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In many real-life queueing systems, the servers are often heterogeneous, namely they work at
different rates. This paper provides a simple method to compute tight upper bounds on two
important performance measures of single-class heterogeneous multi-server Markovian queueing
systems, namely the average number in queue and the average waiting time in queue. This
method is based on an expansion of the state space that is followed by an approximate reduction
of the state space, only considering the most probable states. In most cases tested, we were
able to approximate the actual behavior of the system with smaller errors than those obtained
from traditional homogeneous multiserver Markovian queues, as shown by GPSS simulations. In
addition, we have correlated the quality of the approximation with the degree of heterogeneity of
the system, which was evaluated using its Gini index. Finally, we have shown that the bounds are
robust and still useful, even considering quite different allocation strategies. A large number of
simulation results show the accuracy of the proposed method that is better than that of classical
homogeneous multiserver Markovian formulae in many situations.

1. Introduction

A better understanding of queueing systems is of paramount importance in order to improve
their applications, which is the scope of the current study. Markov and semi-Markov pro-
cesses are among the stochastic-basedmethods traditionally used for performance evaluation



2 Mathematical Problems in Engineering

of multistate systems [1]. In this paper, we have developed a formulation to model a
particular type of queueing system, namely, heterogeneous multiserver single queues, seen
in Figure 1. Using Kendall notation, we will focus on M/Mi/c queues in this work. For
such queues, there is only one class of jobs that arrive to the system accordingly to a Poisson
process at a rate λ. The number of parallel servers is c, and the amount of time dedicated to
each job on each server is exponentially distributed, with a rate μi, where i = 1, 2, . . . , c. The
queue discipline is first come first served (FCFS), which means that the jobs arriving first to the
system will be served first. Concerning the server allocation, one possibility is that the first job
in the queue will be allocated as soon as any server becomes idle, but there are others. Indeed,
there are three different allocation strategies among the most popular that will be investigated
in this paper, namely, (i) the fastest server first (FSF) allocation, for which the fastest available
server is always allocated first, (ii) the randomly chosen server (RCS) allocation, for which
the next job in the queue is randomly sent to any one of the servers that is idle, and (iii) the
slowest server first (SSF) allocation, where the job is always first allocated to the slowest free
server.

The aims of this paper are twofold. First, we will derive upper bounds on performance
measures of single-class heterogeneous multi-server Markovian queueing systems see
Figure 1. We will show that these bounds are easy to compute and accurate, which makes
them a useful general approximation of the performance measures of these systems. Second,
we will investigate the role of three different types of allocation strategies, namely, the FSF,
the RCS, and the SSF allocations. As we will show in more detail in the following, the type
of allocation strategy that is used for heterogeneous servers will strongly determine the
performance measures of the system and hence its modeling.

The paper is organized as follows. In Section 2, we present some results that have been
obtained in previous studies. In Section 3, we thoroughly describe our method that is based
on the equilibrium equations of queueing systems. In Section 4, we focus on the model used
in the simulations and developed to validate the proposed approximation. In Section 5, we
present the experimental results. Finally, we draw some conclusions in Section 6 and give
some final remarks.

2. Previous Work

Queues are ordinary phenomena that happen all the time. They can be encountered every-
where. Everyone has already joined a queue at least once, for instance, when driving home
and lining up in a traffic jam, when paying bills or when buying a snack. Day-to-day
queues are very frequent, and they are not even perceived in some cases. Queues happen,
for example, throughout manufacturing processes [2–4], in airports, ports, and products
distribution systems [5], or in computer and communication systems [6–8]. Queues may
cause the quality of the services or the prices of the goods to rise or fall, depending on
the efficiency of the distribution and logistics [9]. Thus, organizing queueing systems in
order to decrease the line length can be a way to reduce costs and maximize the efficiency of
a system.

