑖𝑗 is
an antisymmetric tensor. Thus, the product of two operators
in noncommutative space is given by W[𝑓(𝑧)]W[𝑔(𝑧)] =

W[𝑓(𝑧)⋆𝑓(𝑧)], where theMoyal (or star) product is defined
by

𝑓 (𝑧) ⋆ 𝑔 (𝑧) = 𝑓 (𝑧) exp [ 𝑖
2

𝛼

𝑖𝑗

󳨀→

𝜕𝑖

󳨀→

𝜕𝑗] 𝑔 (𝑧) . (6)

As an example let us consider the function 𝑓(𝑧1, 𝑧2) = 𝑧

2
1 +

2𝑧1𝑧2 + 𝑧
2
2 . Applying the Weyl procedure in this function, we

obtain

̂
𝑓 (𝑧̂1, 𝑧̂2) = 𝑧̂

2

1 + 𝑧̂1𝑧̂2 + 𝑧̂2𝑧̂1 + 𝑧̂
2

2 .
(7)

We realized that the Weyl quantization eliminates the ambi-
guity in variables ordering present in canonical procedure.
Another advantage in Weyl procedure is its use in the
quantization of nonpolynomial functions [29].
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2.2. Teleparallel Equivalent to General Relativity (TEGR). In
this subsection we briefly recall the ideas concerning Telepar-
allel gravity which can be tracked back to the 1930s when
Einstein made an attempt to unify gravitation and electro-
magnetism [30]. In this theory the dynamics of the field
relies on the tetrads, 𝑒𝑎𝜇, rather than on the metric tensor,
𝑔𝜇]. It can be formally described by means of a Weitzenböck
geometry [31], in which the Cartan connection, Γ𝜇𝜆] =

𝑒

𝑎
𝜇𝜕𝜆𝑒𝑎], plays a central role. Thus the torsion associated with
such a connection is given by

𝑇

𝜇

𝜆] = 𝑒
𝜇

𝑎 (𝜕𝜆𝑒
𝑎

] − 𝜕]𝑒
𝑎

𝜆) , (8)

or simply 𝑇𝜇
𝜆] = 𝑒

𝜇
𝑎𝑇
𝑎
𝜆], where 𝑇

𝑎
𝜆] = 𝜕𝜆𝑒

𝑎
] − 𝜕]𝑒

𝑎
𝜆.

We intend to show the equivalence between General
Relativity and Teleparallel gravity by showing the equivalence
between the geometrical frameworks of both theories. Firstly
we note that the Christoffel symbols ( 0Γ𝜇𝜆]) yield a vanishing
torsion tensor due to its symmetric features. The Cartan
connection and the Christoffel symbols are related by the
following mathematical identity:

Γ𝜇𝜆]=
0
Γ𝜇𝜆] + 𝐾𝜇𝜆], (9)

where

𝐾𝜇𝜆] =
1

2

(𝑇𝜆𝜇] + 𝑇]𝜆𝜇 + 𝑇𝜇𝜆]) (10)

is the contortion tensor. In the same way the Cartan con-
nection yields a vanishing scalar curvature. Thus in the
Weitzenböck geometry there is a vanishing curvature while
in the Riemann geometry there is a vanishing torsion. Both
geometries are related by expression (9), from which it is
possible to obtain the relation

𝑒𝑅 (𝑒) ≡ −𝑒 (

1

4

𝑇

𝑎𝑏𝑐
𝑇𝑎𝑏𝑐 +

1

2

𝑇

𝑎𝑏𝑐
𝑇𝑏𝑎𝑐 − 𝑇

𝑎
𝑇𝑎) + 2𝜕𝜇 (𝑒𝑇

𝜇
) ,

(11)

where 𝑒 is the determinant of the tetrad field, 𝑇𝑎 = 𝑇

𝑏
𝑏𝑎, and

𝑅(𝑒) is the scalar curvature constructed out in terms of such
a field. Therefore we choose the Lagrangian density, in the
realm of Teleparallel gravity, as

