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We introduce a generalized version of the standard Gumble type-2 distribution. The new lifetime distribution is called the
ExponentiatedGumbel (EG) type-2 distribution.The EG type-2 distribution has three nested submodels, namely, the Gumbel type-
2 distribution, the Exponentiated Fréchet (EF) distribution, and the Fréchet distribution. Some statistical and reliability properties
of the new distribution were given and the method of maximum likelihood estimates was proposed for estimating the model
parameters.The usefulness and flexibility of the ExponentiatedGumbel (EG) type-2 distributionwere illustrated with a real lifetime
data set. Results based on the log-likelihood and information statistics values showed that the EG type-2 distribution provides a
better fit to the data than the other competing distributions. Also, the consistency of the parameters of the new distribution was
demonstrated through a simulation study.The EG type-2 distribution is therefore recommended for effective modelling of lifetime
data.

1. Introduction

The Gumbel distribution, also known as the type-1 extreme
value distribution, has received significant research attention,
over the years particularly, in extreme value analysis of
extreme events. For a review of the recent developments
and applications of the Gumbel distribution, see Pinheiro
and Ferrari [1]. There is no question that, before now, the
Gumbel type-2 distribution is not popularly used in statistical
modelling and the reasonmay not be far from its lack of fits in
data modelling. Generally, standard probability distributions
are well known for their lack of fits in modelling complex
data sets. On this note, users of this distributions across
various fields in general and statistics and mathematics in
particular have been fantastically motivated to developing
sophisticated probability distributions from the existing ones.
Exponentiated distributions have been introduced to solve
the problem of lack of fits that is commonly encountered
when using the standard probability distributions for mod-
elling complex data sets. Results from this advancement
have frequently been proven more reasonable than the

one based on the standard distributions. Exponentiating
distributions are indeed a powerful technique in statistical
modelling that offers an effective way of introducing an
additional shape parameter to the standard distribution to
achieve robustness and flexibility. This method of generaliz-
ing probability distributions is traceable to the work of Gupta
et al. [2] who introduced the exponentiated exponential
(EE) distribution as a generalized form of the standard
exponential distribution by simply raising the cumulative
density function (cdf) to a positive constant power. Ever
since the introduction of the EE distribution, exponentiated
distributions have achieved reasonable feats in modelling
data sets from various complex phenomena. A good number
of standard probability distributions have their correspond-
ing exponentiated versions. Gupta et al. [2] introduced the
Exponentiated Weibull distribution as a generalization of
the standard Weibull distribution. Nadarajah and Kotz [3]
modified the method by Gupta et al. [2] and introduced
the Exponentiated Fréchet distribution as a generalization of
the standard Fréchet distribution. Using the same method
in Nadarajah and Kotz [3], Nadarajah [4] introduced the
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Exponentiated Gumbel distribution as a generalization of the
standard Gumbel distribution. Mudholkar and Srivastava [5]
introduced the Exponentiated Weibull family distribution as
a generalization of the Weibull family distribution. Ashour
and Eltehiwy [6] developed the exponentiated power Lindley
distribution generalizing the power Lindley distribution and
so forth. Therefore, this paper is aimed at generalizing the
standard Gumbel type-2 distribution to a wider class of
distribution so as to improve its performance and encourage
its applicability, in modelling varieties of complex data sets.

The cumulative density function cdf(𝐹(𝑥)) of the expo-
nentiated family of distributions according to Nadarajah and
Kotz [3] is defined by

𝐹 (𝑥; 𝜔; 𝛼) = 1 − (1 − 𝐺 (𝑥; 𝜔))
𝛼

;

𝑥 ∈ R; 𝛼 > 0; 𝜔 ∈ Ω;
(1)

differentiating (1) with respect to 𝑥 gives the corresponding
probability density function pdf(𝑓(𝑥)) as

𝑓 (𝑥; 𝜔; 𝛼) = 𝛼𝑔 (𝑥; 𝜔) (1 − 𝐺 (𝑥; 𝜔))
𝛼−1

;

𝑥 ∈ R; 𝛼 > 0; 𝜔 ∈ Ω,
(2)

where 𝜔 and Ω are the vector of parameters and parameter
space of the baseline distribution (𝐺(𝑥; 𝜔)), respectively.

The remaining part of this paper is organized as fol-
lows; Section 2 introduces the Gumbel type-2 distribution,
its exponentiated version, and special cases (submodels);
Section 3 presents some important reliability characteristics
of the new distribution and their asymptotic properties;
Section 4 presents an explicit derivation of the moments,
variance, andmoment generating function of the newmodel;
Section 5 presents the 𝑝th quantile function of the new
distribution; Section 6 presents the Rényi’s entropy of the
new distribution; Section 7 presents the 𝑘th order statistics
of the new distribution; Section 8 proposes the maximum
likelihood estimation method for estimating the parameters
of the new distribution; Section 9 presents the application of
the new distribution to a real data set and a simulation study;
Section 10 is the discussion of results and Section 11 contains
the conclusion of the study.

2. Exponentiated Gumbel Type-2 Distribution

Definition 1. According to Gumbel [7–9], a random variable
𝑋 is said to follow the Gumbel type-2 distribution if its
cumulative density function (cdf) 𝐺(𝑥) is given by

𝐺 (𝑥) = 𝑒
−𝜃𝑥
−𝜙

, 𝑥 > 0; 𝜙, 𝜃 > 0, (3)

while the corresponding probability density function (pdf)
𝑔(𝑥) is given by

𝑔 (𝑥) = 𝜙𝜃𝑥
𝜙−1

𝑒
−𝜃𝑥
−𝜙

, 𝑥 > 0; 𝜙, 𝜃 > 0. (4)

Using (3), we obtain the cdf (𝐹(𝑥)) of the Exponentiated
Gumbel (EG) type-2 distribution as

𝐹 (𝑥) = 1 − (1 − 𝑒
−𝜃𝑥
−𝜙

)
𝛼

, 𝑥 > 0; 𝛼, 𝜙, 𝜃 > 0, (5)

while the corresponding pdf (𝑓(𝑥)) is given by

𝑓 (𝑥) = 𝛼𝜙𝜃𝑥
−𝜙−1

𝑒
−𝜃𝑥
−𝜙

(1 − 𝑒
−𝜃𝑥
−𝜙

)
𝛼−1

,

𝑥 > 0; 𝛼, 𝜙, 𝜃 > 0,

(6)

where 𝛼 and 𝜙 are the shape parameters and 𝜃 is the scale
parameter.

