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Peristaltic pumping induced by a sinusoidal traveling wave in the walls of a two-dimensional channel filled with a viscous
incompressible fluid mixed with rigid spherical particles is investigated theoretically taking the slip effect on the wall into
account. A perturbation solution is obtained which satisfies the momentum equations for the case in which amplitude ratio
(wave amplitude/channel half width) is small. The analysis has been carried out by duly accounting for the nonlinear convective
acceleration terms and the slip condition for the fluid part on thewavywall.The governing equations are developed up to the second
order of the amplitude ratio. The zeroth-order terms yield the Poiseuille flow and the first-order terms give the Orr-Sommerfeld
equation. The results show that the slip conditions have significant effect within certain range of concentration. The phenomenon
of reflux (the mean flow reversal) is discussed under slip conditions. It is found that the critical reflux pressure is lower for the
particle-fluid suspension than for the particle-free fluid and is affected by slip condition. A motivation of the present analysis has
been the hope that such theory of two-phase flow process under slip condition is very useful in understanding the role of peristaltic
muscular contraction in transporting biofluid behaving like a particle-fluidmixture. Also the theory is important to the engineering
applications of pumping solid-fluid mixture by peristalsis.

1. Introduction

Peristalsis is a form of a fluid transport induced by a pro-
gressive wave of area contraction or expansion along the
walls of a distensible duct containing liquid. In physiology,
peristaltic mechanism is involved in many biological organs
such as ureter, gastrointestinal tract, ducts afferents of the
male reproductive tracts, cervical canal, female fallopian
tube, lymphatic vessels, and small blood vessels. In addition,
peristaltic pumping occurring in many practical applications
involving biomechanical systems such as roller, finger pumps,
and heart-lung machine have been fabricated.

Since the first investigation of Latham [1], several theo-
retical and experimental studies have been conducted in the
past to understand peristaltic action in different situations.

The literature on peristalsis is by now quite extensive, and
a summary of most of the investigations has been presented
in detail by Rath [2], L. M. Srivastava and V. P. Srivastava [3–
5], Srivastava and Saxena [6], and V. P. Srivastava and L. M.
Srivastava [7].

The theoretical study of the theory of particle-fluid
mixture is very useful in understanding a number of diverse
physical problems concerned with powder technology, flu-
idization, transportation of solid particles by a liquid, trans-
portation liquid slurries in chemical and nuclear processing,
and metalized liquid fuel slurries for rocketry. The sedi-
mentation of particles in a liquid is of interest in much
chemical engineering process, in medicine, where erythro-
cyte sedimentation has become a standard clinical test, and
in oceanography as well as other fields. The particulate
theory of blood has recently become the object of scientific
research, Hill and Bedford [8], L. M. Srivastava and V. P.
Srivastava [3–5, 9], Trowbridge [10], and Oka [11]. A number
of research works on the topic, with and without peristalsis,
have been reviewed by L. M. Srivastava and V. P. Srivastava
[5]. Applications of the theory of particle-fluid mixture to
themicrocirculation and erythrocyte sedimentation included
the work of Wang and Skalak [12], Bungay and Brenner [13],
Skalak et al. [14], and Karino et al. [15].
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Figure 1: Geometry of the problem.

Peristaltic transport of solid particle with fluid was first
attempted by Hung and Brown [16]. They initiated the study
of the peristaltic transport of solid particles, which included
an experimental work on the particle transport in two-
dimensional vertical channels having various geometries. In
this connection also another paper by Brown and Hung
[17] and a study by Takabatake and Ayukawa [18] are worth
mentioning. Both studies have employed finite difference
technique to solve two-dimensional nonlinear peristaltic
flows problem. L. M. Srivastava and V. P. Srivastava [5]
studied the peristaltic pumping of a particle-fluid mixture
in a two-dimensional channel carried out mathematically;
a perturbation solution is obtained. Mekheimer et al. [19]
studied the peristaltic pumping of a particle-fluid suspension
in a planar channel. ElMisery et al. [20] studied the peristaltic
motion of an incompressible generalized Newtonian fluid in
a planar channel.

No-slip boundary conditions are convenient idealization
of the behavior of viscous fluids near walls. The inadequacy
of the no-slip condition is quite evident in polymer melts
which often exhibit microscopic wall slip. The slip condition
plays an important role in shear skin, spurt, and hysteresis
effects. The boundary conditions relevant to flowing fluids
are very important in predicting fluid flows in many appli-
cations. The fluids that exhibit boundary slip have important
technological applications such as in polishing valves of
artificial heart and internal cavities [21]. The slip effects on
the peristaltic flow of a non-Newtonian Maxwellian fluid
have been investigated by Eldesoky [22].The influence of slip
condition on peristaltic transport of a compressible Maxwell
fluid through porous medium in a tube has been studied by
Chu and Fang [23]. Many recent researches have been made
in the subject of slip boundary conditions [24–33].

From the previous studies, there is no any attempt to
study the effect of slip condition on the flow of a particle-
fluid suspension with peristalsis. The purpose of this paper
is to study the slip effects on the peristaltic pumping of a
particle-fluid mixture in a two-dimensional channel. It is
an application of the two-dimensional analysis of peristaltic

motion of a particle-fluidmixture by L.M. Srivastava andV. P.
Srivastava [5] and the two-dimensional analysis of peristaltic
motion of single phase fluid by Fung and Yih [34] in the
presence of slip effect. The mathematical model considers
a particle-fluid mixture between infinite parallel walls with
slip condition on which a sinusoidal traveling wave is
imposed. A perturbation solution is obtained which satisfies
the momentum equations for the case in which amplitude
ratio (wave amplitude/channel half width) is small. Finally,
the phenomenon of the mean flow reversal is presented
and its physiological implication is discussed. Beside the
engineering applications of pumping particle-fluid mixture
by peristalsis, the present analysis of two-phase flow process
is potentially important in regard to biofluid transport by
peristalsis muscular contractions in body organs where fluids
behave like particle-fluid mixtures, namely, chime in small
intestine, spermatic fluid in cervical canal, urine (from a
diseased kidney) in ureter, and blood suspension in arteriole.

2. Formulation of the Problem

Consider a two-dimensional infinite channel of mean width
2𝑑 (see Figure 1), filled with a mixture of small spherical
rigid particles in an incompressible Newtonian viscous fluid.
The walls of the channel are flexible, on which are imposed
travelling, sinusoidal wave of small amplitude. The equations
governing conservation of mass and linear momentum for
both fluid and particle phase using a continuum approach are
expressed as follows (Drew [35]; L. M. Srivastava and V. P.
Srivastava [5, 9]).

