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A recent method called asymptotic Taylor expansion (ATEM) is applied to determine the analytical expression for eigenfunctions
and numerical results for eigenvalues of the Schrodinger equation for the bistable potentials. Optimal truncation of the Taylor series
gives a best possible analytical expression for eigenfunctions and numerical results for eigenvalues. It is shown that the results are
obtained by a simple algorithm constructed for a computer system using symbolic or numerical calculation. It is observed that

ATEM produces excellent results consistent with the existing literature.

1. Introduction

There is no doubt that an interesting problem in fundamental
quantum mechanics for lecturers and advanced undergradu-
ate and graduate students in physics and applied mathematics
is to obtain the exact solutions of the Schrédinger equation
for any type of potential. It is well known that the Schrédinger
equation, proposed by Erwin Schrédinger in 1926, is a sec-
ond-order differential equation that describes how the quan-
tum state of a physical system changes with time [1]. It is
as central to quantum mechanics as Newton’s laws are to
classical mechanics. It is also well known that the quantum
mechanics is established on some certain postulates, and in
any introductory quantum physics textbook these postulates
can be found with the application of the time-independent
Schrodinger equation for a single particle in one dimension
as a simple and basic example.

Unfortunately, there are not so many potentials that can
be solved exactly such as the Coulomb, harmonic oscillator,
and Poschl-Teller potentials. Since one of the source of
progress of the science depends on the study of the same
problem from different point of view, various methods have
been suggested such as numerical calculation [2, 3], the vari-
ational [2, 4], the perturbation [5], the WKB [6, 7], the shifted
1/N expansion [8, 9], the Nikiforov-Uvarov (NU) [10, 11], the
supersymmetry (SUSY) [12, 13], the generalized pseudospec-
tral (GPS) [14], the asymptotic iteration method (AIM) [15],

and other methods [16-21] to find the approximate solutions
of the potentials that are not exactly solvable.

In this study we will apply a new formalism based on the
Taylor series expansion method, namely, asymptotic Taylor
expansion method (ATEM) [22], to bistable potentials. These
type of potentials have been used in the quantum theory
of molecules as a crude model to describe the motion of a
particle in the presence of two centers of force [23-29]. It is
mentioned in [22] that the taylor series Method [30, 31] is an
old one but it has not been fully exploited in the analysis of
both physical and mathematical problems in solution. It is
also claimed that ATEM can also be easily applied to solve
second-order differential equations by introducing a simple
Mathematica [32] computer program. Therefore, we focus
on the solution of the eigenvalue problems of some type of
bistable potentials by using ATEM in this paper.

The organization of the paper is as follows. In Section 2,
we present a brief outline of the method ATEM. In Section 3,
the eigenvalues of the bistable potentials are determined by
using ATEM. Section 4 is devoted to a conclusion.

2. Formalism of Asymptotic Taylor
Expansion Method

In this section, we present the solution of the Schrédinger-
type equations by modifying Taylor series expansion with the
aid of a finite sequence instead of an infinite sequence and its



termination possessing the property of quantum mechanical
wave function. It is well known in quantum mechanics that
the bound-state energy of an atom is quantized and eigen-
values are discrete. Additionally, for each eigenvalues there
exist one or more eigenfunctions. If one considers the solu-
tion of the Schrédinger equation, discrete eigenvalues of the
problem are mainly under investigation. The first main result
of this conclusion gives necessary and sufficient conditions
for the termination of the Taylor series expansion of the wave
function.

Following the notation in [22], one can consider the Tay-
lor series expansion of a function f(x) about the point a:

f@=f@+E-a)f @+ x-af" @
+ é(x—a)3f(3) (@) +--- )

oo(x_a)n n
ST @,

where £ (a) is the nth derivative of the function at a. Taylor
series specifies the value of a function at one point, x, in terms
of the value of the function and its derivatives at a reference
point a. Expansion of the function f(x) about the origin (a =
0) is known as Maclaurin’s series and it is given by

F) = £ +xf (0 + %xz 7'(0)

+ éx3f(3) (0)+ (2)
VY
—;n!f 0).