As mentioned earlier, the focus here is on heterogeneous multi-server single queues.
The importance of modeling such systems comes from their similarities with real-life systems.
Indeed, many real situations involve servers working at different rates. To illustrate such a
situation, let us consider manual assembly, in which human beings can be seen as servers. As
noticed by Wang et al. [10], manual assembly is, by definition, carried out by workers, and
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Figure 1: A single-class heterogeneous multiserver queue.

therefore, the system is human-centered and its performance largely depends on humans. In
practice it is possible that even if all tasks are equal, the average task completion time may
differ from person to person (as it is impossible for each worker to have equal efficiency)
[10]. Thus, the individuals may be considered as heterogeneous servers. Considering another
example of a real situation, among machines undergoing a process of rapid and constant
technological renewal and depreciation, older equipments usually become slower than their
latest counterparts, which naturally leads to service heterogeneities. As a final example,
we can cite the transportation of goods by trucks with different powers and capacities,
leading to heterogeneities in the servers. As a result, myriad applications can be found for
heterogeneous multi-server single queues that can be used to gain more insight into these
systems, and thus make them more manageable.

In the literature, there exist several studies that have taken into account the hetero-
geneity of the servers. One of the first studies that were developed for queueing systems
considering the differences in the processing capacity of the servers was done by Gumbel
[11] back in the 1960s. In his work, a Poisson distribution was used to model the arrivals,
and the processing times of the servers were exponentially distributed with different rates
for each server. Assuming steady-state conditions, Gumbel gave expressions in closed form
for the state probabilities and for the expected length of the queue. Also, he analyzed the
error resulting from the assumption that all the processing rates of each server were equal.
However, Gumbel only considered the random allocation strategy.

Singh [12] analyzed a M/Mi/3 queueing system, composed of three heterogeneous
servers. For a given system utilization, ρ, defined as

ρ =
λ

μ1 + μ2 + μ3
, (2.1)

they showed that there is an optimal combination of servicing rates μ1, μ2, and μ3 to minimize
the performance measures of that system. This paper was a followup of a previous paper also
by Singh [13], in which they studied aM/Mi/2 queueing system with balking.

Gall [14] generalized a factorization method [15] previously used to the case of a
G/G/s queueing system with heterogeneous servers. Gall presented three properties, which
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allowed the construction of a numerical method to calculate the queue delay. A comparison of
the results found using a factorization and a Markovian method in the case of a symmetrical
M/G/s system were presented and compared. Gall also compared the average queueing
delay to simulation results.

Grassmann and Zhao [16] analyzed a queueing system with heterogeneous severs
and general inputs. They showed how to find steady state probabilities for such a system
and used different rules to allocate the arriving job presenting heuristic arguments. They
used numerical calculations to support their assumption that the influence of the allocation
strategy in the state probabilities increaseswith decreasing traffic intensities. As wewill show
in this paper, we could also validate this assumption using numerical simulations.

Boxma et al. [17] studied a M/Gi/2 queueing system with heterogeneous servers.
The first server was exponentially distributed, and the second one was generally distributed.
However, they were restricted to only two servers, while in this paper, a general number
of c servers is treated. Additionally, Boxma et al. [17] did not investigate different server
allocations (e.g., FSF, RCS, and SSF, as done here), as they only considered that when a
customer arrives and there is no other customer in the system, the customer receives service
from the first server immediately.

Chao and Luh [18] analyzed a finite M/M/c/N queueing system, namely, with c
parallel servers and a limited capacity ofN jobs, including those in service. They studied the
probability of an arriving job to find the system full. Also, finite queueing network systems
with heterogeneous servers in series topologies were studied. Chiang et al. [19] focused on
open networks of queues with heterogeneous exponential servers, while Biller et al. [20]
studied closed networks of heterogeneous Bernoulli queues.

Marmony [21] considered a large-scale queueing systemwith only one type of job and
multiple sever pools and proposed a routing policy assigning the jobs in accordance to the
FSF allocation strategy in order to minimize the steady-state queue length. Marmony showed
that the heterogeneous servers system was better than its homogeneous counterpart in the
quality and efficiency driven regime when the FSF allocation strategy was applied, namely,
the Halfin-Whitt many-server heavy traffic regime.

