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Motivated by call center practice, we study the optimal staffing of many-server queues with impatient and repeat-calling customers.
A call center ismodeled as anM/M/s+Mqueue, which is developed to a behavioral queuingmodel in which customers come and go
based on their satisfaction with waiting time. We explicitly take into account customer repeat behavior, which implies that satisfied
customersmight return andhave an impact on the arrival rate.Optimality is defined as the number of agents thatmaximize revenues
net of staffing costs, and we account for the characteristic that revenues are a direct function of staffing. Finally, we use numerical
experiments to make certain comparisons with traditional models that do not consider customer repeat behavior. Furthermore, we
indicate how managers might allocate staffing optimally with various customer behavior mechanisms.

1. Introduction

Most call center operations can be modeled as queuing
systems without feedback from the state of the queue to the
arrivals [1]. The majority of research in queuing takes the
customer arrival rate as an external factor that is awell-known
distribution with no consideration for the potential impact of
returns. In fact, arrival with feedback plays an important role
in service operations, as a long queue deters some potential
customers. For example, if “treated well,” customers might
return to form feedback, but dissatisfied customers might
never return. However, the potential impact of feedback on
the arrival rate has received little attention.

In call center settings, customer satisfaction in terms of
waiting time usually affects the feedback arrival rate. The
service encounter is unlike face-to-face service encounters
at other service sites, such as restaurants, hotels, and banks.
In a call center with invisible queues, there is no service
environment, so that the best means of providing and con-
trolling customers’ satisfaction may be providing products
and service efficiently and quickly [2].Therefore, waiting time

becomes the main issue that impacts customer satisfaction,
hurts repeat business, and jeopardizes the company’s long-
term profit in call centers. In our case, we assume that waiting
time is the only factor affecting customer satisfaction; the
result is a change of arrival rate as an internal factor.

This paper formulates and solves the staffing problem:
determining how many agents should be assigned to achieve
the waiting time objective. Optimality of staffing has mostly
been viewed as a cost minimization issue [3, 4]. Few papers
have focused on call center profit when they make a capacity
sizing decision. With this focus, it is difficult to reflect the
loss of profit resulting from abandonment and lost repeat
behavior. Here, we characterize customer service satisfaction
by focusing on waiting time to determine the economically
optimal staffing.

Currently, more managers have begun to emphasize
the importance of service quality by balancing customer
satisfaction and staffing cost. Additionally, some research has
also begun to focus on abandonment [5, 6]. We posit that
customer repeat behavior is a key controllable determinant
based on customer satisfaction with waiting time.Thismeans
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that a satisfied customer will have a higher preference to
again choose service from the same call center than a dis-
satisfied customer will. In the field of customer relationship
management, Anderson and Sullivan [7] have shown that
customer satisfaction is a good predictor for the likelihood of
repeated purchases and revenue growth, and prior research
has shown that customers react negatively to poor service by
abandoning the firm [8]. Furthermore, customer satisfaction
can be increased by more staffing in a call center. The key
determinant of customer satisfaction is mainly waiting time
in the system. A firm can increase its repeat customers by
increasing investment in staffing.

The main contributions of this paper can be summarized
as follows. (1) We develop an analytical behavioral model
with a queuing system based on customer perception of wait-
ing time.This is the first generalization of the queueingmodel
to incorporate customer satisfaction and repeated behavior.
(2) We define the staffing optimality of call center as the
number of servers maximizing the profit, including repeated
revenues and abandonment cost. In sum, our innovative
point is to derive a precise relationship between revenue
and repeat customers by developing a microlevel queuing
model.

The basicmodel of this paper is based on a queuingmodel
with feedback [9]. Further, we capture the situation in which
the arrival rate with repeat customers depends on customer
satisfaction with waiting time. The equilibrium arrival rate
is calculated by approximating the analytical methods with a
Monte Carlo point algorithm. In terms of the queuingmodel,
we extend the Erlang-A expression by formulating customer
repeat behavior and develop an approach to calculate perfor-
mance based on the results of Jouini et al. [10]. We derive a
closed-form formula for determining staffing that maximizes
a call center’s profit. The paper focuses on an inbound call
center as an important example of such systems, as in Aksin
and Harker [11].

