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With the advent of Cloud databases, query optimizers need to find paretooptimal solutions in terms of response time and monetary
cost. Our novel approach minimizes both objectives by deploying alternative virtual resources and query plans making use of
the virtual resource elasticity of the Cloud. We propose an exact multiobjective branch-and-bound and a robust multiobjective
genetic algorithm for the optimization of distributed data warehouse query workloads on the Cloud. In order to investigate the
effectiveness of our approach, we incorporate the devised algorithms into a prototype system. Finally, through several experiments
that we have conducted with different workloads and virtual resource configurations, we conclude remarkable findings of alternative

deployments as well as the advantages and disadvantages of the multiobjective algorithms we propose.

1. Introduction

Cloud computing has emerged as a new computation para-
digm that builds elastic and scalable software systems. Ven-
dors such as Amazon, Google, Microsoft, and Salesforce
offer several options for computing infrastructures, plat-
forms, and software systems [1-4] and supply highly scalable
database services with simplified interfaces and the goal of
reducing the total cost of ownership [5-7]. Users pay all
costs associated with hosting and querying their data where
database-as-a-service providers present different choices to
tradeoff price and performance to increase the satisfaction
of the customers and optimize the overall performance [8,
9]. Recently, extensive academic and commercial research is
being done to construct self-tuned, efficient, and resource-
economic Cloud database services that protect the benefits
of both the customers and the vendors [10-13].
Virtualization is being exploited to simplify the adminis-
tration of physical machines and accomplish efficient systems
and it is the main enabling technology of Cloud computing
that provides the illusion of infinite resources in many
respects [14]. The perception of hardware and software
resources is decoupled from the actual implementation and

the virtual resources perceived by applications are mapped to
real physical resources. Through mapping virtual resources
to physical ones as needed, the virtualization can be used
by several databases that are located on physical servers
to share and change the allocation of resources according
to query workloads [15] (see Figure 1). This capability of
virtualization provides efficient Cloud databases where each
virtual machine (VM) has its own operating system and
thinks that it is using dedicated resources (CPU, main mem-
ory, network bandwidth, I/O, etc.), whereas in reality the
physical resources are shared among by using a VM monitor
(VMM) that controls the allocation of resources [16-19].

In addition to providing efficient queries in accordance
with the service level agreements, contemporary relational
Cloud database management systems need to optimize a mul-
ticriteria problem that the overall cost of hardware ownership
price is to be minimized. More specifically, the problem can
be stated as follows.

Given a budget constraint and a query workload, how
can the virtual resources of the Cloud (CPU, main memory,
network bandwidth, etc.) be allocated to virtual machines,
each having a part of a distributed database, that the best
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FIGURE 1: Virtualization of resources on a server.

overall query performance can be achieved with minimum
pricing?

In this study, we have developed a framework to provide
(near-)optimal virtual resource allocations with respect to the
overall cost of hardware ownership price and a good tradeoft
between the efficiency and the overall cost of a database
is ensured. Our framework produces cost-efficient design
alternatives (virtual resource configuration and query plans)
and recommends them to decision makers. A budgetary
constraint can be a more important criterion for a consumer,
whereas the response time of the queries is more crucial for
another [20]. Therefore, in order to fully realize the potential
of the Cloud, alternative query plans are executed with
well configured virtual resources instead of only optimizing
single query plans on statically designed virtual resources
[21]. This means that instead of designing the database over
standard VMs, we have configured the virtual resources,
which indicates that CPU usage and RAM can be a crucial
point for a data warehouse workload, whereas network or I/O
bandwidth is more important for another.

In this part, we give a scenario to explain the multiobjec-
tive problem in more detail. Consider a distributed TPC-H
decision support database where all of its tables are located
on different VMs. When we execute TPC-H query 3 with
two different query plans (QP, and QP, given in Appendix)
and with alternative virtual resource allocations, we obtain
different results. The results of this experiment are presented
in Tables 1 and 2. As it can be seen, the configuration of
VMs with 4 x 2 Ghz CPU, 8 GB RAM, and 300 Mbps network
bandwidth and with QP is observed to be the best perform-
ing platform; however, its monetary price is one of the most
expensive alternatives. The configuration of 1 x 2 Ghz CPU,
768 MB RAM, and 100 Mbps network bandwidth and with
QP, has a response time, that is, only 25.9% slower but 72.0%
cheaper. The paretooptimal visualization of the solutions can
be seen in Figure 2. Looking at the results, the cheapest
VM configuration is not the worst and the most expensive
configuration is not the best solution in accordance with both
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FIGURE 2: Paretooptimal curve for the response time and monetary
cost of TPC-H Q3 with different virtual resource configurations and
query plans.

TABLE 1: Response time and monetary costs of TPC-H query 3 (QP,)
with 6 different virtual resource configurations.

Virtual machine Network Response time

configuration bandwidth (sec.) Price ¢
;6><82N?];1 ;ii/IU’ 10 Mbps 57.0 ¢0.048
;6><821\/[G];1 ﬁf’ 100 Mbps 165 ¢0.055
;2821\%1 ;S‘l;/[U’ 300 Mbps 15.7 ¢0.140
g cx;é SEVICPU’ 10 Mbps 58.2 ¢0.404
g cxié g/}gv[CPU’ 100 Mbps 135 ¢0.128
g éé SE\/[CPU’ 300 Mbps 131 ¢0.197

objectives. Instead, alternatives chosen according to virtual
resource demands provide better paretooptimal solutions.
For example, QP, requests more network resources, whereas
QP, spends more main memory. In this case, QP, can be a
better way to execute a query where the network bandwidth
is high and cheap.