The multiclass multi-server (MCMS) system is a more complex model of a queueing
system. The MCMS system presents different types of jobs arriving in a system with multiple
servers. If we consider the servers to be heterogeneous, the MCMS system constitutes a
generalization of the queueing system of interest in this paper, which only assumes one type
of job. VanHarten and Sleptchenko [22] studied such a generalizedmodel and even proposed
an exact solution with a specific structure for the MCMS system, which can be reduced in
order to give the eigenvalues and eigenvectors of a finite-dimensional matrix. Harten and
Sleptchenko defined some sets of multiplicative eigenmodes creating approximations to find
the performance measures of the system. Although Harten and Sleptchenko claim that the
proposed structure could aggregate the nonidentical servers effects, their approximation
was developed considering only equal servers due to the high level of complexity that the
heterogeneity of the servers adds to the model.

Finally, it is also worthwhile mentioning that there are a number of papers in the
literature focusing on controlling heterogeneous server queues using different allocation
strategies in order to optimize their performance measures as shown in the work of Lin
and Kumar [23], Koole [24], Walrand [25], Rykov and Efrosinin [26], Shenker and Weinrib
[27, 28], and Cruz et al. [29]. In this paper, we show using numerical simulations that the
average queue waiting time is the lowest using the FSF allocation strategy compared to the
SSF and RCS strategies.
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3. Mathematical Formulation

3.1. Preliminaries

The formulation proposed in this paper is fundamentally based on the equilibrium equations
of the system that are obtained from the conservation of flow and some approximations. For
our convenience and without loss of generality, the indices i of the processing rates μi can be
rearranged as follows:

μ1 ≤ μ2 ≤ · · · ≤ μc, (3.1)

where μ1 represents the processing rate of the slowest server in the system and μ2 is the
processing rate of the second slowest server, and so on till μc, which is the processing rate of
the fastest server.

Considering heavy traffic conditions, it is intuitive that if there is a job in the system,
it will most likely be on the slower server. Thus, assuming heavy traffic conditions the
probability to find a job in the system in the slowest server is higher than the probability
to find it in any other server, because in average, the job will stay longer in a slow server than
in a fast one. Another argument that supports the statement that a job in the system is highly
probable to be found in the slowest server is the fact that the exponential distribution has no
memory. Also, in order to know which server is more likely to be the last one to finish the
work at any time t and when all c servers are busy, one must consider that the probability of
being the last one does not depend on the knowledge of which server started the work first
because of the lack of memory of the exponential distribution. This probability only depends
on the service rate μ, regardless of which server first started the work. Thus, we can define an
approximation of the state diagram ofM/Mi/c systems, shown in Figure 2.

Figure 2 represents a birth and death process, in which the birth rate is such that λi = λ,
for i = 0, 1, 2, . . . ,∞ and the death rate μeqi is variable and depends on the state i in which the
system currently is. The state space is the set of nonnegative integers (the numbers inside the
circles), which represents the number of jobs currently in the system, i. Then, the quantity
μeqi may be defined as an equivalent approximate death rate as

μeqi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if i = 0,

μ1, if i = 1,

μ1 + μ2, if i = 2,

...
...

μ1 + μ2 + · · · + μc, if i ≥ c.

(3.2)

Indeed, under the assumptions of (3.1), if the system is in state “1” (i.e., there is
currently only 1 single job in the system), server “1” (with service rate μ1) clearly will be
more probable to be busy than server “2” (with service rate μ2 > μ1) and so on. We argue that
this is a worst-case approximation that can be made. Thus, the system may now be modeled
using only the most probable possibilities regardless of the others. Such a simplification will
allow us to easily compute accurate upper bounds for two important performance measures of
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0 1 2 cc − 2 c − 1 c + 1

μ1 + μ2 + · · · + μc−2 + μc−1

Figure 2: State transition diagram forM/Mi/c systems.

the system. The upper bound is a consequence of the fact that the system is preferentially in
the worst configuration, namely, when the jobs are in the slowest servers.