Here one can develop a method to solve a second-order linear
differential equation of the form

(%) = po (x) f (%) + g0 (x) f (x). (3)

It is seen that the higher-order derivatives of the f(x) can be
obtained in terms of the f(x)and f "(x) by differentiating (3).
Then, higher-order derivatives of f(x) are given by

f(n+2) (x) = p, (x) f’ (x) + g, (x) f (x), (4)

where

pn (x) = pO (x) an (x) + P,;_1 (x) + anl (x) > (5)
G (%) = G (X) Py (¥) + Gy (%) -

At this point, one can observe that the eigenvalues and eigen-
functions of the Schrodinger-type equations can efficiently be
determined by using ATEM. To this end, the recurrence rela-
tions (5) allow one to determine algebraic exact or approxi-
mate analytical solution of (3) under some certain conditions.
Let us now substitute (5) into (1) to obtain the function that
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is related to the wave function of the corresponding Hamil-
tonian:

fx)= f(0)<1 + ) Gz (0) %)

n=2

+f’(0)(1+2pn_2<0>%>.

n=2

After all, one can now obtain useful formalism of the Taylor
expansion method. This form of the Taylor series can also
be used to obtain series solution of the second-order differ-
ential equations. In the solution of the eigenvalue problems,
truncation of the asymptotic expansion to a finite number of
terms is useful. If the series optimally truncated at the smallest
term then the asymptotic expansion of series is known as
superasymptotic [33], and it leads to the determination of
eigenvalues with minimum error.

Since the improper sets of boundary conditions may
produce nonphysical results, arrangement of the boundary
conditions for different problems becomes very important.
When only odd or even power of x is collected as coeflicients
of f(0) or f '(0) and vice versa, the series is truncated at
n = m; then an immediate practical consequence of these
conditions is obtained for g,, ,(0) = 0 or p,, ,(0) = 0.
In this way, the series truncates at # = m and one of the
parameters in the g,,,_,(0) or p,,,_,(0) belongs to the spectrum
of the Schrédinger equation. Therefore eigenfunction of the
equation becomes a polynomial of degree m. Otherwise the
spectrum of the system can be obtained as follows. In a quan-
tum mechanical system eigenfunction of the system is dis-
crete. Therefore in order to terminate the eigenfunction f(x)
we can concisely write that

G (0) £ (0) + p,,, (0) f' (0) =0,

, )
-1 (0) £ (0) + Py (0) £ (0) = 0.
Eliminating £(0) and f'(0) we obtain
G (0) Py (0) = Py (0) g,y (0) = O, 8)

again one of the parameters in the equation related to the
eigenvalues of the problem.

It has been stated that the ATEM reproduces exact
solutions to many exactly solvable differential equations and
these equations can be related to the Schrodinger equation.
It is observed that the process presented in ATEM is iterative
and the number of iteration is given by m. The method can be
applied to the Schrodinger equation with any type of potential
as follows. Using a computer program, one first sets up the
iteration number m, say m = 30, to obtain the result. Then,
setting m = 40, another result is obtained. This procedure
is repeated for different m values leading to different results.
Finally, one can compare the results for each case till desired
digits. If the values of the eigenvalue reach their asymptotic
values, then one can choose the corresponding m value and
truncate the iteration for next calculations. For instance, if
one can obtain the values of the eigenvalues for m = 60, first
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FIGURE 1: The first six states normalized eigenfunctions of the Harmonic potential given in (10).

few of them—first eight eigenvalues, for example—will reach
automatically their asymptotic values. The following com-
ment on the function is considerable. For such a solution it
may be suitable to take sum of the first eight terms in (6).

3. Applications

We shall illustrate here that (3) with conditions (7) and (8)
gives a complete solution for some important Schrodinger-
type problems. Through a concrete example we explore the
solution of Schrodinger equation (A* = 2m = 1):

2
(—% +V(x)>w(x) - Ey (x) )

for the harmonic oscillator potential in one dimension
V(x) = x* given as

d2
(_ﬁ”z)q,(x) = Ey (x). (10)

In the limit of large x, the asymptotic solutions of (10) can be
taken as any power of x times a decreasing Gaussian function
to satisfy the quantum mechanics postulates. With this in
mind, one can write the “unnormalized” wave functions as

2

w<x>=exp(—";)f<x), (W
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TaBLE 1: Eigenvalues of the potential in (15) for a range of g values. For ATEM results, number of iterations for each g value is set to 120. For
SUSY results, numbers in parenthesis () denote the perturbation order used by authors in [40].