L = −𝑘𝑒 (

1

4

𝑇

𝑎𝑏𝑐
𝑇𝑎𝑏𝑐 +

1

2

𝑇

𝑎𝑏𝑐
𝑇𝑏𝑎𝑐 − 𝑇

𝑎
𝑇𝑎) − L𝑀, (12)

where 𝑘 = 1/16𝜋 and L𝑀 stands for the Lagrangian density
for the matter fields. It is worthy to mention that the total
divergence had been dropped out in the construction of the
Lagrangian density, since it does not contribute to the field
equations. It also should be noted, from (11), that the geomet-
rical part of this Lagrangian density is exactly the Hilbert-
Einstein Lagrangian density. Hence both theories share the
same dynamical properties. However in Teleparallel gravity
it is possible to define a gravitational energy-momentum
tensor. Let us rewrite the Lagrangian density as

L ≡ −𝑘𝑒Σ

𝑎𝑏𝑐
𝑇𝑎𝑏𝑐 − L𝑀, (13)

where

Σ

𝑎𝑏𝑐
=

1

4

(𝑇

𝑎𝑏𝑐
+ 𝑇

𝑏𝑎𝑐
− 𝑇

𝑐𝑎𝑏
) +

1

2

(𝜂

𝑎𝑐
𝑇

𝑏
− 𝜂

𝑎𝑏
𝑇

𝑐
) . (14)

Then the field equations can be derived from (13) using a
variational derivative with respect to 𝑒𝑎𝜇; they read

𝑒𝑎𝜆𝑒𝑏𝜇𝜕] (𝑒Σ
𝑏𝜆]
) − 𝑒 (Σ

𝑏]
𝑎 𝑇𝑏]𝜇 −

1

4

𝑒𝑎𝜇𝑇𝑏𝑐𝑑Σ
𝑏𝑐𝑑
) =

1

4𝑘

𝑒𝑇𝑎𝜇,

(15)

where 𝛿L𝑀/𝛿𝑒
𝑎𝜇

= 𝑒𝑇𝑎𝜇. Those equations may be rewritten
as

𝜕] (𝑒Σ
𝑎𝜆]
) =

1

4𝑘

𝑒𝑒

𝑎

𝜇 (𝑡
𝜆𝜇
+ 𝑇

𝜆𝜇
) , (16)

where 𝑇𝜆𝜇 = 𝑒𝜆𝑎𝑇
𝑎𝜇 and

𝑡

𝜆𝜇
= 𝑘 (4Σ

𝑏𝑐𝜆
𝑇

𝜇

𝑏𝑐
− 𝑔

𝜆𝜇
Σ

𝑏𝑐𝑑
𝑇𝑏𝑐𝑑) . (17)

In view of the antisymmetry propertyΣ𝑎𝜇] = −Σ𝑎]𝜇, it follows
that

𝜕𝜆 [𝑒𝑒
𝑎

𝜇 (𝑡
𝜆𝜇
+ 𝑇

𝜆𝜇
)] = 0, (18)

which is local balance equation. Therefore such equation
leads to the following continuity equation:

𝑑

𝑑𝑡

∫

𝑉

𝑑

3
𝑥𝑒𝑒

𝑎

𝜇 (𝑡
0𝜇
+ 𝑇

0𝜇
) = −∮

𝑆

𝑑𝑆𝑗 [𝑒𝑒
𝑎

𝜇 (𝑡
𝑗𝜇
+ 𝑇

𝑗𝜇
)] .

(19)

Thus we identify 𝑡𝜆𝜇 as the gravitational energy-momentum
tensor [32, 33].

Then, as usual, the total energy-momentum vector is
defined by [34]

𝑃

𝑎
= ∫

𝑉

𝑑

3
𝑥𝑒𝑒

𝑎

𝜇 (𝑡
0𝜇
+ 𝑇

0𝜇
) , (20)

where 𝑉 is a volume of the three-dimensional space. We
point out that the energy-momentum vector is invariant
under coordinates transformations and it is sensible to frame
transformations as it should be expected.

3. Quantum Gravity

In this section we address the problem of quantization of
gravity in the framework of Teleparallelism equivalent to
General Relativity.Thenwe start with a stationary space-time:

𝑑𝑠

2
= 𝑔00𝑑𝑡

2
+ 𝑔11𝑑𝑟

2
+ 𝑔22𝑑𝜃

2
+ 𝑔33𝑑𝜙

2
, (21)

and we bring attention to the fact that this line element
is written in spherical coordinates and the metric tensor
components are functions of 𝑟 and 𝜙, solely. In addition we
point out that 𝑔00 < 0; thus the metric tensor has the proper
limit as Minkowski space-time.