Fluid Phase

(1−𝐶) 𝜌𝑓 [

𝜕𝑢𝑓

𝜕𝑡
+ 𝑢𝑓

𝜕𝑢𝑓

𝜕𝑥
+ 𝜐𝑓

𝜕𝑢𝑓

𝜕𝑦
]

= − (1−𝐶)
𝜕𝑝

𝜕𝑥
+ (1−𝐶) 𝜇𝑠 (𝐶) ∇

2
𝑢𝑓

+𝐶𝑆 (𝑢𝑝 −𝑢𝑓) ,

(1)
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(1−𝐶) 𝜌𝑓 [

𝜕V𝑓
𝜕𝑡

+ 𝑢𝑓

𝜕V𝑓
𝜕𝑥

+ V𝑓
𝜕V𝑓
𝜕𝑦

]

= − (1−𝐶)
𝜕𝑝

𝜕𝑦
+ (1−𝐶) 𝜇𝑠 (𝐶) ∇

2V𝑓

+𝐶𝑆 (V𝑝 − V𝑓) ,

(2)

𝜕

𝜕𝑥
{(1−𝐶) 𝑢𝑓} +

𝜕

𝜕𝑦
{(1−𝐶) V𝑓} = 0. (3)

Particulate Phase

𝐶𝜌𝑝 [
𝜕𝑢𝑝

𝜕𝑡
+ 𝑢𝑝

𝜕𝑢𝑝

𝜕𝑥
+ 𝜐𝑝

𝜕𝑢𝑝

𝜕𝑦
]

= −𝐶
𝜕𝑝

𝜕𝑥
+𝐶𝑆 (𝑢𝑓 −𝑢𝑝) ,

(4)

𝐶𝜌𝑝 [
𝜕V𝑝
𝜕𝑡

+ 𝑢𝑝

𝜕V𝑝
𝜕𝑥

+ 𝜐𝑝

𝜕V𝑝
𝜕𝑦

]

= −𝐶
𝜕𝑝

𝜕𝑦
+𝐶𝑆 (V𝑓 − V𝑝) ,

(5)

𝜕

𝜕𝑥
{𝐶𝑢𝑝} +

𝜕

𝜕𝑦
{𝐶V𝑝} = 0. (6)

In (1)–(6), 𝑥 and 𝑦 are Cartesian coordinates with 𝑥

measured in the direction of wave propagation and 𝑦 mea-
sured in the direction normal to the mean position of the
channel walls, (𝑢𝑓, V𝑓) denotes fluid phase velocities, (𝑢𝑝, V𝑝)
denotes particulate phase velocities, 𝜌𝑓 and 𝜌𝑝 are the actual
densities of the materials constituting fluid and particulate
phase, respectively, (1 − 𝐶)𝜌𝑓 is the fluid phase density, 𝐶𝜌𝑝
is the particulate phase density, 𝑝 denotes the pressure, 𝐶
denotes the volume fraction density of the particles, 𝜇(𝐶) is
the particle-fluid mixture viscosity (also the effective viscosity
of the suspension), and 𝑆 the drag coefficient of interaction
for the force exerted by one phase on the other.

The concentration of the particles is considered to be
so small that the field interaction between particles may
be neglected. Thus, the diffusivity terms, which can model
the effects of particle-particle impacts due to the Brownian
motion, are neglected. It is worth mentioning here that
the effect of Brownian motion was considered by others
including Batchelor [36, 37]. The volume fraction density,
𝐶, of the particles is chosen also constant. This is a good
assumption for low concentration of small particles.

The expression for the drag coefficient for the present
problem is selected as

𝑆 =
9
2
𝜇0
𝑎
2 𝜆

(𝐶) ,

𝜆

(𝐶) =

4 + 3 [8𝐶 − 3𝐶2
]
1/2

+ 3𝐶

[2 − 3𝐶]2
,

(7)

where 𝜇0 is the fluid viscosity and 𝑎 is the radius of the
particle. Relation (7) represents the classical Stokes’ drag for

small particle Reynolds number, modified to account for
the finite particulate fractional volume through the function
𝜆

(𝐶), obtained by Tam [38].
Many empirical relations have been suggested to express

the viscosity of the suspension as a function of particle
concentration and viscosity of the suspending medium.
Einstein was the first to obtain theoretically that the viscosity
of the suspension 𝜇𝑆 was related to that of the suspending
medium 𝜇0 for spheres in suspension by 𝜇0 = 𝜇𝑆(1 − 2.5𝐶).
However, the Einstein formula expresses the viscosity of the
suspension only when 𝐶 is less than 0.05. As 𝐶 increases
from 0.05, the suspension viscosity varies from the Einstein
equation. For the present problem, an empirical relation for
the viscosity of the suspension is as follows:

𝜇𝑆 (𝐶) = 𝜇0
1

1 − 𝑞𝐶
, (8a)

𝑞 = 0.07exp [2.49𝐶+
1107
𝑇

exp (−1.69𝐶)] , (8b)

where 𝑇 the absolute temperature (∘K), suggested by Charm
and Kurland (1974) [39], is used. The viscosity of the sus-
pension expressed by this formula is found to be reasonably
accurate up to𝐶 = 0.6. Charm and Kurland (1974) [39] tested
(8a) and (8b) with a cone and plate viscometer and found
it to be in agreement within ten percent in case of blood
suspension.

The boundary conditions that must be satisfied by the
fluid on the walls are the slip and impermeability conditions.
The walls of the channel are assumed to be flexible but
extensiblewith a travelling sinusoidalwave, and displacement
in the channel walls is in transverse direction only. Hence,
boundary conditions are

𝑢𝑓 = Ψ𝑓𝑦 = ∓𝐴

𝜕𝑢𝑓

𝜕𝑦
, (9a)

V𝑓 = −Ψ𝑓𝑥 = ±
𝜕𝜂

𝜕𝑡
on 𝑦 = ±𝑑 ± 𝜂, (9b)

V𝑝 = −Ψ𝑝𝑥 = ±
𝜕𝜂

𝜕𝑡
, (9c)

where Ψ, the stream function, is such that

𝑢𝑓 =

𝜕Ψ𝑓

𝜕𝑦
,

V𝑓 = −

𝜕Ψ𝑓

𝜕𝑥
,

𝑢𝑝 =
𝜕Ψ𝑝

𝜕𝑦
,

V𝑝 = −

𝜕Ψ𝑝

𝜕𝑥
.

(10)

The transverse displacement, 𝜂, of the wall is represented as

𝜂 (𝑥, 𝑡) = 𝑎 cos 2𝜋
𝜆

(𝑥 − 𝑐𝑡) , (11)
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where 𝑎 is the amplitude, 𝜆 the wavelength, and 𝑐 the wave
speed.

We now select the following set of nondimensional vari-
ables and parameters:

𝑥

=
𝑥

𝑑
,

𝑦

=
𝑦

𝑑
,

𝑢

𝑓 =

𝑢𝑓

𝑐
,

V𝑓 =
V𝑓
𝑐
,

𝑢

𝑝 =

𝑢𝑝

𝑐
,

V𝑝 =
V𝑝
𝑐
,

𝜂

=

𝜂

𝑑
,

Ψ

𝑓 =

Ψ𝑓

𝑐𝑑
,

Ψ

𝑝 =

Ψ𝑝

𝑐𝑑
,

𝑡

=
𝑐𝑡

𝑑
,

𝑝

=

𝑝

𝜌𝑓𝑐
2 ,

𝜐 =
𝜇0
𝜌𝑓

.