Thus, (3.2) can be formulated in two ways: when the system contains less than c jobs,
μeqi is variable and when there is c or more jobs in the system, μeqi is a constant. Then, we
define the quantitiesmi andmc in order to facilitate the development and visualization of the
formulation as follows: if i < c,

mi =
i∑

j=1

μj, (3.3)

and if i ≥ c

mi = mc =
c∑

j=1

μj . (3.4)

When i = 1,mi refers to μ1, which actually is an approximate system death rate when it
is in the state “1” (i.e., only 1 job is presently in the system). The system is in this state when
there is only one job in the system and there is only one server processing the work (which
we assume with high probability to be the slowest server).

For a better understanding of the influence of the μ parameters on the system,
equilibrium equations for the diagram shown in Figure 2 can be written as

μ1p1 = p0λ ⇐⇒ p1 =
λ

μ1
p0,

λp0 +
(
μ1 + μ2

)
p2 =

(
μ1 + λ

)
p1 ⇐⇒ p2 =

λ2

μ1
(
μ1 + μ2

)p0,

...

(3.5)

which leads to

pc =
λc

μ1
(
μ1 + μ2

)(
μ1 + μ2 + μ3

) · · · (mc)
p0. (3.6)

In (3.6), μ1 appears in all the terms of the denominator. It is repeated c times and has
thus a great influence on the result. Similarly, the rate μ2 has the second largest weight on the
result and so on until μc, which only appears once in the last term of the denominator of (3.6).
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We will show in the next section that these upper bounds can also be used as a good approx-
imation of the performance measures of the system.

3.2. Computation of pi and p0

Developing the equilibrium equations, it can be shown that the probability pi to find i jobs in
the system is as follows: if i < c, then

pi = p0
λi

∏i
k=1

(∑k
j=1 μj

) , (3.7)

and if i ≥ c, one has

pi = p0
c∏

j=1

(
λ

mj

)⎡

⎣
i∏

j=c+1

(
λ

mc

)
⎤

⎦. (3.8)

In order to compute the probability p0 of the empty system, we isolate this term in
(3.8). Using the fact that all probabilities pi must obey the following relationship:

∞∑

i=0

pi = 1, (3.9)

an expression for p0 can be found and

p−10 =
c−1∑

i=0

⎡

⎣
λi

∏i
j=1mj

⎤

⎦ +
∞∑

i=c

⎡

⎢
⎣

λi

(∏c
j=1mj

)
(mc)i−c

⎤

⎥
⎦

=
c−1∑

i=0

⎡

⎣
λi

∏i
j=1mj

⎤

⎦ +
(mc)c

(∏c
j=1mj

)

∞∑

i=c

(
λ

mc

)i

.

(3.10)

In order to keep the system stable (in other words, in order to prevent the queue from
growing indefinitely), the system utilization

ρ =
λ

∏c
j=1μj

=
λ

mc
(3.11)

must satisfy the condition ρ < 1. Thus, substituting ρ into (3.10) leads to the following expres-
sion for p0:

p−10 =
c−1∑

i=0

⎡

⎣
λi

∏i
j=1mj

⎤

⎦ +
(mc)c

(∏c
j=1mj

)

∞∑

i=c

(
ρ
)i
. (3.12)
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As |ρ| < 1 and to keep the system stable, one has to satisfy

∞∑

i=c

(
ρ
)i =

(
1 − ρ

)−1(
ρc
)
. (3.13)

Substituting (3.13) into (3.12), we obtain the following expression for p0

p−10 =
c−1∑

i=0

⎡

⎣
λi

∏i
j=1mj

⎤

⎦ +
(mc)c

(∏c
j=1mj

)
1

(1 − (λ/mc))
λc

(mc)c
, (3.14)

and finally

p−10 =

⎛

⎝
c−1∑

i=0

λi

∏i
j=1mj

⎞

⎠ +
λc

(
1 − ρ

)∏c
j=1mj

. (3.15)

3.3. Computation of the Performance Measures

It is possible to obtain a formulation of the performance measures of the system from the
probabilities pi and p0. The goal is to derive equations to measure (i) the average number
in queue, Lq, and (ii) the average waiting time in queue, Wq. However, other performance
measures could be chosen as well. In order to find the average number in queue, it is
necessary to find its expectation, which is given by

Lq =
∞∑

i=c

(i − c)pi. (3.16)

Substituting (3.8) into (3.16) leads to

Lq =
∞∑

i=c

(i − c)pi

=
∞∑

i=c

(i − c)p0
λi

(∏c
j=1mj

)
(mc)i−c

= p0
(mc)cρc
∏c

j=1mj

∞∑

i=c
(i − c)

(
ρ
)i−c

.