The rest of the paper is organized as follows. In Section 2,
we review the literature. In Section 3, we formulate impatient
and repeat behavior in a queuing system. In Section 4,
we use some extensive numerical experiments to show the
role of repeat behavior in maximizing call center profit. In
Section 5, we discuss the implications of our study under
various circumstances. In Section 6, we generalize the key
insight derived from the analysis and conclude with the
limitations of our results and future research directions.

2. Literature Review

In recent years, call centers have become sophisticated in their
use of technology; for a review of the state of call center
research, see Gans et al. [12] and Aksin et al. [13]. Most
research has focused on models for queuing, staffing, and
performance analysis.

The simplest queuing model typically used for a call
center is the M/M/s queue. The Erlang-C system ignores
blocking and customer abandonment. The Erlang-B model
characterizes the blocking probability for the call center,
which is described as M/M/s/s. The last s represents s

lines. The simplest model that includes abandonment is the
Erlang-Amodel, which was further developed to incorporate
customer impatience and to consider busy signals in the
Erlang-C model [14]. Many researchers have made signif-
icant progress on various approximation schemes because
multiserver queues with abandonment are difficult to analyze
exactly.

Another issue in modeling abandonment in call center
was emphasized by Garnett et al. [14], Gans et al. [12], and
Mandelbaum and Zeltyn [15]. Garnett et al. [14] proposed an
asymptotic analysis of aMarkovianmodel with abandonment
in the heavy-traffic regime. They mainly characterized the
relationships between staffing, the offered load, and system
performance measures such as the probability of waiting
time and the probability of abandonment. This can be
viewed as an extension of Halfin and Whitt [16] by adding
abandonment.

Staffing problems are a type of resource allocation prob-
lem.This type of optimality has been defined in the economic
sense as in Andrews and Parsons [17]. They assume that
revenue is a direct function of staffing. Most papers consider
only how staffing affects call center operation cost. Borst
et al. [18] considered how to determine an asymptotically
optimal staffing level to minimize staffing and waiting time
costs. Harrison and Zeevi [19] considered how to minimize
call center staffing costs and additional abandonment costs.
Customer behavior research on staffing is mainly focused on
abandonment.

There exists a large body of literature on customer service
quality in queuing systems [20, 21]. A call center is a typical
type of invisible queue, which is a type of special service
system. de Véricourt and Zhou [22] introduce the call-
resolution probability to model call quality. Mehrotra et al.
[23] expand it to a routing problem with heterogeneous
servers. Generally, call centers use average call waiting time
and call waiting probability asmeasures of service quality, but
these measures depend on the actual type of service. Gans et
al. [12] posit that the incorporation of human factors is a real
challenge for call centers. All of these papers treat customer
service quality similarly, as a cost indicator or to satisfy the
service quality constraints.

Several authors have begun to study customer behavior
as the psychology of the queue, for example, Luo et al.
[24], Kumar et al. [25], Carmon et al. [26], and Zhou and
Soman [27]. They focus on evaluating how waiting time
affects customer satisfaction and how to minimize customer
dissatisfaction with the waiting process. However, there are a
few papers going one step further. Haxholdt et al. [9] and van
Ackere et al. [28] construct a queuing model with feedback
and exhibit the phenomenon that the arrival rate depends
on waiting time.They exploit some simulation methods with
the decision variable of service rate. Recently, van Ackere
et al. [29] have started to develop a behavioral model in
which customers come and go based on waiting time with a
simulation method. Here, we address a similar issue using an
analytical method of queuing.

Increasingly, companies are focusing on customer repeat
behavior to enhance long-term profitability; much research
is beginning to address the issue of the relationship between
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customer satisfaction and repeat behavior. Some research
concludes that customer satisfaction results in repeat business
and increases the firm’s profitability [30, 31]. Law et al. [32]
focus on the effect of waiting time on repurchasing behavior
and customer satisfaction in some service industries. Like-
wise, Chen [33] posits that the customer satisfaction level is an
important factor that may affect the effectiveness of a loyalty
program. In addition, customer satisfactionwithwaiting time
affects customer loyalty [34]. In the call center field, Dean [35]
notes that some issues of service quality could affect customer
loyalty to a call center, and he investigates some consumers of
an insurance company and bank using call centers to validate
his perspectives. Few studies have addressed the effect of
staffing on repeated customer behavior.