(12)

Suspension Reynolds number

𝑅 =

𝑐𝑑𝜌𝑓

(1 − 𝐶) 𝜇𝑆

. (13)

Wave number

𝛼 =
2𝜋𝑑
𝜆

. (14)

Knudsen number

Kn =
𝐴

𝑅
. (15)

Amplitude ratio

𝜀 =
𝑎

𝑑
. (16)

Suspension parameter

𝑀 =
𝑆𝑑

2

(1 − 𝐶) 𝜇𝑆

. (17)

Suspension parameter

𝑁 =

𝑆𝑑
2
𝜌𝑓

(1 − 𝐶) 𝜌𝑝𝜇𝑆

. (18)

Thus, the systems of (1)–(6), and (9a)–(11) now become, after
dropping the primes,

(1−𝐶) 𝑅 [
𝜕

𝜕𝑡
∇
2
Ψ𝑓 +Ψ𝑓𝑦∇

2
Ψ𝑓𝑥 −Ψ𝑓𝑥∇

2
Ψ𝑓𝑦]

= ∇
4
Ψ𝑓 +𝐶𝑀(∇

2
Ψ𝑝 −∇

2
Ψ𝑓) ,

(19)

𝐶𝑅[
𝜕

𝜕𝑡
∇
2
Ψ𝑝 +Ψ𝑝𝑦∇

2
Ψ𝑝𝑥 −Ψ𝑝𝑥∇

2
Ψ𝑝𝑦]

= 𝐶𝑁(∇
2
Ψ𝑓 −∇

2
Ψ𝑝) ,

(20)

𝜂 = 𝜀 cos𝛼 (𝑥 − 𝑡) , (21)

Ψ𝑓𝑦 = ∓KnΨ𝑓𝑦𝑦,

Ψ𝑓𝑥 = ∓𝛼𝜀 sin𝛼 (𝑥 − 𝑡) ,

Ψ𝑝𝑥 = ∓𝛼𝜀 sin𝛼 (𝑥 − 𝑡) ,

on 𝑦 = ± (1 + 𝜂) ,

(22)

where ∇2 denotes the Laplacian operator.

3. Method of Solution

Assuming the amplitude ratio 𝑒 of thewave is small, we obtain
the solution for the stream function as a power series in terms
of 𝜀, by expanding Ψ𝑓, Ψ𝑝, and 𝜕𝑝/𝜕𝑥 in the form (Fung and
Yih (1968) [34])

Ψ𝑓 = Ψ𝑓0 + 𝜀Ψ𝑓1 + 𝜀
2
Ψ𝑓2 + ⋅ ⋅ ⋅ , (23)

Ψ𝑝 = Ψ𝑝0 + 𝜀Ψ𝑝1 + 𝜀
2
Ψ𝑝2 + ⋅ ⋅ ⋅ , (24)

𝜕𝑝

𝜕𝑥
= (

𝜕𝑝

𝜕𝑥
)

0
+ 𝜀(

𝜕𝑝

𝜕𝑥
)

1
+ 𝜀

2
(
𝜕𝑝

𝜕𝑥
)

2
+ ⋅ ⋅ ⋅ (25)

In (25), the first term on the right-hand side corresponds
to the imposed pressure gradient associated with the primary
flow and the other terms correspond to the peristaltic motion
or higher imposed pressure gradient.

Substituting (23) and (24) in (19), (20), and (22) and
collecting terms of like powers of 𝜀, we obtain three sets of
coupled linear differential equations with their correspond-
ing boundary conditions inΨ(𝑓,𝑝)0,Ψ(𝑓,𝑝)1, andΨ(𝑓,𝑝)2, for the
first three powers of 𝜀.

The first set of differential equations in Ψ(𝑓,𝑝)0, subject to
the steady parallel flow and transverse symmetry assumption
for a constant pressure gradient in the 𝑥-direction, yields
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the following classical Poiseuille flow for the fluid and the
particulate phase:

Ψ𝑓0 = 𝐾[(𝑦−
1
3
𝑦
3
)+

2Kn
2 + Kn

(𝑦−
1
2
𝑦
2
)] , (26)

Ψ𝑝0 = 𝐾(𝑦+
2𝑦
𝑀

−
1
3
𝑦
3
) , (27)

𝐾 = −
𝑅

2
(
𝜕𝑝

𝜕𝑥
)

0
, (28)

where𝐾 is the Poiseuille flow parameter.
Thus, the effect of the particles on the fluid velocity profile

is to cause an increase in the viscosity; that is, fluid viscosity
𝜇0 is replaced by suspension viscosity (see (8a) and (8b)), and
thus for a given pressure difference less fluidwill flow through
the channel. Further, the particles lead the fluid by a relative
velocity proportional to 1/𝑀(𝜕𝑝/𝜕𝑥)0.

The second and third sets of differential equations in
Ψ(𝑓,𝑝)1 and Ψ(𝑓,𝑝)2 with their corresponding boundary condi-
tions are satisfied by

2Ψ𝑓1 (𝑥, 𝑦, 𝑡) = Φ𝑓1 (𝑦) 𝑒
𝑖𝛼(𝑥−𝑡)

+Φ
∗
𝑓1 (𝑦) 𝑒

−𝑖𝛼(𝑥−𝑡)
, (29a)

2Ψ𝑝1 (𝑥, 𝑦, 𝑡) = Φ𝑝1 (𝑦) 𝑒
𝑖𝛼(𝑥−𝑡)

+Φ
∗
𝑝1 (𝑦) 𝑒

−𝑖𝛼(𝑥−𝑡)
, (29b)

2Ψ𝑓2 (𝑥, 𝑦, 𝑡) = Φ𝑓20 +Φ𝑓22 (𝑦) 𝑒
2𝑖𝛼(𝑥−𝑡)

+Φ
∗
𝑓22 (𝑦) 𝑒

−2𝑖𝛼(𝑥−𝑡)
,

(30a)

2Ψ𝑝2 (𝑥, 𝑦, 𝑡) = Φ𝑝20 +Φ𝑝22 (𝑦) 𝑒
2𝑖𝛼(𝑥−𝑡)

+Φ
∗
𝑝22 (𝑦) 𝑒

−2𝑖𝛼(𝑥−𝑡)
.

(30b)

A substitution of (29a), (29b) and (30a), (30b) into the dif-
ferential equations and their corresponding boundary con-
ditions in Ψ(𝑓,𝑝)1 and Ψ(𝑓,𝑝)2 leads to the following set of
differential equations:

[
𝑑
2

𝑑𝑦
2 −𝛼

2
+ 𝑖 (1−𝐶)

⋅ 𝛼𝑅 [1−𝐾[(1 − 𝑦
2
) +

2Kn
2 + Kn

(1 − 𝑦)]]]

⋅ (
𝑑
2

𝑑𝑦
2 −𝛼

2
)Φ𝑓1 − 2𝑖𝐾 (1−𝐶) 𝛼𝑅Φ𝑓1

= 𝐶𝑀(
𝑑
2

𝑑𝑦
2 −𝛼

2
)(Φ𝑓1 −Φ𝑝1) ,

(31)

𝑖𝐶𝛼𝑅 [1

−𝐾[(1−𝑦
2
+

2
𝑀

)+
2Kn

2 + Kn
(1−𝑦+

2
𝑀

)]]

⋅ (
𝑑
2

𝑑𝑦
2 −𝛼

2
)Φ𝑝1 − 2𝑖𝐾𝐶𝛼𝑅Φ𝑝1 = 𝐶𝑁(

𝑑
2

𝑑𝑦
2

−𝛼
2
)(Φ𝑝1 −Φ𝑓1) ,

(32)

Φ

𝑓1 (±1) − 2𝐾∓

2𝐾Kn
2 + Kn

= ∓Kn [Φ𝑓1 (±1) ∓ 2𝐾] , (33a)

Φ𝑓1 (±1) = ± 1, (33b)

Φ𝑝1 (±1) = ± 1, (33c)