(3.17)
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Using the change of indices i = k + c, one obtains

Lq = p0
(mc)cρc
∏c

j=1mj

∞∑

k=0

(k)
(
ρ
)k

= p0
(mc)cρc+1
∏c

j=1mj

∞∑

k=0

(k)
(
ρ
)k−1

= p0
(mc)cρc+1
∏c

j=1mj

d

dρ

[ ∞∑

k=0

(
ρ
)k
]

= p0
(mc)cρc+1
(∏c

j=1mj

)
(
ρ − 1

)−2
,

(3.18)

therefore,

Lq = p0
(mc)cρc+1

(∏c
j=1mj

)(
ρ − 1

)2
. (3.19)

The following equation for the average waiting time in queue, Wq, can be rearranged
as

Wq = p0
(mc)cρc+1

(∏c
j=1mj

)(
ρ − 1

)2

1
λ
, (3.20)

according to Little’s law, namely, Wq = Lq/λ. We remark that the approximations for the
average number in queue, Lq, given by (3.19), and the average time in queue Wq, given by
(3.20), are newly developed ones, for heterogeneousM/Mi/c queueing systems.

4. Simulation Model

Although it is recognized that in some cases discrete event simulation techniques are less
suitable because of the high computational capacities required, such techniques play a key
role in queueing systems analysis [10]. In our work, they allow us to validate the developed
upper bounds. Simulations are also used here to estimate the resulting errors when the
selected performance measures are approximated by our proposed method or when they
are approximated by a classical homogeneous M/M/c queuing system. Our discrete event
simulation model, which is available from the authors upon request, is coded for the well-
known general purpose simulation system (GPSS) [30].

It is important to note that many simulation model limitations are encountered
in our work. We experienced some difficulties in obtaining accurate results without too
many computational efforts and during the generalization of the results. In addition, the
required high accuracy led to some technical difficulties. The required level of accuracy
dramatically increases the simulation running times as well as the number of replications
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(large ρ coefficients require a high accuracy). In some cases, it is necessary to replicate the
simulation many times in order to obtain appropriate mean standard errors (MSE) as low
as 1% of the estimated average. Such low MSE are necessary in order to be able to compare
the simulation results for different allocation strategies (i.e., FSF, RCS, and SSF). The desired
accuracy is generally achieved after less than 200 replications, a simulation time of 700,000
timeunits, and a short burn-in (warm-up) period (further details on the selection of the
warm-up period are given by Robinson [31]).

Finally, it is important to note that we have encountered some problems in the
generalization of the results. Each model simulated gave results that were only valid for
the specific system and combination of parameters to which they were related. Therefore, it
was necessary to simulate many different configurations with slightly different parameters in
order to get a complete understanding with the required accuracy of the general behavior of
theM/Mi/c systems. As a result, this additional number of configurations led to a consider-
able increase in the number of simulated cases.

5. Experimental Results

In this section, we present our experimental results in order to validate the quality of the
proposed approximation and demonstrate that the proposed upper bounds can be used to get
an estimate of the performance measures of M/Mi/c queues. We will focus on the average
queue waiting time, namely, Wq. However, we believe that the results will be insightful,
because they will be immediately transposable to other performance measures, directly
related to Wq by Little’s law, such as the average number in queue Lq and the average
number in the system L, as well as the average waiting time in the system, W . Our goal
is to demonstrate that the upper bound given in (3.20) can be used to approximate Wq for
heterogeneous Markovian multi-server queues, namely, M/Mi/c. In addition, we want to
show that such an approximation is much more accurate than the traditional approximation
given by homogeneous Markovian queues, namely,M/M/c.