Loyalty programs are a structured marketing effort to
reward repeat behavior. There is a recent large literature in
the area, notably Kim et al. [36] and Singh et al. [37], who
treat customer valuation of the product as a random variable.
Gandomi and Zolfaghari [38] incorporate the valuation as
both a deterministic variable and a stochastic variable for
setting product prices, and they make use of customers’
surpluses (valuation less price) for driving the probability that
customers choose purchase behavior.These papers enable the
expression of repeat probability in loyalty programs.

3. Model Formulation

We present a model with repeat and impatient customer
behaviors. Our model has two sectors, representing the
feedbacks of repeat behavior and abandonment. The per-
formance metric of abandonment is the loss of customers
based onwaiting time; furthermore, themetric of satisfaction
with waiting experiences is used to build a link between
staffing costs and call center customer revenues. We consider
a call center model with a single class of customers and
homogeneous and parallel agents.

3.1. Analysis of Process-Related Metrics of Call Center. Firstly,
the model of the abandonment behavior is developed by the
extension of the Erlang-A formula, which can be viewed as an
M/M/s+M queuing system with feedback. Let 𝑇 denote the
random variable measuring patience times with rate 𝛾. The
queuing discipline is First-Come-First-Served (FCFS).

The system parameters are

𝜆
𝑒
: equilibrium arrival rate following a Poisson distri-

bution;
𝜇: service rate (1/𝜇 is the average service time) with
an exponential distribution;
𝑠: number of servers (decision variable);
𝜌: load on system.

Let 𝜏 denote the acceptable delay, which is the threshold
of repeated customer behavior evaluating the service in this
time. Customers who can enter service before 𝜏 are really
considered as being satisfied. In practice, such a metric
may not be accounted for by managers because of ignoring
repeated behavior. A reasonable value of 𝜏 is approximately

20 seconds. We define 𝑃
𝑐
as the service level at which

customers react to the waiting time with repeat behavior; this
satisfaction index 𝑃

𝑐
determines whether the customer will

return later or never, that is, the repeat probability. We can
write this service level as

𝑃
𝑐
=
Number answered ≤ 𝜏

Number offered
. (1)

Next, we derive the expression of the service level 𝑃
𝑐
.

The virtual waiting time is defined as the waiting time of
customers assuming that they do not renege (abandon). Let
𝑉 denote the random variable of the virtual waiting time of
a tagged, infinitely patient customer. Note that “answered”
means 𝑉 ≤ 𝑇 and “reneged” means 𝑉 > 𝑇. We denote the
renege probability by 𝑃

𝑅
and the answer probability by𝑃

𝑆
. Let

𝑊 denote the waiting time of an arbitrary customer in the
queue, the sojourn time of a customer who leaves the queue
as a result of reneging or start of service:

𝑃
𝑆
= 1−𝑃

𝑅
,

𝑊 = min {𝑉, 𝑇} .
(2)

𝑃c can be taken as a function of the random variables 𝑉,
𝑇, and𝑊. We can obtain

𝑃
𝑐
= 𝑃 (𝑉≤ 𝜏, 𝑉<𝑇) . (3)

Based on the work of Zeltyn and Mandelbaum [39], we
define the following building blocks for performance analysis
and refer to Jouini et al. [10] regarding performance. Let
patience be generally distributed with cumulative distribu-
tion function 𝐺(𝑥), 𝑥 ≥ 0, and 𝐺(𝑥) is given by

𝐺 (𝑥) = 1−𝐺 (𝑥) . (4)

Define𝐻(𝑥) and 𝐽(𝑡). Their expressions are then given by

𝐻(𝑥) = ∫
𝑥

0
𝐺 (𝑢) d𝑢,

𝐽 (𝑡) = ∫
∞

𝑡

𝑒
𝜆
𝑒
𝐻(𝑥)−𝑠𝜇𝑥d𝑥.

(5)

We candetermine𝐺(𝑥) and𝐻(𝑥) in closed formusing the
specific functional form of the exponential patience times; we
obtain

𝐺 (𝑥) = 𝑒
−𝛾𝑥

,

𝐻 (𝑥) =
1 − 𝑒−𝛾𝑥

𝛾
.