9 Erem Egusy [40] Eeacr [42]
1.007373 1.00737 (N = 4) 1.007373

0.01 3.036525 3.03653 (N = 8) 3.036525
5.093939 5.09609 (N = 15) 5.093939
7178573 719832 (N = 15) 7178573
1.034729 1.03473 (N = 4) 1.034729

0.05 3.167225 3.16723 (N = 8) 3.167225
5.417261 5.42404 (N = 15) 5.417261
7.770271 7.83995 (N = 15) 7.770271
1.065286 1.06528 (N = 4) 1.065286

0.1 3.306872 3.30687 (N = 8) 3.306872
5.747959 5.75694 (N = 15) 5.747959
8.352678 8.45913 (N = 15) 8.352678
1.2418541 1.24118 (N = 4) 1.2418541

05 4.051932 4.05171 (N = 8) 4.051932
7.396900 740489 (N = 15) 7.396900
11.11515 11.3415 (N = 15) 11.11515
1.392352 1.39017 (N = 4) 1.392352

1 4.648813 4.64784 (N = 8) 4.648813
8.655049 8.65908 (N = 15) 8.655049
13.15680 13.4524 (N = 15) 13.15680
2.449174 2.42910 (N = 4) 2.449174

10 8.599003 8.58582 (N = 8) 8.599003
16.63592 16.6188 (N = 15) 16.63592
25.80627 26.4698 (N = 15) 25.80627
4.999410 4.93770 (N = 4) 4.999418

100 17.83000 17.7864 (N = 8) 17.83019
34.87117 34.8238 (N = 15) 34.87398
54.36576 55.4001 (N = 15) 54.38529

TABLE 2: The first ten eigenvalues of the potential in (15) for g = 0.1. Number of iteration is set to m = 120.

n Ejrem E[39]

0 1.065 285 509 543 717 701 1.065 285 509 543 717 688

1 3.306 872 013 152 913 680 3.306 872 013 152 913 507

2 5.747 959 268 833 563 228 5.147 959 268 833 563 304

3 8.352 677 825 785 754 350 8.352 677 825 785 754 712

4 11.098 595 622 633 043 333 11.098 595 622 633 043 011

5 13.969 926 197 742 799 089 13.969 926 197 742 799 300

6 16.954 794 686 144 150 972 16.954 794 686 144 151 337

7 20.043 863 604 188 462 801 20.043 863 604 188 461 233

8 23.229 552 179 939 290 112 23.229 552 179 939 289 070

9 26.505 554 752 536 617 968 26.505 554 752 536 617 417

where the functions f(x) are to be found by means of the
iteration procedure given previously. Substituting (11) into
(10), one obtains

Lx)=-f"(x)+2xf (x)+(1-E) f(x)=0.  (12)
Comparing (3) and (12) one can deduce that
Po (%) = 2x, qo (x) =1-E. (13)

Following the procedure given in (8) yields the exact eigen-
values of the harmonic oscillator potential:

E,=2n+1, n=0,1,23,..., (14)

and the normalized eigenfunctions of the Schrédinger equa-
tion in (10) are shown in Figure 1.

As a second application, we consider the quartic anhar-
monic oscillator potential that has been a great deal of interest
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FIGURE 2: The first six states normalized eigenfunctions of the quartic potential given in (15) for g = 0.1.

in the analytical and numerical investigations of the one-
dimensional anharmonic oscillators because of their impor-
tance in molecular vibrations [34] as well as in solid state
physics [35, 36] and quantum field theories [37]. Schrodinger
equation (9) for the one-dimensional quartic anharmonic
potential V(x) = x* + gx* is written as

(15)

dZ
(—@ +xt gx4>1//(x) =Ey(x),

where g > 0. The solution of (15) has been always studied to
testaccuracy and efficiency of the different methods proposed
in [15, 38-41]. Now, we introduce the asymptotic solutions of
(15) as

W (x) = ¢ DB £y (16)

and (15) can now be written as
Lx)=—f"(x)+2 (ocx + ﬁx3)f' (x)

+(oc—E+(1—042+3/3)x2+(g—2(xﬁ)x4—[3x6)

x f (x) =0.
17)
Comparing (3) and (17) one can deduce that
Po () =2 (ax + Bx°),
Qo () =a—E+(1-a’+3p)x° (18)

+(g-2ap) x* - Bx°.

By the aid of computer program, one can calculate the eigen-
values E, and the corresponding eigenfunctions f(x) for a



range of g values, changing from 0.01 to 100, using number of
iterations m = 20, 20, 40, 60, 80, 100, 120. The term “asymp-
totic” means the function approaching to a given value as the
iteration number m tends to infinity.

We present our results carried out for a range of g values
in Table1 with 7 significant digits, and they are compared
with those of supersymmetric perturbation approach by
[40] and the ones computed numerically by [42]. In our
calculations, we set m = 120, « = 4, and f3 = 0. It is observed
that there is remarkable agreement in the whole range of
values for all quantum states for different g values with results
of [42] except g = 100.