To do so, it is necessary to thoroughly understand the proposed model. Thus, several
types of queueing systems were created by changing for each one of them at least one of the
following parameters:

(1) the number of servers c,

(2) the arrival rate of jobs, λ,

(3) the level of heterogeneity of the servers, given by the corresponding Gini Index.

The level of heterogeneity of the servers indicates how the overall processing capacity
of the systems has been distributed among the servers. In this paper, we have chosen the
Gini index of inequality to measure the differences between the processing capacities of
the servers for a given system (see, for instance, Shalit [32] for details). This index ranges
from 0 (completely homogeneous case) to 1 (completely heterogeneous case). For each
system, Wq is calculated using both the proposed upper bound in (3.20) and the traditional
homogeneous M/M/c formula. In addition, we performed simulations using three different
allocation strategies for each configuration (FSF, RCS, and SSF) to estimate three different
simulated values for Wq. Different heterogeneities of the servers were simulated by varying
the distributions of the overall processing capacity. Considering two servers for instance, they
were initially treated as homogeneous, namely, by having a 50%–50% distribution of the total
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processing rate μ. Afterwards, this ratio was changed to 52%–48%, 54%–46% and so on, until
it reached 98%–2% (which is the most heterogeneous case considered in this work).

The average waiting times in queue Wq are plotted in Figures 3 and 4 for each con-
figuration previously mentioned. In these figures, we show the values of Wq corresponding
to the homogeneous M/M/c and to our approximation method. They are compared with
numerical results for three different allocation strategies, namely FSF, RCS, and SSF, and for
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a number of servers equal to c = 2, 3, 6, and 12. Figure 3 corresponds to a heavily loaded
system with ρ = 0.9, whereas Figure 4 corresponds to a moderately loaded system with
ρ = 0.6.

Using the FSF allocation strategy, the systems can show a region for which the average
waiting time in queue is optimum, namely, Wq is lower than the average waiting time
in queue for a homogeneous system as indicated in Figures 3(a)–3(c). Thus, we have
shown using numerical simulations that it is possible to have heterogeneous systems with
better performance measures than homogeneous systems using the FSF allocation strategy,
depending on the heterogeneity distribution among the servers. However, the simulations
also revealed that the optimum region not only depends on the heterogeneity of the system
itself but also on the number of servers. Each time, the number of servers was increased, the
optimum region decreased until one single optimum point was found, which corresponded
to the case where all the servers were homogeneous. Considering, for example, the case
of c = 12 servers shown in Figure 3(d), we see that there exists no optimal region, even
using the FSF allocation strategy. In other words, there is no condition for which the average
waiting time in queue of a heterogeneous systems is better than that of a homogeneous
one.

In order to better compare our approximation with the traditional homogeneous
M/M/c queue approximation, we used a normalized error given by

error =
‖Xsimulated −Xcalculated‖

Xsimulated
. (5.1)

Figures 5 and 6 represent the normalized errors for different allocation strategies and
different numbers of servers for a heavily loaded system (ρ = 0.9) and for a moderately
loaded system (ρ = 0.6), respectively. We observe that the normalized errors seem to be
inversely proportional to ρ. In addition, considering the systems with only c = 2 servers
initially for ρ = 0.9 (Figure 5(a)) and for ρ = 0.6 (Figure 6(a)), the maximum errors for the
homogeneous M/M/c queue (4.99% and 23.63% respectively; see Table 1) occurred using
the SSF allocation strategy. This result is very different from that of our approximation, which
predicts the maximum errors (2.27% and 14.08% resp.; see Table 1) using the FSF allocation
strategy. The same differences are observed by analyzing the cases with c = 3, 6, and 12
heterogeneous servers (see Figures 5(b)–5(d) and Figures 6(b)–6(d)). These results are quite
unexpected, and theymight be useful to select the correct approximation to be used according
to the available allocation strategy.

In Figures 5 and 6, it is possible to see the influence of the heterogeneities on the
errors of the predictions from both methods (namely, the traditional homogeneous M/M/c
and the proposed upper bound). This constitutes another important characteristic of the
approximation proposed. This new approximation shows a slower increase in the resulting
errors when the number of servers is increased compared to the traditional homogeneous
M/M/c queue. In Figures 5 and 6, we observe that (i) the approximation proposed seems
to give better predictions than the traditional homogeneous M/M/c queue when the
heterogeneity is high and that (ii) the Gini index for which the proposed approximation
is better than the traditional homogeneous M/M/c queue decreases when the number of
servers is increased.