Φ

𝑓20 (𝑦) = −

(1 − 𝐶) 𝛼𝑅

2
(Φ𝑓1Φ

∗
𝑓1 −Φ

∗
𝑓1Φ

𝑓1)


+𝐶𝑀(Φ

𝑓20 −Φ


𝑝20) ,

(34)

0 = −
𝑖𝐶𝛼𝑅

2
(Φ𝑝1Φ

∗
𝑝1 −Φ

∗
𝑝1Φ

𝑝1)

+𝐶𝑁(Φ


𝑝20

−Φ

𝑓20) ,

(35)

(
𝑑
2

𝑑𝑦
2 − 4𝛼2

)[
𝑑
2

𝑑𝑦
2 − 4𝛼2

+ 2𝑖 (1−𝐶) 𝛼𝑅]Φ𝑓22

= 2𝑖 (1−𝐶)𝐾𝛼𝑅 [(1−𝑦
2
) +

2Kn
2 + Kn

(1−𝑦)]

⋅ (
𝑑
2

𝑑𝑦
2 − 4𝛼2

)Φ𝑓22 + 4𝑖 (1−𝐶)𝐾𝛼𝑅Φ𝑓22

+
𝑖 (1 − 𝐶) 𝛼𝑅

2
(Φ

𝑓1Φ

𝑓1 −Φ𝑓1Φ


𝑓1)

+𝐶𝑀(
𝑑
2

𝑑𝑦
2 − 4𝛼2

)(Φ𝑓22 −Φ𝑝22) ,

(36)

2𝑖𝐶𝛼𝑅(
𝑑
2

𝑑𝑦
2 − 4𝛼2

)Φ𝑝22 = 2𝑖𝐶𝐾𝛼𝑅(1−𝑦
2

−
2
𝑀

)×(
𝑑
2

𝑑𝑦
2 − 4𝛼2

)Φ𝑝22 + 4𝑖𝐶𝐾𝛼𝑅Φ𝑝22

+
𝑖𝐶𝛼𝑅

2
(Φ

𝑝1Φ

𝑝1 −Φ𝑝1Φ


𝑝1) +𝐶𝑁(

𝑑
2

𝑑𝑦
2

− 4𝛼2
)(Φ𝑝22 −Φ𝑓22) ,

(37)

Φ

𝑓20 (±1) ±

1
2
[Φ

𝑓1 (±1) +Φ

∗
𝑓1 (±1)] −𝐾

= ∓Kn [Φ𝑓20 (±1) ±
1
2
[Φ

𝑓1 (±1) +Φ

∗
𝑓1 (±1)]] ,

(38a)
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Φ

𝑓22 (±1) ±

1
2
Φ

𝑓1 (±1) −

𝐾

2
= ∓Kn [Φ𝑓22 (±1) ±

1
2

⋅ Φ

𝑓1 (±1)] ,

(38b)

Φ𝑓22 (±1) ±
1
4
Φ

𝑓1 (±1) = 0, (38c)

Φ𝑝22 (±1) ±
1
4
Φ

𝑝1 (±1) = 0. (38d)

Thus, we obtained a set of differential equations together
with the corresponding boundary conditions which are
sufficient to determine the solution of the problem up to the
second order in 𝜀. Now, our main attention is to find out
solution of differential equations for B𝑓1 and B𝑝1. Although
(31) and (32) for B𝑓1 and B𝑝1 are coupled fourth-order
ordinary differential equations with variable coefficients, it
would, perhaps, be impossible to obtain solution of these
differential equations for arbitrary values of 𝑅, 𝛼, and 𝐾.
This is just because of the moving boundary considered in
the present problem. The condition of moving boundary
has made the boundary condition nonhomogeneous and

thus the problem is not an eigenvalue problem as in all
problems of hydrodynamic stability for which solutions are
available in the literature. However, we can restrict our
investigation to the case of pumping of an initially stagnant
fluid, corresponding to no imposed pressure gradient. Thus,
in this case (𝜕𝑝/𝜕𝑥)0 = 0, which means that constant 𝐾
vanishes and we would be able to obtain a simple closed form
analytical solution of this interesting case of free pumping.
Physically, this assumption means that the fluid is stationary
if there are no peristaltic waves. In fact, this assumption is
not so restrictive because the maximum pressure gradient
that small-amplitude waves can generate is of the order of
𝜀
2 and in the pumping range the zeroth-order mean pressure
gradient must certainly vanish.

Solutions of (31) and (32) subject to the boundary condi-
tion ((33a), (33b), and (33c)), under the assumption, 𝐾 = 0,
may be obtained as

Φ𝑓1 (𝑦) = 𝐴1 sinh (𝛼𝑦) +𝐵1 sinh (𝛽𝑦) ,

Φ𝑝1 (𝑦) = 𝐴2 sinh (𝛼𝑦) +𝐵2 sinh (𝛽𝑦) ,
(39)

where

𝛽
2
= 𝛼

2
− 𝑖𝛼𝑅 [1−𝐶+

𝐶𝑀

𝑁 − 𝑖𝛼𝑅
] .

𝐴1 =
− (𝛽 cosh (𝛽) + Kn𝛽2 sinh (𝛽))

𝛼 cosh (𝛼) sinh (𝛽) − 𝛽 cosh (𝛽) sinh (𝛼) + Kn sinh (𝛼) sinh (𝛽) (𝛼2
− 𝛽

2
)
,

𝐵1 =
𝛼 cosh (𝛼) + Kn𝛼2 sinh (𝛼)

𝛼 cosh (𝛼) sinh (𝛽) − 𝛽 cosh (𝛽) sinh (𝛼) + Kn sinh (𝛼) sinh (𝛽) (𝛼2
− 𝛽

2
)
,

𝐴2 =
1 − 𝐵2 sinh (𝛽)

sinh (𝛼)
,

𝐵2 =
𝐵1𝑁

𝑁 − 𝑖𝛼𝑅
.

(40)

Next, in the expansion ofΨ(𝑓,𝑝)2, we need only to concern
ourselveswith the termsΦ(𝑓,𝑝)20(𝑦) as our aim is to determine
themean flowonly.Thus, the solution of the coupled differen-
tial equations ((34), (35)) subject to the boundary conditions
((38a), (38b), (38c), and (38d)), under the assumption,𝐾 = 0,
gives the expressions

Φ

𝑓20 (𝑦) = 𝐹 (𝑦) −𝐹 (1) +𝐷−𝐶1 (1−𝑦

2
+ 2Kn) ,

Φ

𝑝20 (𝑦) = 𝐺 (𝑦) −𝐹 (1) +𝐷

−𝐶1 (1−𝑦
2
+

2
𝑀

+ 2Kn) ,

(41)

where

𝐷 = Φ

𝑓20 (±1) = −

1
2
[(𝐴1 +𝐴

∗
1) (𝛼

2 sinh (𝛼)

+ 𝛼
3Kn cosh (𝛼)) + 𝐵1 (𝛽

2 sinh (𝛽)

+ 𝛽
3Kn cosh (𝛽)) + 𝐵

∗
1 (𝛽
∗2sinh (𝛽∗)

+ 𝛽
∗3 cosh (𝛽∗))] ,

𝐹 (𝑦) =
(1 − 𝐶)

2
𝛼
2
𝑅
2

4
[𝛾

2
(𝐴
∗
1𝐵1 +

𝐶𝑀𝐴
∗
2𝐵2

(1 − 𝐶)𝑁
)