(6)

𝐵(𝑠, 𝜆
𝑒
/𝜇) denotes the blocking probability in M/M/s/s

queue, and we define

𝜀 =
∑
𝑠−1
𝑖=0 (𝜆𝑒/𝜇)

𝑖

/𝑖!

(𝜆
𝑒
/𝜇)
𝑠−1

/ (𝑠 − 1)!
= 𝐵(𝑠 − 1,

𝜆
𝑒

𝜇
)

−1
. (7)
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Given these, it is straightforward to derive the probability
density function of the virtual waiting time 𝑉 for 𝑥 > 0:

V (𝑥) =
𝜆
𝑒
𝑒𝜆𝑒𝐻(𝑥)−𝑠𝜇𝑥

𝜀 + 𝜆
𝑒
𝐽 (0)

=
𝜆
𝑒
𝑒
𝜆
𝑒
𝐻(𝑥)−𝑠𝜇𝑥

(∑
𝑠−1
𝑖=0 (𝜆𝑒/𝜇)

𝑖

/𝑖!) / ((𝜆
𝑒
/𝜇)
𝑠−1

/ (𝑠 − 1)!) + 𝜆
𝑒
𝐽 (0)

.

(8)

Then, for the origin value,

𝑃 (𝑉= 0) = 𝜀

𝜀 + 𝜆
𝑒
𝐽 (0)

. (9)

And the probability to renege of 𝑃
𝑅
is

𝑃
𝑅
= 𝑃 (𝑉>𝑇) =

1 + (𝜆
𝑒
− 𝑠𝜇) 𝐽 (0)

𝜀 + 𝜆
𝑒
𝐽 (0)

. (10)

Hence, the service level 𝑃
𝑐
can be obtained from (3) and

the building blocks in the following equation:

𝑃
𝑐
= 𝑃 (𝑉= 0) +∫

𝜏

0
𝐺 (𝑥) V (𝑥) d𝑥

=
𝜀

𝜀 + 𝜆
𝑒
𝐽 (0)

+∫
𝜏

0
𝐺 (𝑥)

𝜆
𝑒
𝑒𝜆𝑒𝐻(𝑥)−𝑠𝜇𝑥

𝜀 + 𝜆
𝑒
𝐽 (0)

d𝑥.

(11)

Finally, based on the work of Jouini et al. [10], we can
obtain

𝑃
𝑐
=
𝜀 + 𝑠𝜇 (𝐽 (0) + 𝐽 (𝜏)) + 𝑒𝜆𝑒𝐻(𝜏)−𝑠𝜇𝜏

𝜀 + 𝜆
𝑒
𝐽 (0)

. (12)

3.2. Dimensioning a Call Center with Repeat Customer Behav-
ior. We consider the background that a firm sells a good or
service through a call center in which customers purchase
service repeatedly, so this kind of call center is different from
what offers after-sales and technical support services. Based
on this assumption, customer calls can be taken as purchases
and their rates of occurrence depend on the satisfaction of
the most recent experiences. Customers use call center to get
service at a higher rate when they are satisfied thanwhen they
are dissatisfied. Then, we model customer satisfaction refer-
ring to Ho et al. [40], and a closed-form formula is derived
for dimensioning the call center. This closed-form formula
reveals that approximating the mixture arrival processes by a
single aggregate Poisson process can systematically estimate
the revenue of call center with repeated behavior.

In the queue model-handling method, we refer to more
details on analysis of call centers with retrials by Aguir et
al. [41] and Pustova [42]. The proportion is modeled as the
parameter 𝜃. 𝜃 is the probability that a customer becomes a
potential repeat customer in the next period. (1 − 𝜃) is the
proportion of customers that fail to proceed to the call center.
The potential probability of repeat behavior 𝜃 depends greatly
on the specific industry of the call center. For example, 𝜃 is
expected to be relatively higher for a call center providing

a ticket booking service because the service frequency is
sufficiently high that people would prefer a service with a
higher service quality. We consider different levels of repeat
behavior, 𝜃 ∈ [0, 1]. We can directly derive the equilibrium
arrival rate 𝜆