Figure 1 shows the plots of the pdf (a) and cdf (b) of the
EG type-2 distribution for certain parameter values.

2.1. Special Cases of the EG Type-2 Distribution. TheEG type-
2 distribution is developed for the purpose of modelling
data sets that arise from complex phenomena. It generalizes
some standard distributions; for instance, the EG type-
2 distribution reduces to the Gumbel type-2 distribution,
Exponentiated Fréchet (EF) distribution, and Fréchet distri-
bution when 𝛼 = 1, 𝜃 = 1, and 𝛼, 𝜃 = 1, respectively.

Theorem 2. If 𝑦 = 𝑥
−𝜙 and 𝑋 is distributed according to the

EG type-2 distribution then, 𝑌 is distributed according to the
exponentiated exponential (EE) distribution due to Gupta et
al. [2].

Proof. The transformation of a random variable 𝑋 to a
random variable 𝑌 is defined by 𝑓(𝑦) = 𝑓(𝑥)/|𝑑𝑦/𝑑𝑥|, where
|𝑑𝑦/𝑑𝑥| is known as the Jacobian of transformation. Thus,
|𝑑𝑥/𝑑𝑦| = (1/𝜙)𝑦

−[1/𝜙+1] and

𝑓 (𝑦) =
𝛼𝜙𝜃𝑦1/𝜙+1𝑒−𝑦𝜃 [1 − 𝑒−𝑦𝜃]

𝛼−1

𝜙𝑦1/𝜙+1
(7)

= 𝛼𝜃𝑒
−𝑦𝜃

[1 − 𝑒
−𝑦𝜃

]
𝛼−1

; 𝑦 > 0, 𝛼, 𝜃 > 0. (8)

Corollary 3. When 𝛼 = 1 (8) reduces to the exponential
distribution with parameter 𝜃; that is, 𝑌 ∼ exp (𝜃).

3. Some Reliability Properties of the EG
Type-2 Distribution

Reliability theory is generally concerned with the estimation
of the probability of longevity or failure of a system.

3.1. Reliability Function

Definition 4. The reliability function or the survival function
of a random variable 𝑋 is defined by 𝑅(𝑥) = 𝑃(𝑋 > 𝑥) =

1−𝐹(𝑥). It could be interpreted as the probability of a system
not failing before some specified time 𝑡, Lee and Wang [10].
The reliability function of the EG type-2 distribution is given
by

𝑅 (𝑥) = (1 − 𝑒
−𝜃𝑥
−𝜙

)
𝛼

, 𝑥 > 0; 𝛼, 𝜙, 𝜃 > 0. (9)
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Figure 1: Possible shapes of the pdf 𝑓(𝑥) (a) and cdf 𝐹(𝑥) (b) of the EG type-2 distribution for fixed parameter values of 𝜙, 𝜃 = 1 and selected
values of 𝛼 parameter. 𝛼 = 0.5 (solid lines), 𝛼 = 1 (dashed lines), 𝛼 = 1.5 (dotted lines), 𝛼 = 2 (dot-dashed lines), 𝛼 = 2.5 (long dashed lines),
and 𝛼 = 3 (two dashed lines).
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Figure 2: Possible shapes of the reliability function𝑅(𝑥) (a) and hazard rate function ℎ(𝑥) (b) of the EG type-2 distribution for fixed parameter
values of 𝜙, 𝜃 = 1 and selected values of 𝛼 parameter. 𝛼 = 0.5 (solid lines), 𝛼 = 1 (dashed lines), 𝛼 = 1.5 (dotted lines), 𝛼 = 2 (dot-dashed
lines), 𝛼 = 2.5 (long dashed lines), and 𝛼 = 3 (two dashed lines).

3.2. Hazard Rate Function

Definition 5. The hazard rate function (ℎ(𝑥)) or the instan-
taneous failure rate of a random variable 𝑋 is the probability
that a system fails given that it has survived up to time 𝑡 and
is given by ℎ(𝑥) = 𝑓(𝑥)/𝑅(𝑥) (Lee andWang [10]). Hence, we
define the hazard rate function of the EG type-2 distribution
as follows:

ℎ (𝑥) =
𝛼𝜙𝜃𝑥
−𝜙−1

𝑒
−𝜃𝑥
−𝜙

(1 − 𝑒
−𝜃𝑥
−𝜙

)
𝛼−1

(1 − 𝑒−𝜃𝑥
−𝜙

)
𝛼

,

𝑥 > 0; 𝛼, 𝜙, 𝜃 > 0.

(10)

Figure 2 shows plots of the reliability function (a) and hazard
rate function (b) of the EG type-2 distribution for selected
parameter values.

3.3. Asymptotics. pdf 𝑓(𝑥) and cdf 𝐹(𝑥) of the EG type-
2 distribution is unimodal and monotonically increasing,
respectively, with increasing values of 𝛼. The reliability
function 𝑅(𝑥) of the EG type-2 distribution is 0 as 𝑥 → 0 and
1 as 𝑥 → ∞. Also, 𝑅(𝑥) is a monotonic decreasing function
of 𝑥. For example, when 𝛼 = 1,

𝑅 (𝑥) = 1 − 𝑒
−𝜃𝑥
−𝜙

, 𝑥 > 0; 𝜙, 𝜃 > 0;

𝑑 (𝑅 (𝑥)|
𝛼=1

)

𝑑𝑥
= −𝜙𝜃𝑒

−𝜃𝑥
−𝜙

< 0.