We also present and compare our results for g = 0.1 with
those of Bacus et al. [39] in Table 2 with 20 significant digits.
The function f(x), for g = 0.1, n = 5 state for different values
of m is found as follow:

m = 20,

f(x) = x — 1.3425x° — 1.28331x° — 0.249794x”
+0.126907x° + 0.0974402x"" + 0.0325753x"
+0.00674249x"* +0.000816039x"” + O (x'?),

m = 40,
£ (x) = x - 0.35941x° — 0.998775x° — 0.578949x
13

~0.161047x° — 0.0125032x"" + 0.0088751x

+0.00478244x"" +0.00143729x"" + O (x'%),
m = 80,

f (x) = x - 0.328321x° — 0.980318x°
—0.581291x” — 0.167846x°
~0.0162743x"" +0.00762613x"

+0.00449722x"% +0.00139268x"7 + O (x'%) ,
m = 120,

f (x) = x — 0.328321x° — 0.980318x°
~0.581291x" — 0.167846x°
~0.0162743x"" +0.00762613x"

+0.00449722x"% +0.00139268x" + O (x').
(19)

For the first six states, the plot of the normalized wave func-
tions for g = 0.1 are given in Figure 2. As a last example, we
consider the symmetric bistable potential defined in [43] as

Vix)= X0 —2xt -2 + 1. (20)
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TaBLE 3: Comparison of energy eigenvalues of the potential in (20).
For ATEM results, number of iterations is set to m = 120.

Eyrem Eysqm [43] Espp [45] EBiact [43]
0 0 0 0

0.4229446 0.4238512 0.4229446 0.4229511
2.314913 2.319117 2.314913 2.314925
4.503779 4.571588 4.503779 4.503822
7.175475 7.101165 7.175475 7.175509
10.27788 9.861245 10.27789 10.27797
13.75855 12.82074 13.75855 13.75861
17.58421 15.95720 17.58420 17.58434
21.72951 19.25351 21.72942 21.72951
26.17305 22.69614 26.17370 26.17391

Inserting the potential function into Schrédinger equation in
(9) and using the ansatz wave function of the form defined in
(16), one obtains

L(x)=—f"(x)+ 2(ocx+ ﬁx3)f’ (x)

+(1+a-2E-(2+a’-3B)x (21)

-2(1 +ocﬁ)x4+(1 —/32)x6)f(x) = 0.

Following the procedure given in (8) for m = 120, a = 4,
and 3 = 1 yields the eigenvalues of the symmetric bistable
potential in (20). We note here the selection of adjustable
parameters « and f3. Since we choose the ansatz wave func-
tion given in (16), the form of the superpotential for the
partner potentials by supersymmetric quantum mechanics
(SUSYQM) [44] is found to be

' (x)

Wix)=- v (22)
and the partner potentials V, (x) are defined as
V, (x) =W (x) + W' (x). (23)
Since the superpotential W(x) obtained from (16) is
W (x) = ax + ﬁx3, (24)

then the partner potential V_(x) is obtained as
V_(x) = (a2 - 3[3) x*+ 2aBxt + Bx° — . (25)

Ifa® > 3, the potential (25) has one minimum. Investigating
this one-minimum case one can select the adjustable param-
eters « = 2 and 8 = 1 that lead to an increase in the iteration
number m. Therefore, we select and set the parameters as
« =4 and B =1 in our calculations.

Our results are presented and compared with the values
found by the variational supersymmetric method (Eygsqy)
[43], state-dependent diagonalization method (Egpp) [45],
and by direct numerical integration (Eg,,.) [43], in Table 3.
The ATEM results are in a very good agreement, by low
percent errors, for all values of energies with the ones
obtained by numerical calculation. For lower percent errors,
the iteration number m must be increased.
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4, Conclusion

An approximate method based on the asymptotic Taylor
series expansion of a function and its fundamental features
are presented. It is observed that the method is applicable
for obtaining both eigenvalues and eigenfunctions of the
Schrodinger-type equations. After applying the method to the
one-dimensional harmonic oscillator potential, it is shown
that the approach gives accurate results for eigenvalue prob-
lems of some certain type of bistable potentials. It is thought
that the approach opens the way to the treatment of the
Schrodinger equation including large class of potentials of
practical interest. As a future study, the method can be devel-
oped and applied to the non-Hermitian systems and QES
potentials. The direct application of the method to the Fok-
ker-Planck equation for quasi exactly solvable bistable poten-
tials when the drift coefficient has a nonpolynomial nature
would also be interesting. Studies along this line are in
progress.
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