×[
cosh (𝛼 + 𝛽) 𝑦

(𝛼 + 𝛽)
2 −

cosh (𝛼 − 𝛽) 𝑦

(𝛼 − 𝛽)
2 ]

+ 𝛾
∗2
(𝐴1𝐵

∗
1 +

𝐶𝑀𝐴2𝐵
∗
2

(1 − 𝐶)𝑁
)×[

cosh (𝛼 + 𝛽
∗
) 𝑦

(𝛼 + 𝛽
∗
)
2

−
cosh (𝛼 − 𝛽

∗
) 𝑦

(𝛼 − 𝛽
∗
)
2 ]+ (𝛾

2
+ 𝛾
∗2
) ×(𝐵1𝐵

∗
1
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+
𝐶𝑀𝐵2𝐵

∗
2

(1 − 𝐶)𝑁
)[

cosh (𝛽 + 𝛽
∗
) 𝑦

(𝛽 + 𝛽
∗
)
2

−
cosh (𝛽 − 𝛽

∗
) 𝑦

(𝛽 − 𝛽
∗
)
2 ]] ,

𝐺 (𝑦) = 𝐹 (𝑦)

−
(1 − 𝐶)

2
𝛼
2
𝑅
2

4𝑁
[𝛾

2
𝐴
∗
2𝐵2 [cosh (𝛼 +𝛽) 𝑦

− cosh (𝛼 − 𝛽) 𝑦] + 𝛾
∗2
𝐴2𝐵
∗
2 [cosh (𝛼 +𝛽

∗
) 𝑦

− cosh (𝛼 −𝛽
∗
) 𝑦] + (𝛾

2
+ 𝛾
∗2
)

⋅ 𝐵2𝐵
∗
2 [cosh (𝛽 +𝛽

∗
) − cosh (𝛽 −𝛽

∗
)]] ,

(42)

with

𝛾
2
= 1+ 𝐶𝑀

(1 − 𝐶) (𝑁 − 𝑖𝛼𝑅)
. (43)

Thus, we see that one constant 𝐶1 remains arbitrary in
the solution which is found to be proportional to the second-
order time-averaged pressure gradient. If we time-average (1)
for the solution given by (1), (2), (4), (5), (23), (24), (25),
((29a), (29b)), ((30a), (30b)), (39), and (41), we find that

𝑐1 = 𝑅(
𝜕𝑝

𝜕𝑥
)

2
. (44)

The constant 𝑐1, which is related to the second-order pres-
sure gradient distribution, may be obtained using ends con-
ditions of the real physical problem.

The mean time average velocities may now be written as

𝑢𝑓 =
𝜀
2

2
Φ

𝑓20 (𝑦) =

𝜀
2

2
[𝐹 (𝑦) −𝐹 (1) +𝐷

−𝑅(
𝜕𝑝

𝜕𝑥
)

2
(1−𝑦

2
+ 2Kn)] ,

(45)

𝑢𝑝 =
𝜀
2

2
Φ

𝑝20 (𝑦) =

𝜀
2

2
[𝐺 (𝑦) −𝐹 (1) +𝐷

−𝑅(
𝜕𝑝

𝜕𝑥
)

2
(1−𝑦

2
+

2
𝑀

+ 2Kn)] .

(46)

If no-slip, that is, Kn = 0, results of the present problems
reduce exactly to the same as that found by L. M. Srivastava
and V. P. Srivastava [5].

Also if no-slip, that is, Kn = 0 and the fluid is particles
free, that is, 𝐶 = 0, results of the present problems reduce
exactly to the same as that found by Fung and Yih [34].

4. Numerical Results and Discussion

A close look at (45) reveals that the mean axial velocity
of the fluid phase 𝑢𝑓 is dominated by the constant 𝐷 and

the parabolic distribution term −𝑅(𝜕𝑝/𝜕𝑥)2(𝑙 − 𝑦
2
+ 2Kn).

The term 𝐹(𝑦)−𝐹(1), always a negative quantity, is negligible
compared to 𝐷. The constant 𝐷, which initially arose from
the slip condition of the axial velocity on the wall, is due to
the value of Φ𝑓20 at the boundary and is related to the mean
velocity at the boundaries of the channel (at 𝑦 = ±1) by
𝑢 = (𝜀

2
/2)(𝐷 − 𝑅(𝜕𝑝/𝜕𝑥)2(2Kn)). This shows that the slip

boundary condition applies to the wavy wall and not to the
mean position of the wall. It may be reminded here that the
corresponding 𝐷 does not appear in the particulate phase
mean axial velocity as the particulate phase velocity at the
walls was unspecified.

For the sake of comparison we define mean-velocity
perturbation function 𝐽(𝑦) in accordance with Fung and Yih
[34] and L. M. Srivastava and V. P. Srivastava [5] as

𝐽 = −
200
𝛼
2
𝑅
2 (𝐹 (𝑦) −𝐹 (1)) , (47)

which gives mean time axial velocity of the fluid phase as

𝑢𝑓 (𝑦) =
𝜀
2

2
(𝐷−𝑅(

𝜕𝑝

𝜕𝑥
)

2
(1−𝑦

2
+ 2Kn)

−
𝛼
2
𝑅
2

200
𝐽 (𝑦)) .

(48)

It has been observed that urine, bacteria, or other mate-
rials some time pass from the bladder to the kidney or from
one kidney to the other in direction opposite to the urine flow.
Physiologists term these phenomena as “ureteral reflux.” Two
different definitions of reflux exist in the literature; Shapiro
et al. [40] call a flow reflux whenever there is a negative net
displacement of a particle trajectory, while Yin and Fung [41]
define a flow refluxwhenever there is a negativemean velocity
in the flow field. In the present analysis the latter definition of
reflux is adopted as L. M. Srivastava and V. P. Srivastava [5].

Since 𝐷 is always a positive quantity, 𝑢 = (𝜀
2
/2)𝐷 at 𝑦 =

±1 shows that the mean flow reversal will never occur at the
boundaries. Further, from (48), it is clear that the refluxwould
occur when the mean pressure gradient (𝜕𝑝/𝜕𝑥)2 reaches a
certain critical value. Thus, the critical reflux condition may
be defined as one for which the mean velocity 𝑢(𝑦) is equal to
zero on the center line 𝑦 = 0; (48) yields

𝐶1
𝑅

= (
𝜕𝑝

𝜕𝑥
)

2 critical

=
1

𝑅 (1 + 2Kn)
(𝐷−

𝛼
2
𝑅
2

200
𝐽 (0)) .

(49)

For (𝜕𝑝/𝜕𝑥)2 < (𝜕𝑝/𝜕𝑥)2 critical reflux, there is no reflux and
if (𝜕𝑝/𝜕𝑥)2 > (𝜕𝑝/𝜕𝑥)2 critical reflux there will be reflux and a
backward flow in the neighborhood of the center line occurs.