(11)

Hence, 𝑅(𝑥) is strictly a monotonic decreasing function of 𝑥.
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The hazard rate function ℎ(𝑥) of the EG type-2 distribu-
tion is 0 for both 𝑥 → 0 and 𝑥 → ∞ and its shape appears
increasingly upside-down bathtub with decreasing values of
𝛼.

4. The 𝑘th Crude Moment of the EG
Type-2 Distribution

In probability theory, the moments of a random variable
are one of the most important properties of a distribution
that could be used to derive other essential properties such
as mean, variance, skewness, and kurtosis statistics that
describes a probability distribution. The 𝑘th crude moment
of a continuous random variable 𝑋 is defined by 𝐸(𝑥

𝑘) =

∫
∞

−∞

𝑥𝑘𝑓(𝑥)𝑑𝑥; then the 𝑘th crude moment of the EG type-
2 distribution follows as

𝐸 (𝑥
𝑘

) = ∫
∞

0

𝑥
𝑘

𝛼𝜙𝜃𝑥
−𝜙−1

𝑒
−𝜃𝑥
−𝜙

(1 − 𝑒
−𝜃𝑥
−𝜙

)
𝛼−1

𝑑𝑥 (12)

= 𝛼𝜙𝜃∫
∞

0

𝑥
𝑘

𝑥
−𝜙−1

𝑒
−𝜃𝑥
−𝜙

(1 − 𝑒
−𝜃𝑥
−𝜙

)
𝛼−1

𝑑𝑥. (13)

Substituting 𝑦 = 𝜃𝑥
−𝜙 into (13) we have

𝐸 (𝑥
𝑘

) = −
𝛼

𝜃−𝑘/𝜙

⋅ ∫
∞

0

𝑦
−𝑘/𝜙

𝑒
−𝑦

(1 − 𝑒
−𝑦

)
𝛼

(1 − 𝑒
−𝑦

)
−1

𝑑𝑦,

𝐸 (𝑥
𝑘

) = −
𝛼

𝜃−𝑘/𝜙
∫
∞

0

𝑦
−𝑘/𝜙

𝑒
−𝑦

∞

∑
𝑖=0

(
𝛼

𝑖
) (−1)

𝛼−𝑖

𝑒
𝑦𝑖−𝛼𝑖

⋅

∞

∑
𝑗=0

(−1)
𝑗

(
𝑗 + 1 − 1

𝑗
) (−1)

−1−𝑗

𝑒
𝑦+𝑦𝑗

𝑑𝑦

(14)

and thus,

𝐸 (𝑥
𝑘

)

= −
𝛼

𝜃−𝑘/𝜙

∞

∑
𝑖=0

∞

∑
𝑗=0

(−1)
𝛼−𝑖−1

(
𝛼

𝑖
)∫
∞

0

𝑦
−𝑘/𝜙

𝑒
−𝑦(𝛼−𝑖−𝑗)

𝑑𝑦.
(15)

Since 𝑋 can only take values on the positive real line we
can introduce the exponential integral defined by 𝐸𝑖(−𝑥) =

−∫
∞

𝑥

𝑡−1𝑒−𝑡𝑑𝑡 (see Chapter 5 of Abramowitz and Stegun [11]
and Equation (6.2.6) of Olver et al. [12]):

𝐸 (𝑥
𝑘

)

=
𝛼

𝜃−𝑘/𝜙

∞

∑
𝑖=0

∞

∑
𝑗=0

(−1)
𝛼−𝑖−1

(
𝛼

𝑖
)∫
∞

𝑥

𝑡
𝑘/𝜙

𝑒
−𝑡(𝛼−𝑖−𝑗)

𝑑𝑡.
(16)

Substituting 𝑧 = 𝑡(𝛼 − 𝑖 − 𝑗) in (16) we have

𝐸 (𝑥
𝑘

) =
𝛼

𝜃−𝑘/𝜙

∞

∑
𝑖=0

∞

∑
𝑗=0

(−1)
𝛼−𝑖−1

(
𝛼

𝑖
)

⋅
1

(𝛼 − 𝑖 − 𝑗)
𝑘/𝜙+1

∫
∞

𝑥(𝛼−𝑖−𝑗)

𝑧
𝑘/𝜙

𝑒
−𝑧

𝑑𝑧

(17)

=
𝛼Γ (𝛼 + 1)

𝜃−𝑘/𝜙

⋅

∞

∑
𝑖=0

∞

∑
𝑗=0

(−1)
𝛼−𝑖−1

Γ (𝑘/𝜙 + 1; 𝑥 (𝛼 − 𝑖 − 𝑗))

Γ (𝑖 + 1) Γ (𝛼 − 𝑖 + 1) (𝛼 − 𝑖 − 𝑗)
𝑘/𝜙+1

.

(18)

Thus, evaluating (18) at 𝑘 = 1 and 𝑘 = 2 yields the mean
𝐸(𝑥) and second crudemoment𝐸(𝑥2) then we can obtain the
variance𝑉(𝑥) of the EG type-2 distribution as𝑉(𝑥) = 𝐸(𝑥2)−

(𝐸(𝑥))
2. Denoting𝐸(𝑥𝑘) by𝜇

𝑘
the coefficient of variation (cv),

skewness (𝛾
1
), and kurtosis (𝛾

2
) statistics of the EG type-2

distribution can be obtained by evaluating

cv = √
𝜇
2

𝜇2
1

− 1, (19)

𝛾
1
=

𝜇
3
− 3𝜇
2
𝜇
1
+ 2𝜇3
1

(𝜇
2
− 𝜇2
1
)
3/2

, (20)

𝛾
2
=

𝜇
4
− 4𝜇
3
𝜇
1
+ 6𝜇
2
𝜇2
1

− 3𝜇4
1

(𝜇
2
− 𝜇2
1
)
2

, (21)

respectively.