𝑒
and take 𝑃

𝑐
as the repeat fraction joining

the queue in the following analysis. Let 𝜆new be the original
arrival rate of customers. We assume that 𝜆new depends
greatly on the size of the call center. Customers who have
reneged have experienced the process with relatively lower
satisfaction. For ease of calculation, assume that they will
no longer join the queue, which means that the repeated
probability of reneging customers is zero. Hence, we obtain

𝜆
𝑒
= 𝜆new + 𝜃𝑃

𝑐
𝜆
𝑒
. (13)

Then, this equilibrium model falls into the class of
product form networks from Baskett et al. [43], so the
stationary behavior of the queueing model will not depend
on the distribution of repeated behavior delays. Therefore,
they can be ignored. Furthermore, we should discuss how to
compute 𝜆

𝑒
. Specifically, (13) can be denoted in a continuous

function 𝑓 in 𝜆
𝑒
:

𝑓 (𝜆
𝑒
) =

𝜆new
1 − 𝜃𝑃c

= 𝜆
𝑒
. (14)

Then, the solution of the equilibrium arrival rate becomes the
root of (14), where𝑃

𝑐
is functions of 𝜆

𝑒
, and 𝜆new is a constant.

Therefore, the equilibrium rate 𝜆
𝑒
can be obtained with the

Monte Carlo point algorithm (see, e.g., [44]).
In what follows, we want to numerically compute the

optimal staffing level with repeat behavior. Based on the firm’s
profit from selling a service or product with repeat customer
behavior, we find that the firm’s expected profit can be stated
as

max
𝑠

TP = 𝑐1𝜆𝑒 ⋅ 𝑃𝑆 − 𝑐2𝑠. (15)

The first term is the customer expected service income,
which can be expressed as 𝑐1 ⋅ 𝜆𝑒 ⋅ 𝑃𝑆, where 𝑐1 is the customer
service income parameter; given an average revenue per
customer served, there is customer loss from some reneged
customers, such that system revenues net of loss is 𝜆

𝑒
⋅𝑃
𝑆
.The

second term is the human resource cost 𝑐2 ⋅ 𝑠, which is in the
form of salaries. With a fixed cost per server, the staffing cost
increases monotonically with the number of servers.

Based on the model in (15), we can find and evaluate the
optimal values of 𝑠. The staffing problem formulated above
is to be solved with the renege probability and equilibrium
rate embedded in the revenue expression. After obtaining the
equilibrium arrival rate 𝜆

𝑒
, we make use of the enumeration

method to obtain the desired economically optimal staffing
solution.

4. Numerical Experiments

We make use of the enumeration method to obtain the
optimal staffing level 𝑠 and validate the model. To illustrate
the model with different scenarios, we consider the regular
model without repeat customers (𝜃 = 0), three models of
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partial customer repeat behavior 𝜃 = 0.2, 𝜃 = 0.5, 𝜃 = 0.8,
and a model with full repeat customers 𝜃 = 1. We then
compare their profit and staffing through experiments with
these three scenarios and draw some conclusions, in contrast
to traditional research without repeat behavior.The common
parameters are 𝜆new = 5, 𝜏 = 1/3, 𝑐1 = 5, 𝑐2 = 2, 𝜇 = 1, and
𝛾 = 0.1.

4.1. Comparison between the Models with and without Repeat
Behavior. If the potential probability of repeat behavior 𝜃 is
equal to 0, the equilibrium arrival rate is just the original
value, and this situation is the traditional research setting
without repeat customers. Figure 1 shows that there is no
doubt that the staffing cost curve presents a linear increasing
trend with increasing staffing, and the revenue always rises
with increasing arrival rate. This trend results in the linearly
decreasing profit.

Call centers in different service industries have different
sensitivities to waiting time. The models of partial customer
repeat behavior can demonstrate these different situations.
These three models have almost similar trends, except for
the different rate of reaching the optimal staffing. Figure 2
shows that the revenue rises and then levels off, which drives
the profit trend. As staffing increases and begins to reach
the optimal point, TP increases as a result of more staffing,
leading tomore customer arrivalwith repeat behavior. TPwill
then decrease because of the unchanged revenue.The system
reaches its optimal staffing at the highest point of revenue
growth; the maximum point of profit appears once the rate of
revenue growth is lower than the rate of staffing growth. On
the other side, it conforms to the law of diminishing returns
(see, e.g., [45]), which states that the marginal increase in
service level declines in the staffing level.