In other words, this seems to indicate that the proposed bounds give more rapidly
better predictions than the traditional homogeneousM/M/c queue as the number of servers
increases. In fact, it is possible to see that for c = 2 and using the RCS allocation strategy
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Figure 5: Errors in the estimation of the average waiting times in queue for the traditional homogeneous
M/M/c and for the proposed approximation for a heavily loaded system, ρ = 0.9.

in Figure 6(a), the proposed bound gives better results than the homogeneous M/M/c
queue for Gini indices larger than 0.54. On the other hand, for c = 6 and using the
same RCS allocation strategy, we observe in Figure 6(c) that the proposed bound is more
effective than the homogeneous M/M/c queue for Gini indices only greater than 0.15.
Therefore, we conclude that the proposed bounds give a better approximation of systems
with heterogeneous servers when the number of servers is high and when there is a high
degree of heterogeneity. However, we did not determine in this work for which values of
the Gini index and for which number of servers the proposed bounds always give better
predictions than the traditional homogeneous M/M/c queue.

In Table 1, we list the maximum errors obtained for each model, when ρ = 0.9, 0.75,
and 0.6. It is possible to observe the influence of the coefficient ρ on the approximations. As
seen from Figures 5 and 6, the maximum errors are mostly for the Gini index around 0.5.
This influence can be explained by the fact that only if one of the slow servers in the system
is busy, it will be relevant for the upper bound of (3.20). However, the probability to find a
busy slow server decreases when the utilization of the system decreases. That is, the number
of jobs in the system decreases, and the variation of the states decreases (see Figure 2), as the
traffic in the system decreases (low ρ). Therefore, when ρ becomes low, (3.20) is not a good
approximation anymore. This observation is also true for the homogeneous M/M/c queue.
As the variation of the states increases in Figure 2, the approximation that all servers are equal
becomes more unrealistic.
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Figure 6: Errors in the estimation of the average waiting times in queue for the traditional homogeneous
M/M/c and for the proposed approximation for a moderately loaded system, ρ = 0.6.

In general, the errors increase when the number of servers increases. In Table 1, we
observe that the maximum error always increases when the number of servers increases. That
is a consequence of the fact that the systems with a greater number of servers have a higher
number of possibilities for the job in service to be found than systems with a small number of
servers. As a result, the higher the number of possibilities is, the higher the generated error
in the approximation is as well as in the homogeneous M/M/c queue. Another important
point observed in Table 1 is that the maximum errors found for the proposed approximation
is always lower than the maximum errors found for the homogeneous M/M/c queue. This
is an important result, as the proposed approximation is chosen to model a system with
heterogeneous servers and the maximum possible error will be lower.

Finally, Table 2 summarizes the average error of each curve. The sum of the error
obtained for each system is indicated, divided by the number of analyzed configurations.
Three different values of ρ are shown, namely, 0.9, 0.75, and 0.6. The average errors can be
related, for instance, to the curves shown in Figures 5 and 6. They were obtained by summing
up the values inside a curve and by dividing this sum by the number of points on each curve.
From this table, we can see the influence of the allocation policies on the results. For the
allocation policies SSF and RCS, the average errors for the proposed upper bound are always
lower than those of the homogeneousM/M/c queue. However, for the allocation policy FSF,
the point from which the proposed bound gives better predictions than the homogeneous
M/M/c queue depends on ρ and on the number of servers c.
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Table 1:Maximum errors (in %) in the predictions of the average waiting times in queue for the proposed
method and for the traditional homogeneousM/M/c queue.