The value of (𝜕𝑝/𝜕𝑥)2 critical reflux for various values of 𝐶,
𝑅, Kn, and 𝛼 is displayed in Figure 2. From the figure, the
results reveal that the value of (𝜕𝑝/𝜕𝑥)2 critical reflux with 𝑦 for
different values of𝐶, for a fixed value of𝑅, (𝜕𝑝/𝜕𝑥)2 critical reflux
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Figure 2: Effect of the Knudsen number Kn, particle concentration 𝐶, and wave number 𝛼 on the critical reflux pressure gradient at 𝑅 = 10.

decreases with increasing particle concentration𝐶. However,
𝐶 have significant influence over (𝜕𝑝/𝜕𝑥)2 critical reflux only at
higher values of 𝛼. In the presence of Knudsen number Kn,
we observed that, at 𝛼 ≤ 0.4, (𝜕𝑝/𝜕𝑥)2 critical reflux decreases
with increasing wave number 𝛼. However, 𝛼 > 0.4 and
(𝜕𝑝/𝜕𝑥)2 critical reflux increases with increasingwave number𝛼.

We observed that the critical reflux pressure
(𝜕𝑝/𝜕𝑥)2 critical reflux at a given 𝛼 and 𝑅 is lower for particle-
fluid suspension than for particle-free fluid. This means that
presence of particle in the fluid favors reversal flow.

Finally, in Figures 3–6, the mean-velocity distribution
with reversal flow is displayed. Effects of 𝐶, 𝑅, Kn, and
(𝜕𝑝/𝜕𝑥)2 on mean velocity and reversal flow are shown.

Figure 7 studies the effect of Knudsen number Kn and the
mean second-order pressure gradient (𝜕𝑝/𝜕𝑥)2 on the mean-
velocity distribution and reversal flow for 𝐶 = 0.4, 𝛼 = 1.0,
and 𝑅 = 10; we notice that the mean-velocity distribution
increases with increasing Knudsen number Kn forward for
(𝜕𝑝/𝜕𝑥)2 < (𝜕𝑝/𝜕𝑥)2 critical reflux while for (𝜕𝑝/𝜕𝑥)2 >

(𝜕𝑝/𝜕𝑥)2 critical reflux the velocity increases the reflux flow. Also
we notice that the mean-velocity distribution decrease with
increasing the value of (𝜕𝑝/𝜕𝑥)2.

Also we notice that the value of (𝜕𝑝/𝜕𝑥)2 critical reflux
decreases by increasing the Knudsen number Kn.

Figure 4 studies the effect of Knudsen number Kn and
particle concentration 𝐶 on the mean-velocity distribution
mean and reversal flow for 𝛼 = 1.0, (𝜕𝑝/𝜕𝑥)2 = 0.3, and
𝑅 = 10, and the figures reveal that the reversal flow increases
with increasing particle concentration 𝐶, but the presence
of Knudsen number Kn results in a decrease in the reversal
flow. Also we notice that the mean-velocity distribution
increases with increasing Kn. Interpreted physiologically, this
means that, under the same conditions, urine in which solute
particles are suspended (i.e., urine from a diseased kidney) is
more susceptible to reversal flow in ureter, in comparison to
pure urine without solute particles.

Figure 5 studies the effect of Knudsen number Kn and
the Reynolds number 𝑅 on the mean-velocity distribution
and reversal flow for 𝛼 = 0.05, (𝜕𝑝/𝜕𝑥)2 = 0.5, and 𝐶 =

0.3, and the figures reveal that the reversal flow increases
with increasing Reynolds number 𝑅. Also we notice that
from Figures 5(a) and 5(b), at 𝑅 < 3, the presence of
Knudsen number Kn results a decrease in the mean-velocity
distribution, from Figure 5(c) at 𝑅 = 3, the effect of Knudsen
number vanishes, with increasing Kn at 𝑅 > 3, and we
observed that the presence of Knudsen number Kn results
in increase in the mean-velocity distribution and the reversal
flow. Figure 6 studies the effect of Knudsen number Kn and
the wave number 𝛼 on the mean-velocity distribution and
reversal flow for 𝑅 = 10, (𝜕𝑝/𝜕𝑥)2 = 0.5, and 𝐶 = 0.3; the
figures reveal that the reversal flow increases with increasing
wave number 𝛼. Also we notice that from Figures 6(a) and
6(b), at 𝛼 < 0.6, the presence of Knudsen number Kn results
in an increase in the reversal flow, fromFigure 6(c) at 𝛼 = 0.6,
the effect of Knudsen number vanishes, with increasing 𝛼

at 𝛼 > 0.6, and we observed that the presence of Knudsen
number Kn results in decrease in the reversal flow.

Next, we return to the dimensional flow problem; the
dimensional mean axial velocity ⟨𝑢𝑓⟩ is equal to the dimen-
sionlessmean net axial velocity 𝑢𝑓 as given by (48)multiplied
by the factor 𝑐. The properties of the blood are given by
𝜌𝑓 = 1066 kg/m3 and 𝜇 = 4 × 10

−3Nm−2 s. The particle
concentration 𝐶 various accurate up to 𝐶 = 0.6 [39]. The
frequency 𝑓 of the wave is related to the wave speed 𝑐 and
the wavelength 𝜆 according to 𝜆 = 𝑐/𝑓.

According to the Knudsen number, the flow regimes can
be divided into various regions. These are continuum, slip,
transition, and free molecular flow regimes. If Kn < 0.001, so
that molecular mean free path of the molecules is negligible
in comparison to the geometrical dimensions, the fluid can
be treated as a continuous medium. If 0.001 < Kn < 0.1, it is
found that the fluid loses grip on the boundaries and tends
to slip along the walls of the domain. If 0.1 < Kn < 3.0,
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Figure 3: (a) Mean velocity distribution at (𝜕𝑝/𝜕𝑥)2 = −1.0. (b) Mean velocity distribution at (𝜕𝑝/𝜕𝑥)2 = 0.0. (c) Mean velocity distribution
at (𝜕𝑝/𝜕𝑥)2 = (𝜕𝑝/𝜕𝑥)2 Critical reflux. (d) Mean velocity distribution at (𝜕𝑝/𝜕𝑥)2 = 0.5.

it is transition flow regimes. Finally, the flow enters the free
molecular regime when Kn > 3.0, each requiring a particular
type of analysis [21, 23].

For example, for the left main coronary artery, the range
of the diameter is 2.0–5.5mm (mean 4mm) and wavelength
range 𝜆 = 2.512–12.56 cm [39]. The dimensional mean
axial velocity ⟨𝑢𝑓⟩ (m/s) is plotted versus 𝑦(𝑚), for 𝜆 =

12.56 cm, the half of mean width 𝑑 = 2.0mm, the wave has
amplitude 𝑎0 = 10

−4mm, and 𝐶 = 0.3, with various values
of Knudsen number Kn, for Kn = 0.0, Kn = 0.01, Kn = 0.03,
Kn = 0.06, and Kn = 0.1. We observe that, from Figure 7(a),
for (𝜕𝑝/𝜕𝑥)2 < (𝜕𝑝/𝜕𝑥)2 critical reflux((𝜕𝑝/𝜕𝑥)2 = −1.0), the
mean axial velocity ⟨𝑢𝑓⟩ increases with increasing Knudsen
number Kn and there is no reflux flow forward for (𝜕𝑝/𝜕𝑥)2 <
(𝜕𝑝/𝜕𝑥)2 critical reflux while, from Figure 7(b), for (𝜕𝑝/𝜕𝑥)2 >

(𝜕𝑝/𝜕𝑥)2 critical reflux((𝜕𝑝/𝜕𝑥)2 = 0.5) there will be reflux flow
and a backward flow in the neighborhood of the center line
occurring, and the mean axial velocity ⟨𝑢𝑓⟩ increases in the
reversal flow with increasing Knudsen number Kn.