4.1. The Moment Generating Function of the EG Type-2 Dis-
tribution. Generally, the moment generating function (mgf)
denoted by𝑀

𝑥
(𝑡) of a random variable𝑋 is defined as

𝑀
𝑥
(𝑡) = 𝐸 (𝑒

𝑡𝑥

) = 𝐸(

∞

∑
𝑘=0

(𝑡𝑥)
𝑘

𝑘!
)

=

∞

∑
𝑘=0

𝑡𝑘

𝑘!
𝐸 (𝑥
𝑘

) .

(22)

If a random variable 𝑋 is distributed according to the EG
Type-2 distribution, then its mgf is given by

𝑀
𝑥
(𝑡) = 𝛼Γ (𝛼 + 1)

⋅

∞

∑
𝑖=0

∞

∑
𝑗=0

∞

∑
𝑘=0

(−1)
𝛼−𝑖−1

𝑡𝑘Γ (𝑘/𝜙 + 1; 𝑥 (𝛼 − 𝑖 − 𝑗))

Γ (𝑘 + 1) Γ (𝑖 + 1) Γ (𝛼 − 𝑖 + 1) (𝛼 − 𝑖 − 𝑗)
𝑘/𝜙+1

𝜃−𝑘/𝜙
.
(23)

5. The 𝑝th Quantile Function of the EG
Type-2 Distribution

The 𝑝th quantile function 𝑥
𝑝
of the EG Type-2 distribution is

the inverse of (5) and it is obtained as

𝑥
𝑝
= (−

1

𝜃
ln (1 − (1 − 𝑝)

1/𝛼

))
−1/𝜙

. (24)
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We can simulate random variables from the EG type-2 dis-
tribution through the inversion of the cdf method by simply
replacing 𝑝 in (24) with𝑈(0, 1) variates. Also, evaluating (24)
at 𝑝 = 1/2 gives the median of the distribution.

6. The Rényi Entropy

TheRényi entropy is used tomeasure uncertainty or variation
in a randomvariable𝑋.TheRényi’s entropymeasure has been
shown to be effective in comparing the tails and shapes of
various standard distributions, Song [13]. The Rényi entropy
measure for a continuous random variable𝑋 is given by

𝐻
𝜆
(𝑥) = lim

𝑛→∞

(𝐼
𝜆
(𝑓
𝑛
) − ln (𝑛))

=
1

1 − 𝜆
ln∫𝑓

𝜆

(𝑥) 𝑑𝑥.

(25)

Then the Rényi entropy measure for the EG type-2 distribu-
tion could be obtained as follows:

𝐻
𝜆
(𝑥) =

1

1 − 𝜆

⋅ ln∫
∞

0

(𝛼𝜙𝜃𝑥
−𝜙−1

𝑒
−𝜃𝑥
−𝜙

(1 − 𝑒
−𝜃𝑥
−𝜙

)
𝛼−1

)
𝜆

𝑑𝑥.

(26)

Setting 𝐼
𝜆

= ∫
∞

0

(𝛼𝜙𝜃𝑥
−𝜙−1

𝑒
−𝜃𝑥
−𝜙

(1 − 𝑒
−𝜃𝑥
−𝜙

)
𝛼−1

)
𝜆

𝑑𝑥 in (26)
we have

𝐼
𝜆
= (𝛼𝜙𝜃)

𝜆

∫
∞

0

𝑥
−𝜆𝜙−𝜆

𝑒
−𝜆𝜃𝑥
−𝜙

(1 − 𝑒
−𝜃𝑥
−𝜙

)
𝜆𝛼−𝜆

𝑑𝑥. (27)

Substituting 𝑦 = 𝜃𝑥−𝜙 in (27) we have

𝐼
𝜆
= −

(𝛼𝜙𝜃)
𝜆

𝜙𝜃𝜆/𝜙−1/𝜙+𝜆−1

⋅ ∫
∞

0

𝑦
𝜆/𝜙−1/𝜙+𝜆−1

𝑒
−𝜆𝑦

(1 − 𝑒
−𝑦

)
𝜆𝛼

(1 − 𝑒
−𝑦

)
−𝜆

𝑑𝑦,

𝐼
𝜆
= −

(𝛼𝜙𝜃)
𝜆

𝜙𝜃𝜆/𝜙−1/𝜙+𝜆−1

⋅ ∫
∞

0

𝑦
𝜆/𝜙−1/𝜙+𝜆−1

𝑒
−𝑦

∞

∑
𝑖=0

(
𝜆𝛼

𝑖
) (−1)

𝜆𝛼−𝑖

𝑒
−𝑦𝜆𝛼+𝑦𝑖

⋅

∞

∑
𝑗=0

(−1)
𝑗

(
𝑗 + 𝜆 − 1

𝑗
) (−1)

−𝜆−𝑗

𝑒
𝜆𝑦+𝑗𝑦

𝑑𝑦,

𝐼
𝜆
= −

(𝛼𝜙𝜃)
𝜆

𝜙𝜃𝜆/𝜙−1/𝜙+𝜆−1

⋅

∞

∑
𝑖=0

∞

∑
𝑗=0

(−1)
𝜆𝛼−𝜆−𝑖

(
𝜆𝛼

𝑖
)(

𝑗 + 𝜆 − 1

𝑗
)

⋅ ∫
∞

0

𝑦
𝜆/𝜙−1/𝜙+𝜆−1

𝑒
−𝑦(𝜆𝛼−𝑖−𝑗)

𝑑𝑦

(28)

using the expression for the 𝐸𝑖(−𝑥) function defined in
Section 4; we have

𝐼
𝜆
=

(𝛼𝜙𝜃)
𝜆

𝜙𝜃𝜆/𝜙−1/𝜙+𝜆−1

⋅

∞

∑
𝑖=0

∞

∑
𝑗=0

(−1)
𝜆𝛼−𝜆−𝑖

(
𝜆𝛼

𝑖
)(

𝑗 + 𝜆 − 1

𝑗
)