Thirdly, full repeat customers means waiting time has
absolute influence on customer repeat behavior; that is,
𝜃 = 1 in Figure 3. In practice, there is no situation with
complete repeat behavior, 𝜃 = 1; that is, “the satisfaction
trap” will always exist and some customers will not choose
repeat behavior however high satisfaction is. Therefore, the
parameter is always set to 𝜃 < 1. However, for comparing this
case to the models with zero and partial repeat behaviors, the
trend of profit with full repeat can be seen in a small system
as a result of the linearly increasing revenue. In theory, this is
the effect of full repeat behavior, so that optimal staffing can
be reached only in the relatively larger system. Specific rules
are drawn in the latter.

4.2. Comparison of the Metrics. Let us consider the impact of
the metrics 𝑃

𝑐
, 𝜆
𝑒
, and 𝑃

𝑆
on the profit of a call center and

then analyze the variation of profits. These three metrics can
themselves almost predict the profit of a call center. First, note
that 𝑃

𝑐
plays a key role for the equilibrium rate according to

the profit trend in Figure 4, especially if the repeat probability
of the model is zero. As 𝑃

𝑐
increases to its maximum, the

equilibrium arrival rate also reaches its maximum because of
the effect of repeat behavior. Figure 5 illustrates the trend of
the equilibrium arrival rate according to 𝑃

𝑐
and shows that

the larger the potential repeat probability 𝜃 is, the larger the
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Figure 1: Staffing cost and revenue without repeat behavior 𝜃 = 0.

effects of repeat behavior and the equilibrium arrival rate are.
In particular, the effect of repeat behavior is so large that the
equilibrium arrival rate cannot reach a maximum even at the
staffing level of 50 in the model with full repeat behavior, and
the repeat probability also cannot reach value 1.

Furthermore, the probability for entering service can
demonstrate the trend of the reneging probability of the
system. Figure 6 shows that abandonment always decreases
with increasing staffing level. It also shows that higher staffing
levels will result in more customers obtaining service up to
the maximum profit, whatever the equilibrium arrival rate
is. In terms of revenue, the equilibrium arrival rate and the
probability of obtaining service both play roles in increasing
revenue with increasing staffing level.

5. Implications for Different Customer
Behavior Mechanisms

In this section, the optimal staffing and profit will be analyzed
under different assumptions of customer behavior mecha-
nisms, including potential repeat probability, first arrival rate,
and sensitivity to waiting time. The common parameters are
𝑐1 = 5, 𝑐2 = 2, 𝜇 = 1, and 𝛾 = 0.1.

5.1. Implications for Potential Repeat Probability. We con-
ducted the analysis involving the optimal staffing and profit
with different value of 𝜃. The feasible staffing level of a call
center was set between 5 and 100. We set the parameters 𝜏 =

1/3 and𝜆new = 5. Figure 7 shows that the larger the parameter
𝜃 is, themore optimal the staffing 𝑠 is.Thismeans that a larger
𝜃will result in more demand for service because of the repeat
behavior effect, so managers need to deploy more agents for
more repeat customers.

In terms of growth, both the repeat probability 𝑃
𝑐
and

staffing 𝑠have roles in the equilibriumarrival rate as a result of
𝜆
𝑒
= 𝜆new/(1 − 𝜃𝑃

𝑐
); there is a change in the rate of growth at

𝜃 = 0.7. Figure 8 shows that it is a reflection of the cumulative
effect of repeat behavior; any increase of 𝜃 means more
demand from customers, so that the system has higher repeat
probability𝑃

𝑐
. More staffing is needed to provide satisfaction.
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Figure 2: Staffing cost and revenue with partial repeat behavior.

In parallel, 𝑃
𝑆
must reach its top value within a small range.

This cumulative effect leads to an amplified equilibrium rate,
and it appears to be the beginning of a cumulative effect when
𝜃 = 0.7. The rapidly increasing equilibrium arrival rate can
bring more profits.