5. Conclusions

There is not any attempt to study the effect of slip conditions
on the flow of a particle-fluid suspension with peristalsis.
The purpose of this paper is to study the slip effects on
the peristaltic pumping of a particle-fluid mixture in a
two-dimensional channel. It is an application of the two-
dimensional analysis of peristaltic motion of a particle-fluid
mixture by L. M. Srivastava and V. P. Srivastava [5] and the
two-dimensional analysis of peristalticmotion of single phase
fluid by Fung and Yih [34] in the presence of slip effects.
The mathematical model considers a particle-fluid mixture
between infinite parallel walls with slip condition on which a
sinusoidal traveling wave is imposed. A perturbation solution
is obtained which satisfies the momentum equations for
the case in which amplitude ratio (wave amplitude/channel
half width) is small. Finally, the phenomenon of the mean
flow reversal is presented and its physiological implication
is discussed. Beside the engineering applications of pumping
particle-fluid mixture by peristalsis, the present analysis of
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Figure 4: (a) Mean velocity distribution at 𝐶 = 0.0, 𝛼 = 1.0, (𝜕𝑝/𝜕𝑥)2 = 0.3, and 𝑅 = 10. (b) Mean velocity distribution at 𝐶 = 0.2, 𝛼 = 1.0,
(𝜕𝑝/𝜕𝑥)2 = 0.3, and 𝑅 = 10. (c) Mean velocity distribution at 𝐶 = 0.4, 𝛼 = 1.0, (𝜕𝑝/𝜕𝑥)2 = 0.3, and 𝑅 = 10. (d) Mean velocity distribution at
𝐶 = 0.59, 𝛼 = 1.0, (𝜕𝑝/𝜕𝑥)2 = 0.3, and 𝑅 = 10.

two-phase flow process is potentially important in regard
to biofluid transport by peristalsis muscular contractions in
body organs where fluids behave like particle-fluid mixtures,
namely, chime in small intestine, spermatic fluid in cervical
canal, urine (from a diseased kidney) in ureter, and blood
suspension in arteriole.

Some concluding remarks are as follows.
(i) The reversal flow increases with increasing particle

concentration 𝐶, but the presence of Knudsen num-
ber Kn results in a decrease in the reversal flow. The
presence of Knudsen number Kn results in a decrease
in the reversal flow.

(ii) Also we notice that the mean-velocity distribution
increases with increasing Kn. Interpreted physiologi-
cally, thismeans that, under some conditions, urine in
which solute particles are suspended (i.e., urine from
a diseased kidney) is more susceptible to reversal flow
in ureter, in comparison to pure urine without solute
particles.

(iii) For example, for the left main coronary artery, the
mean axial velocity ⟨𝑢𝑓⟩ increases with increasing
Knudsen number Kn and there is no reflux flow
forward for (𝜕𝑝/𝜕𝑥)2 < (𝜕𝑝/𝜕𝑥)2 critical reflux while for
(𝜕𝑝/𝜕𝑥)2 > (𝜕𝑝/𝜕𝑥)2 critical reflux there will be reflux
and a backward flow in the neighborhood of the
center line occurring, and the mean axial velocity
⟨𝑢𝑓⟩ increases in the reversal flow with increasing
Knudsen number Kn.

Comparing with other models for verifications of results,
the present model gives the most general form of velocity
expression from which the other mathematical models can
easily be obtained by proper substitutions. It is of interest to
note that the result of the present model includes results of
different mathematical models such as the following.

(1) The results of L. M. Srivastava and V. P. Srivastava [5]
have been recovered by taking Knudsen number kn =
0.0 (no-slip condition).
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Figure 5: (a) Mean velocity distribution at 𝑅 = 1.0, 𝛼 = 0.05, (𝜕𝑝/𝜕𝑥)2 = 0.5, and𝐶 = 0.3. (b) Mean velocity distribution at 𝑅 = 2.0, 𝛼 = 0.05,
(𝜕𝑝/𝜕𝑥)2 = 0.5, and 𝐶 = 0.3. (c) Mean velocity distribution at 𝑅 = 3.0, 𝛼 = 0.05, (𝜕𝑝/𝜕𝑥)2 = 0.5, and 𝐶 = 0.3. (d) Mean velocity distribution
at 𝑅 = 4.0, 𝛼 = 0.05, (𝜕𝑝/𝜕𝑥)2 = 0.5, and 𝐶 = 0.3. (e) Mean velocity distribution at 𝑅 = 10.0, 𝛼 = 0.05, (𝜕𝑝/𝜕𝑥)2 = 0.5, and 𝐶 = 0.3. (f) Mean
velocity distribution at 𝑅 = 50.0, 𝛼 = 0.05, (𝜕𝑝/𝜕𝑥)2 = 0.5, and 𝐶 = 0.3. (g) Mean velocity distribution at 𝑅 = 100.0, 𝛼 = 0.05, (𝜕𝑝/𝜕𝑥)2 = 0.5,
and 𝐶 = 0.3.
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Figure 6: (a) Mean velocity distribution at 𝛼 = 0.1, (𝜕𝑝/𝜕𝑥)2 = 0.5, and 𝐶 = 0.3. (b) Mean velocity distribution at 𝛼 = 0.5, (𝜕𝑝/𝜕𝑥)2 = 0.5,
and 𝐶 = 0.3. (c) Mean velocity distribution at 𝛼 = 0.6, (𝜕𝑝/𝜕𝑥)2 = 0.5, and 𝐶 = 0.3. (d) Mean velocity distribution at 𝛼 = 1.0, (𝜕𝑝/𝜕𝑥)2 = 0.5,
and 𝐶 = 0.3.
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(2) The results of Fung and Yih [34] have been recovered
by taking Knudsen number kn = 0.0 and the fluid is
particles-free; that is, 𝐶 = 0.
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[2] H. J. Rath,Peristaltische Strömungen, Springer, Berlin,Germany,
1980.

[3] L. M. Srivastava and V. P. Srivastava, “Peristaltic transport of
blood: casson model—II,” Journal of Biomechanics, vol. 17, no.
11, pp. 821–829, 1984.

[4] L. M. Srivastava and V. P. Srivastava, “Interaction of peristaltic
flow with pulsatile flow in a circular cylindrical tube,” Journal of
Biomechanical Engineering, vol. 18, no. 4, pp. 247–253, 1985.

[5] L. M. Srivastava and V. P. Srivastava, “Peristaltic transport of
a particle-fluid suspension,” Journal of Biomechanical Engineer-
ing, vol. 111, no. 2, pp. 157–165, 1989.

[6] V. P. Srivastava and M. Saxena, “A two-fluid model of non-
Newtonian blood flow induced by peristaltic waves,” Rheologica
Acta, vol. 34, no. 4, pp. 406–414, 1995.

[7] V. P. Srivastava and L. M. Srivastava, “Effects of Poiseuille flow
on peristaltic transport of a particulate suspension,” Zeitschrift
für Angewandte Mathematik und Physik, vol. 46, no. 5, pp. 655–
679, 1995.

[8] C. D. Hill and A. Bedford, “A model for erythrocyte sedimenta-
tion,” Biorheology, vol. 18, no. 2, pp. 255–266, 1981.

[9] L. M. Srivastava and V. P. Srivastava, “On two-phase model of
pulsatile blood flow with entrance effects,” Biorheology, vol. 20,
no. 6, pp. 761–777, 1983.