⋅ ∫
∞

𝑥

𝑡
𝜆/𝜙−1/𝜙+𝜆−1

𝑒
−𝑡(𝜆𝛼−𝑖−𝑗)

𝑑𝑡

(29)

and substituting 𝑧 = 𝑡(𝜆𝛼 − 𝑖 − 𝑗) in (29) we have

𝐼
𝜆
=

(𝛼𝜙𝜃)
𝜆

𝜙𝜃𝜆/𝜙−1/𝜙+𝜆−1

⋅

∞

∑
𝑖=0

∞

∑
𝑗=0

(−1)
𝜆𝛼−𝜆−𝑖

(
𝜆𝛼

𝑖
)(

𝑗 + 𝜆 − 1

𝑗
)

⋅
1

(𝜆𝛼 − 𝑖 − 𝑗)
1/𝜙−𝜆/𝜙−𝜆+2

⋅ ∫
∞

𝑥(𝜆𝛼−𝑖−𝑗)

𝑧
1/𝜙−𝜆/𝜙−𝜆+1

𝑒
−𝑧

𝑑𝑧,

𝐼
𝜆
=

(𝛼𝜙𝜃)
𝜆

𝜙𝜃𝜆/𝜙−1/𝜙+𝜆−1

⋅

∞

∑
𝑖=0

∞

∑
𝑗=0

(−1)
𝜆𝛼−𝜆−𝑖

(
𝜆𝛼

𝑖
)(

𝑗 + 𝜆 − 1

𝑗
)

⋅
1

(𝜆𝛼 − 𝑖 − 𝑗)
1/𝜙−𝜆/𝜙−𝜆+2

⋅ Γ (
1

𝜙
−

𝜆

𝜙
− 𝜆 + 2; 𝑥 (𝜆𝛼 − 𝑖 − 𝑗))

(30)

and thus,

𝐻
𝜆
(𝑥) =

1

1 − 𝜆
ln(

(𝛼𝜙𝜃)
𝜆

𝜙𝜃𝜆/𝜙−1/𝜙+𝜆−1

⋅

∞

∑
𝑖=0

∞

∑
𝑗=0

(−1)
𝜆𝛼−𝜆−𝑖

(
𝜆𝛼

𝑖
)(

𝑗 + 𝜆 − 1

𝑗
)) +

1

1 − 𝜆

⋅ ln(
1

(𝜆𝛼 − 𝑖 − 𝑗)
1/𝜙−𝜆/𝜙−𝜆+2

⋅ Γ (
1

𝜙
−

𝜆

𝜙
− 𝜆 + 2; 𝑥 (𝜆𝛼 − 𝑖 − 𝑗))) .

(31)
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7. The Order Statistics of the EG Type-2
Distribution

The distribution of the 𝑘th order statistics 𝑓
𝑋(𝑘)

(𝑥) of a
random sample𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
of size 𝑛 is generally given as

𝑓
𝑋(𝑘)

(𝑥)

=
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)!
𝑓
𝑥
(𝑥) (𝐹

𝑥
(𝑥))
𝑘−1

(1 − 𝐹
𝑥
(𝑥))
𝑛−𝑘

.
(32)

Hence, the density of the 𝑘th order statistics of the EG Type-2
distribution is given by

𝑓
𝑋(𝑘)

(𝑥) =
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)!

⋅ 𝛼𝜙𝜃𝑥
−𝜙−1

𝑒
−𝜃𝑥
−𝜙

(1 − (1 − 𝑒
−𝜃𝑥
−𝜙

)
𝛼

)
𝑘−1

⋅ (1 − 𝑒
−𝜃𝑥
−𝜙

)
𝛼(𝑛−𝑘+1)−1

, 𝑥 > 0; 𝛼, 𝜙, 𝜃 > 0.

(33)

The density of the 𝑘th smallest order statistics of the EGType-
2 distribution is given by

𝑓
𝑋(1)

(𝑥) = 𝑛𝛼𝜙𝜃𝑥
−𝜙−1

𝑒
−𝜃𝑥
−𝜙

(1 − 𝑒
−𝜃𝑥
−𝜙

)
𝛼𝑛−1

,

𝑥 > 0; 𝛼, 𝜙, 𝜃 > 0.

(34)

The density of the 𝑘th largest order statistics of the EGType-2
distribution is given by

𝑓
𝑋(𝑛)

(𝑥) = 𝑛𝛼𝜙𝜃𝑥
−𝜙−1

𝑒
−𝜃𝑥
−𝜙

(1 − 𝑒
−𝜃𝑥
−𝜙

)
𝛼−1

⋅ (1 − (1 − 𝑒
−𝜃𝑥
−𝜙

)
𝛼

)
𝑛−1

,

𝑥 > 0; 𝛼, 𝜙, 𝜃 > 0.

(35)

8. Parameter Estimation of the EG Type-2
Distribution

In this section, we propose the method of maximum likeli-
hood estimates (MLE) for the estimation of the parameters
of the EG type-2 distribution. Suppose a random variable 𝑋

of size 𝑛 has the EG type-2 distribution then, its MLE are
obtained as follows:

The likelihood function is given by

𝐿 (𝑥; 𝛼, 𝜙, 𝜃) =

𝑛

∏
𝑖=1

𝛼𝜙𝜃𝑥
−𝜙−1

𝑖
𝑒
−𝜃𝑥
−𝜙

𝑖 (1 − 𝑒
−𝜃𝑥
−𝜙

𝑖 )
𝛼−1

= (𝛼𝜙𝜃)
𝑛

𝑒
−𝜃∑
𝑛

𝑖=1

𝑥
−𝜙

𝑖

𝑛

∏
𝑖=1

𝑥
−𝜙−1

𝑖
(1 − 𝑒

−𝜃𝑥
−𝜙

𝑖 )
𝛼−1

(36)

with the corresponding log-likelihood function

ln 𝐿 (𝑥; 𝛼, 𝜙, 𝜃) = 𝑛 ln (𝛼𝜙𝜃) − 𝜃

𝑛

∑
𝑖=1

𝑥
−𝜙

𝑖

− (𝜙 + 1)

𝑛

∑
𝑖=1

ln (𝑥
𝑖
)

+

𝑛

∑
𝑖=1

ln (1 − 𝑒
−𝜃𝑥
−𝜙

𝑖 )
𝛼−1

.