There are an infinite number of possible tetrads satisfying
the relation 𝑔𝜇] = 𝑒

𝑎
𝜇𝑒𝑎] for (21). To fix it we interpret
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the tetrad field as being a reference frame adapted to an
observer in space-time. Thus we choose

𝑒

𝑎

𝜇 = (

√−𝑔00 0 0 0
0 √𝑔11 sin 𝜃 cos𝜙 √𝑔22 cos 𝜃 cos𝜙 −√𝑔33 sin𝜙
0 √𝑔11 sin 𝜃 sin𝜙 √𝑔22 cos 𝜃 sin𝜙 √𝑔33 cos𝜙
0 √𝑔11 cos 𝜃 −√𝑔22 sin 𝜃 0

) ,

(22)

which is adapted to a stationary observer [35]. In order to
obtain the gravitational energy, firstly, we need to obtain the
Σ

(0)0𝑖 components; they read

4𝑒Σ

(0)01
= 2 (√𝑔33 + √𝑔22 sin 𝜃)

−

1

√𝑔11

[√

𝑔33

𝑔22

(

𝜕𝑔22

𝜕𝑟

) + √

𝑔22

𝑔33

(

𝜕𝑔33

𝜕𝑟

)] ,

4𝑒Σ

(0)02
= 2√𝑔11 cos 𝜃

−

1

√𝑔22

[√

𝑔11

𝑔33

(

𝜕𝑔33

𝜕𝜃

) + √

𝑔33

𝑔11

(

𝜕𝑔11

𝜕𝜃

)] ,

𝑒Σ

(0)03
= 0.

(23)

We restrict our attention to Schwarzschild space-time to
which 𝑔00 = (1 − 2𝑀/𝑟) = 𝑔

−1
11 , where 𝑀 is the black hole

mass. Thus the only nonvanishing Σ(0)0𝑖 component reads

4𝑒Σ

(0)01
= 4𝑟 sin 𝜃 [1 − (1 − 2𝑀

𝑟

)

1/2

] . (24)

We recall that 𝐸 ≡ 𝑃

(0); then we have

𝐸 = 4𝑘∫𝑑

3
𝑥𝜕𝑖 (𝑒Σ

(0)01
) , (25)

which can be represented by 𝐸 = ∫𝑑

3
𝑥H. Hence H =

4𝑘𝜕𝑖(𝑒Σ
(0)01

) which for Schwarzschild space-time yields

H = 4𝑘 sin 𝜃 [1 − (1 −𝑀/𝑟)

(1 − 2𝑀/𝑟)

1/2
] . (26)

This is the classical (nonquantum) gravitational Hamiltonian
density; it should be noted that it is a tensorial density and
as consequence it transforms accordingly under coordinate
transformations.

The procedure to quantize this field is formally given by
Weyl’s prescriptionwhich is the following 𝜃 →

̂
𝜃 and 𝑟 → 𝑟,

where ̂𝜃 = 𝑖𝛼(𝜕/𝜕𝑟) and 𝑟 = 𝑟. Here 𝛼 is a constant with
dimension of distance. Thus the commutator between such
operators is

[
̂
𝜃, 𝑟] = 𝑖𝛼, (27)

as defined by relation (8). As a consequence H →
̂H. The

constant 𝛼 is supposed to be very small, since the noncom-
mutativity between 𝑟 and 𝜃 is not observed in everyday life.

Therefore 𝛼 ≪ 1 which leads to sin(𝑖𝛼(𝜕/𝜕𝑟)) ≃ 𝑖𝛼(𝜕/𝜕𝑟).
After some algebraic manipulations we find that ̂H is given
by

̂H = 4𝑘𝑖𝛼{[1 −

(1 −𝑀/𝑟)

(1 − 2𝑀/𝑟)

1/2
]

𝜕

𝜕𝑟

+

𝑀/2𝑟

2

(1 − 2𝑀/𝑟)

3/2
} .