5.2. Implications for the First Arrival Rate. Call centers in dif-
ferent service industries have different performancemeasures
of the first time arrival rate, so the proportions of 𝜆new are
also different. The effect of the first time arrival rate 𝜆new
is presented in Table 1, which shows the performance with
optimal staffing and profit. We set the potential probability
parameter 𝜃 to 0.5, and 𝜏 = 1/3. Table 1 shows that the larger
the parameter 𝜆new is, the higher the optimal profit is.

Any increase of 𝜆new means more demand from cus-
tomers, so that the system has a higher repeat probability 𝑃

𝑐

and needs more agents. The repeat probability 𝑃
𝑐
is balanced

nearly to 1, so that 𝜆
𝑒
would increase to the maximum

Table 1: The impact of first arrival customers on call center.

𝜆new

5 7 10 15 20 30 50
𝑠 12 17 23 34 45 65 106
TP 21.35 31.82 48.14 76.03 104.4 162.09 279.06
𝜆
𝑒

9.14 13.23 18.93 28.93 39.02 58.64 98.55
𝑃
𝑆

0.992 0.995 0.995 0.996 0.996 0.996 0.997
𝑃
𝑐

0.906 0.942 0.943 0.963 0.975 0.977 0.985
𝜌 0.762 0.778 0.823 0.851 0.867 0.902 0.93

value. The increasing rate needed for staffing is less than
the equilibrium rate because of the interaction, which can
result in increasing load until the repeat probability𝑃

𝑐
reaches

nearly 1.
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5.3. Implications for Sensitivity to Waiting Time. As the
independent CDF variable of waiting time, the sensitivity
to 𝜏 controls the probability of repeat behavior. We set the
parameter 𝜃 = 0.5, and 𝜆new = 5. To some extent, we can
take the parameter 𝜏 as the sensitivity to waiting time for all
customers. Next, we explore the effect of 𝜏 on the profit of the
call center. Figure 9 shows the impact of 𝜏 on the call center
profit with the staffing increasing. As expected, the optimal
profit is always greaterwhen 𝜏 is greater because of customers’
relative insensitivity to waiting time, so that customers would
have much higher satisfaction.

Figure 9 shows that the larger the parameter 𝜏 is, the
more the optimal profit of call center is because of the need
for fewer agents and costs. In a specific industry, customers
can be divided into different types based on their sensitivity
to waiting time. For example, if 𝜏 is rescaled to the range
[0, 1], we can take it as the range of high sensitivity to time in
which most customers usually have less patience; therefore,
managers need to assign more staff to satisfy demand. Then,
the profit will be relatively low. As 𝜏 increases to more than
3, we note that the optimal profit is almost constant when
the marginal sensitivity to waiting time gradually decreases
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Figure 5: The equilibrium arrival rate at different values of 𝑠.
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Figure 6: The probability to obtain service at different values of 𝑠.

to zero.That is, for callers insensitive to waiting time, when 𝜏

is long, the system deals with all calls within some time less
than 𝜏; the call center can obtain an optimal profit with the
top equilibrium arrival rate.

6. Conclusion

We present a deterministic queuing system with repeat and
impatient behavior, assuming that satisfied customers will
return and disappointed customers will not. Based on a
queuing model, we formulate and analyze the staffing that
maximizes the profit.Thismodel of customer behavior agrees
better with business reality and preserves the Markovian
property.

Numerical analysis illustrates that repeat behavior has
an important impact on the optimal staffing. Ignoring this
behavior could lead to significant understaffing. Our analysis
of the interrelationship between repeat behavior and service
satisfaction is expressed by the performance measure of
waiting time, which can be derived from research in fully
deterministic queuing analysis.
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We have additionally constructed some efficiency anal-
yses intended to help managers deploy staffs for their par-
ticular call centers; the analyses allow different sets of input
parameters, such as potential probability, first arrival rate,
and sensitivity to waiting time, which play important roles in
optimal staffing and profit. We focus exclusively on customer

behavior, including both the economic considerations of
staffing in a simple call center and the impact of delays on
customer satisfaction. This latter effect is an obvious first
direction for extending this research. Finally, with real call
center data and customer choices, this workmay be especially
useful for managers making staffing decisions.
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