(37)

Taking the partial derivatives of the log-likelihood function
with respect to 𝛼, 𝜙, and 𝜃, respectively, and equating to 0
give

𝜕 ln (𝐿 (𝑥; 𝛼, 𝜙, 𝜃))

𝜕𝛼

=
𝑛

𝛼
+

𝑛

∑
𝑖=1

(1 − 𝑒−𝜃𝑥
−𝜙

𝑖 )
𝛼−1

ln (1 − 𝑒−𝜃𝑥
−𝜙

𝑖 )

(1 − e−𝜃𝑥
−𝜙

𝑖 )
𝛼−1

= 0,

𝜕 ln (𝐿 (𝑥; 𝛼, 𝜙, 𝜃))

𝜕𝜙

=
𝑛

𝜙
+ 𝜃

𝑛

∑
𝑖=1

𝑥
−𝜙

𝑖
ln (𝑥
𝑖
) −

𝑛

∑
𝑖=1

ln (𝑥
𝑖
)

−

𝑛

∑
𝑖=1

(𝛼 − 1) 𝜃𝑥
−𝜙

𝑖
ln (𝑥
𝑖
) 𝑒−𝜃𝑥

−𝜙

𝑖 (1 − 𝑒−𝜃𝑥
−𝜙

𝑖 )
𝛼−2

(1 − 𝑒−𝜃𝑥
−𝜙

𝑖 )
𝛼−1

= 0,

𝜕 ln (𝐿 (𝑥; 𝛼, 𝜙, 𝜃))

𝜕𝜃

=
𝑛

𝜃
−

𝑛

∑
𝑖=1

𝑥
−𝜙

𝑖

+

𝑛

∑
𝑖=1

(𝛼 − 1) 𝑥
−𝜙

𝑖
𝑒−𝜃𝑥
−𝜙

𝑖 (1 − 𝑒−𝜃𝑥
−𝜙

𝑖 )
𝛼−2

(1 − 𝑒−𝜃𝑥
−𝜙

𝑖 )
𝛼−1

= 0.

(38)

Equations (38) can only be solved by some numerical opti-
mization methods such as Newton Raphson’s algorithm to
obtain the MLE of 𝛼, 𝜙, and 𝜃.
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Table 1: Survival times in months of 20 acute myeloid leukemia
patients.

2.226 2.113 3.631 2.473 2.720 2.050 2.061 3.915 0.871 1.548
2.746 1.972 2.265 1.200 2.967 2.808 1.079 2.353 0.726 1.958

9. Application

In this section we would fit the EG type-2 distribution to
a real and uncensored data set to demonstrate its appli-
cability and flexibility. The goodness of fit of the new
distribution would be compared with the three submod-
els, namely, the Gumbel type-2 distribution, Exponentiated
Fréchet distribution, and Fréchet distribution and two other
related heavy tail distributions: Weibull distribution 𝑓(𝑥) =

𝛼/𝛽(𝑥/𝛽)
𝛼−1 exp (−(𝑥/𝛽)

𝛼

), 𝑥 > 0, 𝛼 > 0, and 𝛽 > 0, and log-
normal (LN) distribution𝑓(𝑥) = 1/(𝑥𝜎√2𝜋) exp (−[ln(𝑥) −
𝜇]/2𝜎2), 𝑥 > 0, 𝜇 ∈ R, and 𝜎 > 0. The model
comparison would be based on theminimized log-likelihood
estimate and the following information statistics: AIC by
Akaike [14], AICC by Sugiura [15], CAIC by Bozdogan
[16], HQC by Schwarz [17], and BIC by Hannan and
Quinn [18]. The model with the smallest minimized log-
likelihood and information statistics value is the best. The
data set in Table 1 shows the survival times in months of
20 acute myeloid leukemia patients reported in Afify et al.
[19].

9.1. Monte-Carlo Simulation. In this section we present a
Monte-Carlo simulation study to investigate the effect of
sample size on the maximum likelihood estimates of the
parameters of the EG type-2 distribution and further to
assess the stability of these parameters. Different sample
sizes (25, 50, 75, 100, . . . , 500) were drawn from the EG
type-2 distribution with parameters 𝛼 = 1.50, 𝜃 =

1.50, and 𝜙 = 1.50 using the inverse transformation
method with (24) where each sample was replicated 5000
times. Using the simulated random variables we estimate
the parameters of the EG type-2 distribution through the
method of maximum likelihood estimation and the pro-
cedure was repeated 5000 times for each sample size. The
mean (parameter estimate) and standard deviation (standard
error (se)) of the 5000 parameters each for 𝛼, 𝜃, and
𝜙 for each sample size were computed and the result is
presented in Table 3. Furthermore, the corresponding bias
and mean square errors (mse) of each of the parameter
estimates are tabulated in Table 4. Analogously, Tables 5
and 6 show simulation results for the EG type-2 distribu-
tion with parameters 𝛼 = 3.00, 𝜃 = 4.00, and 𝜙 =

5.00.