Number of servers Allocation strategy
c ρ Approximation method FSF RCS SSF

2

0.90 Proposed bounds 2.27 1.36 0.77
Homogeneous M/M/c 4.66 4.76 4.99

0.75 Proposed bounds 6.91 3.93 1.93
Homogeneous M/M/c 12.52 13.11 13.49

0.60 Proposed bounds 14.08 7.31 3.18
Homogeneous M/M/c 21.49 22.95 23.63

3

0.90 Proposed bounds 4.30 2.52 1.37
Homogeneous M/M/c 8.42 8.88 8.87

0.75 Proposed bounds 13.70 7.40 3.51
Homogeneous M/M/c 22.62 23.33 23.59

0.60 Proposed bounds 29.56 14.64 5.88
Homogeneous M/M/c 37.97 39.21 39.79

6

0.90 Proposed bounds 6.89 4.70 2.45
Homogeneous M/M/c 16.37 16.57 17.16

0.75 Proposed bounds 23.58 11.82 5.43
Homogeneous M/M/c 40.41 41.81 42.36

0.60 Proposed bounds 62.75 22.64 8.64
Homogeneous M/M/c 57.97 64.93 65.66

12

0.90 Proposed bounds 8.63 4.35 2.22
Homogeneous M/M/c 27.48 27.96 28.28

0.75 Proposed bounds 31.77 13.69 5.85
Homogeneous M/M/c 62.09 63.17 63.53

0.60 Proposed bounds 99.33 27.06 9.46
Homogeneous M/M/c 85.53 86.54 86.87

6. Conclusions and Final Remarks

In many practical situations, queueing theory has been successfully applied [3, 8, 33]. Thus,
the development and refinement of new analytical models is necessary to obtain better
applications. The bounds developed in this paper for M/Mi/c queues are a generalization
of homogeneous M/M/c queue formulas. We could develop worst case approximations
for the invariant distribution of the number of jobs in a system, pi, i = 0, 1, . . ., for
heterogeneous multi-serverMarkovian queuesM/Mi/c, fromwhich we derived tight upper
bounds for useful performance measures, namely, the average number in queue Lq, and the
average waiting time in queue Wq. From a comprehensive set of extensive computational
experiments, we could validate the quality of the proposed bounds. The results presented
here are certainly a step forward towards a better understanding of real-life heterogeneous
multi-server queueing systems.

Future possible research in this field involves the development of tight lower bounds
for the performance measures and extensions to general arrivals, batch arrivals, general
service times, and finite queues. Also, it is important to consider that the lifetime of each
server is finite in real life. The investigation of the effect of finite lifetimes in the performance
of the server allocation strategies is another interesting topic for future research in the area.
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Table 2: Average errors (in %) in the predictions of the average waiting times in queue for the proposed
method and for the traditional homogeneousM/M/c queue.

Number of servers Allocation strategy
c ρ Approximation method FSF RCS SSF

2

0.90 Proposed bounds 1.31 0.82 0.46
Homogeneous M/M/c 1.03 1.45 1.80

0.75 Proposed bounds 4.02 2.33 1.16
Homogeneous M/M/c 2.75 3.93 5.01

0.60 Proposed bounds 8.10 4.28 1.91
Homogeneous M/M/c 4.58 6.91 8.99

3

0.90 Proposed bounds 2.54 1.53 0.87
Homogeneous M/M/c 2.15 2.96 3.59

0.75 Proposed bounds 7.89 4.43 2.11
Homogeneous M/M/c 5.62 8.07 10.09

0.60 Proposed bounds 16.75 8.60 3.49
Homogeneous M/M/c 9.38 14.00 17.98

6

0.90 Proposed bounds 3.15 2.12 0.88
Homogeneous M/M/c 5.35 6.20 7.18

0.75 Proposed bounds 10.74 5.17 2.49
Homogeneous M/M/c 13.68 17.21 19.24

0.60 Proposed bounds 26.19 10.27 4.22
Homogeneous M/M/c 21.72 29.39 33.01

12

0.90 Proposed bounds 4.01 1.75 0.84
Homogeneous M/M/c 13.43 15.27 16.00

0.75 Proposed bounds 15.51 5.75 2.40
Homogeneous M/M/c 33.26 38.56 40.32

0.60 Proposed bounds 49.91 11.83 4.33
Homogeneous M/M/c 48.30 60.44 62.51
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