[10] E. A. Trowbridge, “The fluidmechanics of blood,” inMathemat-
ics in Medicine and Biomechanics, vol. 7 of Shiva Mathematics
Series, pp. 200–217, University of Strathclyde Seminars in
Applied Mathematical Analysis, 1984.

[11] S. Oka, “A physical theory of erythrocyte sedimentation,”
Biorheology, vol. 22, no. 4, pp. 315–321, 1985.

[12] H.Wang and R. Skalak, “Viscous flow in a cylindrical tube con-
taining a line of spherical particles,” Journal of Fluid Mechanics,
vol. 38, pp. 75–96, 1970.

[13] P. Bungay andH. Brenner, “Pressure drop due to themotion of a
sphere near the wall bounding a Poiseuille flow,” Journal of Fluid
Mechanics, vol. 60, pp. 81–96, 1973.

[14] R. Skalak, P. H. Chen, and S. Chien, “Effect of hematocrit and
rouleaux on apparent viscosity in capillaries,” Biorheology, vol.
9, no. 2, pp. 67–82, 1972.

[15] T. Karino, H. H. M. Kwong, and H. L. Goldsmith, “Particle flow
behaviour in models of branching vessels: I. Vortices in 90∘ T-
junctions,” Biorheology, vol. 16, no. 3, pp. 231–248, 1979.

[16] T.-K. Hung and T. D. Brown, “Solid-particle motion in two-
dimensional peristaltic flows,” Journal of Fluid Mechanics, vol.
73, no. 1, pp. 77–96, 1976.

[17] T. D. Brown and T.-K. Hung, “Computational and experimental
investigations of two-dimensional nonlinear peristaltic flows,”
Journal of Fluid Mechanics, vol. 83, no. 2, pp. 249–272, 1977.

[18] S. Takabatake and K. Ayukawa, “Numerical study of two-
dimensional peristaltic flows,” Journal of Fluid Mechanics, vol.
122, pp. 439–465, 1982.

[19] K. S. Mekheimer, E. F. El Shehawey, and A. M. Elaw, “Peristaltic
motion of a particle-fluid suspension in a planar channel,”
International Journal of Theoretical Physics, vol. 37, no. 11, pp.
2895–2920, 1998.

[20] A. M. El Misery, E. F. Elshehawey, and A. A. Hakeem, “Peri-
stalticmotion of an incompressible generalizedNewtonian fluid
in a planar channel,” Journal of the Physical Society of Japan, vol.
65, no. 11, pp. 3524–3529, 1996 (Japanese).

[21] E. F. El-Shehawy, N. T. El-Dabe, and I. M. El-Desoky, “Slip
effects on the peristaltic flow of a non-Newtonian Maxwellian
fluid,” Journal of Acta Mechanica, vol. 186, no. 1–4, pp. 141–159,
2006.

[22] I. M. Eldesoky, “Influence of slip condition on peristaltic
transport of a compressible Maxwell fluid through porous
medium in a tube,” International Journal of AppliedMathematics
and Mechanics, vol. 8, no. 2, pp. 99–117, 2012.

[23] W. Kwang-Hua Chu and J. Fang, “Peristaltic transport in a slip
flow,” The European Physical Journal B, vol. 16, no. 3, pp. 543–
547, 2000.

[24] N. Ali, Q. Hussain, T. Hayat, and S. Asghar, “Slip effects on
the peristaltic transport of MHD fluid with variable viscosity,”
Physics Letters A, vol. 372, no. 9, pp. 1477–1489, 2008.

[25] T. Hayat, M. U. Qureshi, and N. Ali, “The influence of slip on
the peristaltic motion of a third order fluid in an asymmetric
channel,” Physics Letters A, vol. 372, no. 15, pp. 2653–2664, 2008.

[26] A. M. Sobh, “Interaction of couple stresses and slip flow on
peristaltic transport in uniform and nonuniform channels,”
Turkish Journal of Engineering and Environmental Sciences, vol.
32, no. 2, pp. 117–123, 2008.

[27] A. M. Sobh, “Slip flow in peristaltic transport of a Carreau fluid
in an asymmetric channel,” Canadian Journal of Physics, vol. 87,
no. 8, pp. 957–965, 2009.

[28] S. Nadeem and S. Akram, “Slip effects on the peristaltic flow
of a Jeffrey fluid in an asymmetric channel under the effect
of induced magnetic field,” International Journal for Numerical
Methods in Fluids, vol. 63, no. 3, pp. 374–394, 2010.

[29] M. El-Shahed, “Pulsatile flow of blood through a stenosed
porous medium under periodic body acceleration,” Applied
Mathematics and Computation, vol. 138, no. 2-3, pp. 479–488,
2003.

[30] I. M. Eldesoky, “Slip effects on the unsteady MHD pulsatile
blood flow through porousmedium in an artery under the effect
of body acceleration,” International Journal of Mathematics and
Mathematical Sciences, vol. 2012, Article ID 860239, 26 pages,
2012.

[31] I. M. Eldesoky, M. H. Kamel, and R. M. Abumandour, “Numer-
ical study of slip effect of unsteady MHD pulsatile flow through
porous medium in an artery using generalized differential
quadrature method (comparative study),” World Journal of
Engineering and Technology, vol. 2, no. 2, pp. 131–148, 2014.

[32] S. Akram, “Effects of slip and heat transfer on a peristaltic
flow of a Carreau fluid in a vertical asymmetric channel,”
Computational Mathematics and Mathematical Physics, vol. 54,
no. 12, pp. 1886–1902, 2014.

[33] A. Safia, S. Nadeem, and A. Hussin, “Influence of induced
magnetic field and partial slip on the peristaltic flow of a
couple stress fluid in an asymmetric channel,” Iranian Journal
of Chemistry and Chemical Engineering, vol. 33, pp. 43–52, 2014.



14 Applied Bionics and Biomechanics

[34] Y. C. Fung and C. S. Yih, “Peristaltic transport,” ASME Journal
of Applied Mechanics, vol. 33, pp. 669–675, 1968.

[35] D. A. Drew, “Stability of a stokes’ layer of a dusty gas,” Physics of
Fluids, vol. 22, no. 11, pp. 2081–2084, 1979.

[36] G. K. Batchelor, “Transport properties of two-phase materials
with random structure,” Annual Review of Fluid Mechanics, vol.
6, pp. 227–255, 1974.

[37] G. K. Batchelor, “Brownian diffusion of particles with hydrody-
namic interaction,” Journal of Fluid Mechanics, vol. 74, no. 1, pp.
1–29, 1976.

[38] C. K. W. Tam, “The drag on a cloud of spherical particles in low
Reynolds number flow,” Journal of Fluid Mechanics, vol. 38, no.
3, pp. 537–546, 1969.

[39] S. E. Charm and G. S. Kurland, Blood Flow and Micro-
Circulation, John Wiley, New York, NY, USA, 1974.

[40] A. H. Shapiro, M. Y. Jaffrin, and S. L. Weinberg, “Peristaltic
pumping with long wavelengths at low Reynolds number,”
Journal of Fluid Mechanics, vol. 37, no. 4, pp. 799–825, 1969.

[41] F. C. Yin andY.C. Fung, “Comparison of theory and experiment
in peristaltic transport,” Journal of Fluid Mechanics, vol. 47, no.
01, pp. 93–112, 1971.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