10. Discussion of Results

From the pdf and cdf plots in Figure 1, the pdf of the
EG type-2 distribution is unimodal and increasingly uni-
modal for increasing values of 𝛼 (shape parameter) while
its cdf is monotonic increasing and more monotonically

F
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Figure 3: cdf plots of the fitted distributions superimposed on the
empirical density plot of the survival times data.

increasing for increasing values of 𝛼. Also, the plots of the
reliability function (𝑅(𝑥)) and hazard rate function (ℎ(𝑥))

in Figure 2 show that 𝑅(𝑥) is monotonic decreasing and
more monotonically decreasing for increasing values of
𝛼 while ℎ(𝑥) is upside-down bathtub and becomes more
upside-down bathtub for decreasing values of 𝛼. Results
from the model fittings as tabulated in Table 2 indicate
that the EG type-2 distribution provides the best fit to the
data based on its smallest minimized log-likelihood and
information statistics values. Figure 3 depicts the cdf ’s of
all the estimated distributions in Table 2 superimposed on
the empirical cdf of the data, where the cdf of the EG
type-2 distribution is closely aligned to the empirical one
than the other distributions. From the simulation results
in Tables 3, 4, 5, and 6 it is clear that the parameters of
the EG type-2 distribution approach the true value as the
sample size increases, while the standard error, bias, and
the mse decrease down the column with increasing sample
size.

11. Conclusion

This paper introduces a new lifetime distribution, the Expo-
nentiated Gumbel (EG) type-2 distribution. The new distri-
bution generalizes the standard Gumbel type-2 distribution
and has the following distributions as special cases: Gumbel
type-2 distribution, Exponentiated Fréchet distribution, and
Fréchet distribution.We have provided explicit mathematical
expressions for some of its basic statistical properties such
as the probability density function, cumulative density func-
tion, 𝑘th crude moment, variance, coefficient of variation,
skewness, kurtosis, moment generating function, and 𝑝th
quantile function and some reliability characteristics like
the reliability and hazard rate functions. Estimation of the
model parameters was approached through the method of
maximum likelihood estimates. The flexibility and appli-
cability of the new lifetime distribution were illustrated
with a real data set and the results obtained revealed that
the EG type-2 distribution provides the best fit among all
the compared related distributions. We recommend the EG
type-2 distribution for modelling complex data sets and
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Table 2: Results from the survival times data fitting.

Models Estimates −ℓ̂ AIC AICC CAIC HQC BIC
EG type-2
�̂� 2.0263 × 104

�̂� 12.7096 24.12718 52.25436 52.96024 56.24583 52.64312 54.24583
�̂� 0.2821

G type-2
�̂� 2.6040 29.08667 62.17334 62.87922 66.16481 62.5621 64.16481
�̂� 2.0651

EF
�̂� 0.3928 31.89448 67.78896 68.49484 71.78042 68.17771 69.78042
�̂� 3.4393

Fréchet
�̂� 1.7378 35.45610 72.91219 73.13442 74.90793 73.10657 76.90366

LN
�̂� 0.6971 25.71549 55.43098 56.13687 59.42245 55.81974 57.42245
�̂� 0.4360

Weibull
�̂� 2.9237 24.30433 54.60867 56.10867 60.59587 55.1918 54.60013
�̂� 2.4502

Table 3: Monte-Carlo simulation results of the parameter estimates
and standard errors of the EG type-2 distribution with parameters:
𝛼 = 1.50, 𝜃 = 1.50, and 𝜙 = 1.50 for different sample sizes.

Sample size �̂� �̂� �̂� se
�̂�

sê
𝜃

sê
𝜙

25 292.3201 1.9186 2.5361 2608.3737 1.8417 2.7992

50 16.7755 1.6267 1.8183 600.1862 0.9444 1.1577

75 2.1483 1.5741 1.6634 5.8997 0.6814 0.6847

100 1.8196 1.5463 1.6125 1.5079 0.5516 0.5114

125 1.7586 1.5401 1.5843 1.2131 0.4976 0.4302

150 1.6970 1.5334 1.5684 0.9432 0.4464 0.3834

175 1.6660 1.5332 1.5538 0.7793 0.4072 0.3466

200 1.6269 1.5208 1.5506 0.6975 0.3728 0.3154

225 1.6252 1.5272 1.5386 0.6501 0.3536 0.2952

250 1.6102 1.5251 1.5331 0.5715 0.3268 0.2728

275 1.5909 1.5168 1.5344 0.5333 0.3119 0.2597

300 1.5825 1.5152 1.5320 0.5108 0.3025 0.2511

325 1.5755 1.5152 1.5273 0.4798 0.2870 0.2363

350 1.5730 1.5146 1.5271 0.4624 0.2791 0.2294

375 1.5635 1.5104 1.5255 0.4404 0.2687 0.2205

400 1.5603 1.5129 1.5221 0.4180 0.2558 0.2094

425 1.5517 1.5086 1.5237 0.4034 0.2491 0.2031

450 1.5498 1.5096 1.5213 0.3873 0.2405 0.1966

475 1.5450 1.5079 1.5220 0.3781 0.2361 0.1927

500 1.5433 1.5069 1.5191 0.3620 0.2272 0.1862

Table 4: Monte-Carlo simulation results of the estimators bias and
mse of the EG type-2 distribution with parameters: 𝛼 = 1.50, 𝜃 =

1.50, and 𝜙 = 1.50 for different sample sizes.