(28)

We immediately see that this operator is antihermitian;
therefore it also has real eigenvalues. We suppose an eigen-
vector/eigenvalue equation as ̂H𝜓 = 𝜖𝜓 which leads to an
equation of the form (𝜕𝜓/𝜕𝑟) + 𝑔(𝑟)𝜓 = 0, where 𝑔(𝑟) is
written as

𝑔 (𝑟) = [1 −

(1 −𝑀/𝑟)

(1 − 2𝑀/𝑟)

1/2
]

−1

[𝑖

𝜖

4𝑘𝛼

+

𝑀/2𝑟

2

(1 − 2𝑀/𝑟)

3/2
] .

(29)

The quantity 𝜖 is the eigenvalue. We point out that in our
unit system the Hamiltonian density is adimensional; as
a consequence the energy has length dimension since it
comes from a volume integration of the Hamiltonian density.
Therefore theHamiltonian eigenvalue is adimensional as well
and then it is given by 𝜖 = 𝐸/𝑀, where 𝐸 is the observable of
the field.

Since the above equation is a first-order differential
equation, its solution is

𝜓 = 𝜓0 exp (−∫𝑔 (𝑟) 𝑑𝑟) , (30)

where 𝜓0 is a constant of integration. It can be chosen to
normalize the solution. Let us analyze the consequences of
such a solution in the limit𝑀 ≪ 𝑟. Then we find

𝜓 = 𝜓0 exp(−
𝑖𝜖

8𝑘𝛼𝑀

𝑟

2
) , (31)

and, in the next step we impose that the solution should
assume the same values at the singularity points 𝑟 = 0 and
𝑟 = 2𝑀; hence 𝜓(0) = 𝜓(2𝑀). It is well known that 𝐸 = 𝑀

for Schwarzschild space-time which leads to the conclusion
that 𝜖 = 1. We point out that the value of the gravitational
energy yielded by TEGR is the classical observable; thus
the eigenvalue of our quantum equation should fulfill such
expectation. Therefore we finally have

𝑀 = 𝑛𝑚0, (32)

where 𝑛 is an integer once 𝑘 = 1/16𝜋 and 𝑚0 = 𝛼/4. Such
a condition arises from the use of the boundary condition
𝜓(0) = 𝜓(2𝑀). In the international unit system we have
𝑚0 = 𝛼𝑐

2
/4𝐺 which is the quantum of matter.

4. Conclusion

In this paper we have presented a formal procedure to
construct a quantum theory of gravity. We have performed
our calculations in the realm of Teleparallel gravity due to
the arising of a proper energy-momentum vector as one of
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its fundamental features. We have used the Weyl quantiza-
tion process to obtain operators out of classical quantities;
then we establish an eigenvalue/eigenvector equation which
reveals the quantum features of the field in the context
of Schwarzschild space-time. Such quantum properties are
obtained by the imposition of periodic conditions on the
eigenfunction which is the solution of ̂H𝜓 = 𝜖𝜓. This leads
to the definition of𝑚0, the quantum of matter.Thus the black
hole mass is quantized in terms of such a parameter. The
quantum of matter, in the international unities, is written
in terms of gravitational constant, speed of light, and 𝛼

which is a constant with dimension of length, introduced
in the quantization process. Therefore, in order to give the
order of magnitude of this new constant, we point out that
every piece of matter is formed by electrons as its smallest
mass constituents. We recall that other tiny constituents
such as quarks are more massive than electrons. Hence we
associate the quantum of matter with the electron’s mass;
this yields 𝛼 ∼ 10

−56
𝑚. Bearing this in mind, we think

that the electron may have different mechanisms to yield
what it is observed, for instance, one responding for matter
and another one for charge and spin. We also point out
that the results obtained in this paper were derived from a
hamiltonian density,H = 𝑒𝑡

(0)0, which is not invariant under
coordinate transformations. Such a feature is also present
when one tries to quantize fields in a curved space-time. In
fact we expect a break of the group of diffeomorphism since
we substitute coordinates by operators in the construction of
a quantum theory of gravitation. This feature would lead to
different equations for each coordinate system; however all
of them should behave equally in the limit 𝑀/𝑟 ≪ 1. Our
results may be extended to fundamental particles since their
line element can be described by Schwarzschild’s solution in
isotropic coordinates as obtained in [36].
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