Sample
size

bias
�̂�

biaŝ
𝜃

biaŝ
𝜙

mse
�̂�

msê
𝜃

msê
𝜙

25 290.8201 0.4186 1.0361 6887509.5404 3.5666 8.9085

50 15.2755 0.1267 0.3183 360420.7341 0.9078 1.4415

75 0.6483 0.0741 0.1634 35.2238 0.4698 0.4955

100 0.3196 0.0463 0.1125 2.3757 0.3064 0.2742

125 0.2586 0.0401 0.0843 1.5383 0.2492 0.1922

150 0.1970 0.0334 0.0684 0.9283 0.2004 0.1516

175 0.1660 0.0332 0.0538 0.6348 0.1669 0.1230

200 0.1269 0.0208 0.0506 0.5025 0.1394 0.1020

225 0.1252 0.0272 0.0386 0.4383 0.1257 0.0886

250 0.1102 0.0251 0.0331 0.3388 0.1074 0.0755

275 0.0909 0.0168 0.0344 0.2927 0.0976 0.0686

300 0.0825 0.0152 0.0320 0.2677 0.0917 0.0641

325 0.0755 0.0152 0.0273 0.2359 0.0826 0.0566

350 0.0730 0.0146 0.0271 0.2191 0.0781 0.0534

375 0.0635 0.0104 0.0255 0.1980 0.0723 0.0493

400 0.0603 0.0129 0.0221 0.1784 0.0656 0.0443

425 0.0517 0.0086 0.0237 0.1654 0.0621 0.0418

450 0.0498 0.0096 0.0213 0.1524 0.0579 0.0391

475 0.0450 0.0079 0.0220 0.1449 0.0558 0.0376

500 0.0433 0.0069 0.0191 0.1329 0.0517 0.0350
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Table 5: Monte-Carlo simulation results of the parameter estimates
and standard errors of the EG type-2 distribution with parameters:
𝛼 = 3.00, 𝜃 = 4.00, and 𝜙 = 5.00 for different sample sizes.

Sample
size �̂� �̂� �̂� se

�̂�
sê
𝜃

sê
𝜙

25 957.2346 9.1225 8.1140 4764.4832 171.3331 10.5485
50 118.7143 4.4324 5.8491 1677.2419 1.5587 3.6720
75 23.7643 4.2555 5.3847 804.2310 0.8669 2.1538
100 4.9487 4.1628 5.2897 27.8859 0.6844 1.6550
125 4.3378 4.1331 5.2224 16.5547 0.5964 1.4261
150 3.7404 4.1022 5.1856 3.4572 0.5251 1.2608
175 3.6405 4.0926 5.1459 3.0479 0.4868 1.1427
200 3.5112 4.0785 5.1310 2.1757 0.4479 1.0647
225 3.4261 4.0684 5.1207 2.0217 0.4161 0.9853
250 3.3987 4.0598 5.0902 1.6941 0.3987 0.9206
275 3.3271 4.0538 5.0939 1.5224 0.3699 0.8769
300 3.2975 4.0468 5.0901 1.4489 0.3588 0.8396
325 3.2727 4.0499 5.0834 1.3216 0.3432 0.8059
350 3.2506 4.0458 5.0683 1.2191 0.3264 0.7609
375 3.2390 4.0398 5.0645 1.1950 0.3221 0.7385
400 3.2020 4.0337 5.0716 1.1148 0.3050 0.7162
425 3.2035 4.0379 5.0564 1.0529 0.2926 0.6887
450 3.2039 4.0344 5.0396 1.0356 0.2880 0.6670
475 3.1827 4.0328 5.0502 0.9930 0.2797 0.6472
500 3.1648 4.0334 5.0533 0.9531 0.2724 0.6326

Table 6: Monte-Carlo simulation results of the estimators bias and
mse of the EG type-2 distribution with parameters: 𝛼 = 3.00, 𝜃 =

4.00, and 𝜙 = 5.00 for different sample sizes.

Sample
size bias

�̂�
biaŝ
𝜃

biaŝ
𝜙

mse
�̂�

msê
𝜃

msê
𝜙

25 954.2346 5.1225 3.1140 2.360859 ×

10
7

29378.3413 120.9573

50 115.7143 0.4324 0.8491 2.826249 ×

10
6

2.6162 14.2029

75 20.7643 0.2555 0.3847 64.71540 ×

10
5

0.8168 4.7864

100 1.9487 0.1628 0.2897 781.3449 0.4949 2.8228
125 1.3378 0.1331 0.2224 275.8201 0.3733 2.0829
150 0.7404 0.1022 0.1856 12.4991 0.2861 1.6240
175 0.6405 0.0926 0.1459 9.6992 0.2455 1.3270
200 0.5112 0.0785 0.1310 4.9943 0.2067 1.1506
225 0.4261 0.0684 0.1207 4.2683 0.1778 0.9854
250 0.3987 0.0598 0.0902 3.0285 0.1626 0.8556
275 0.3271 0.0538 0.0939 2.4246 0.1397 0.7778
300 0.2975 0.0468 0.0901 2.1878 0.1309 0.7130
325 0.2727 0.0499 0.0834 1.8209 0.1202 0.6564
350 0.2506 0.0458 0.0683 1.5489 0.1086 0.5836
375 0.2390 0.0398 0.0645 1.4850 0.1053 0.5496
400 0.2020 0.0337 0.0716 1.2834 0.0941 0.5181
425 0.2035 0.0379 0.0564 1.1500 0.0870 0.4774
450 0.2039 0.0344 0.0396 1.1138 0.0841 0.4465
475 0.1827 0.0328 0.0502 1.0193 0.0793 0.4213
500 0.1648 0.0334 0.0533 0.9355 0.0753 0.4029

hope that it would receive significant applications in the
future.
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1935.

[8] E. J. Gumbel, “The return period of flood flows,” The Annals of
Mathematical Statistics, vol. 12, pp. 163–190, 1941.

[9] E. J. Gumbel, Statistical Theory of Extreme Values and Some
Practical Applications, vol. 33 of Applied Mathematics, U.S.
Department of Commerce, National Bureau of Standards, ASIN
B0007DSHG4, Gaithersburg, Md, USA, 1st edition, 1954.

[10] E. T. Lee and J. Wang, Statistical Methods for Survival Data
Analysis, vol. 476, JohnWiley&Sons,NewYork,NY,USA, 2003.

[11] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions, vol. 55 of Applied Mathematics Series, 1966.

[12] F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark,
NIST Handbook of Mathematical Functions, US Department
of Commerce, National Institute of Standards and Technology,
2010.
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