In order to investigate the effectiveness of our approach,
we incorporate the devised framework into a prototype
system for evaluation and instantiate it with a simple heuristic
algorithm (SHA), an exact solution method, branch-and-
bound (MOBB), and a soft computing method multiob-
jective genetic algorithm (MOGA). Finally, through several
experiments that we have conducted with the prototype
elastic virtual resource deployment optimizer on TPC-H
query workloads, we conclude remarkable results of the space
of alternative deployments as well as the advantages and
disadvantages of the multiobjective optimization algorithms.

The remainder of this paper is organized as follows. In
Section 2, we provide information about the related studies.
In Section 3, we give mathematical multiobjective query
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TABLE 2: Response time and monetary costs of TPC-H query 3 (QP,)
with 6 different virtual resource configurations.

Virtual

. Network Response .
machine . . Price ¢
. bandwidth time (sec.)

configuration
1 x 2 Ghz CPU,

? ¢0.027
768 MB RAM 10 Mbps 32.5
1 x 2 Ghz CPU,

? ¢0.104
268 MB RAM 100 Mbps 31.2 0.10
1 x 2 Ghz CPU,

i ¢0.263
768 MB RAM 300 Mbps 29.6
4 x 2 Ghz CPU,

? ¢0.101
3 GB RAM 10 Mbps 14.6 0.10
4 x 2 Ghz CPU,
8 GB RAM 100 Mbps 14.5 ¢0.137
4 x 2 Ghz CPU,

? ¢0.21
8 GB RAM 300 Mbps 14.3 0.215

optimization problem formulation. In Section 4, infrastruc-
ture and pricing scheme parameters of the Cloud are given.
Section 5 proposes our simple heuristic (SHA), branch-and-
bound (MOBB), and genetic algorithms (MOGA). Section 6
defines our experimental environment and the setup of the
selected TPC-H query workloads and presents the results
of the experiments. In Section 7, we give our concluding
remarks.

2. Related Work

In this section, we summarize some of the studies related
to our work. There has been a lot of research related to the
Cloud, but relatively there is no approach like ours that is
concerned with both the optimization of the total ownership
price and the performance of the queries by taking into
account alternative virtual resource allocation and query
plans.

Distributed databases are considered to be the first repre-
sentatives of the Cloud databases. Therefore, we first analyzed
Mariposa, an early distributed database system that imple-
ments an economic paradigm to solve many drawbacks of
wide-area network cost-based optimizers [22]. In Mariposa,
clients and servers have an account in a network bank and
users allocate a budget to each of their queries. The processing
mechanism aims to service the query in the limited budget by
executing portions of it on various sites. The latter place bids
for the execution of query parts and the bids are collected in
query brokers. The decision of selecting the most appropriate
bids is delegated to the user. A series of similar works have
been proposed for the solution of the problem [23, 24].
Papadimitriou and Yannakakis [25] showed that Mariposa’s
greedy heuristic can be far from the optimum solution and
proposed that the optimum cost-delay tradeoft (Pareto) curve
in Mariposas framework can be approximated fast within any
desired accuracy. They also present a polynomial algorithm
for the general multiobjective query optimization problem,
which approximates the optimum cost-delay tradeoff.

An advisor automatically configures a set of VMs for
database workloads where the advisor requests domain

knowledge in Soror’s study [15]. Although his approach
concerns with the efficient allocation of the VMs, it does not
optimize the total ownership price of the system. Recently,
efficient cost models have been proposed in the Cloud
for scheduling of dataflows with regard to monetary cost
and/or completion time [12] and cost amortization of data
structures to ensure the economic viability of the provider
[13], particularly for self-tuned caching [11] and for a real-life
astronomy application using the Amazon Cloud [26].

New cost models that fit into the pay-as-you-go paradigm
of Cloud computing are introduced in [10]. These cost models
achieve a multiobjective optimization of the view material-
ization versus CPU power consumption problem under bud-
get constraints. It is shown that Cloud view materialization
is always desirable. Koutris et al. [27] built a theoretical foun-
dation, the first one towards a practical design and implemen-
tation of a pricing system. They present a formal framework
for query-based pricing. Central to this framework are the
notions of arbitrage-free and discount-free pricing.

In [28], the cost performance tradeoffs of different exe-
cution and resource provisioning plans have been simulated,
showing that by provisioning the right amount of storage
and computing resources, cost can be reduced significantly.
The performance of three workflow applications with dif-
ferent I/O, memory, and CPU requirements has also been
compared on Amazon EC2 and a typical high-performance
cluster (HPC) to identify what applications achieve the best
performance in the Cloud at the lowest cost [26].

Recent research takes interest in various aspects of
database and decision support technologies in the Cloud.
Different studies investigate the storage and processing of
structured data [29], the optimization of join queries, and
how to support analysis operations such as aggregation
[30]. Cloud data warehousing and OLAP systems also raise
various problems related to storage and query performance
[31]. Adaptations of these technologies to the Cloud are
addressed in [32] or the calculation of OLAP cuboids using
the MapReduce runtime environment [33].

In [34], a virtual-machine provisioning policy based on
marginal cost and revenue functions is proposed. For each
Cloud customer there exists a budget as a function of the
execution time of the tasks that are submitted. Knowledge
of this function, combined with the machine-hour cost,
allows for educated decisions regarding the amount of virtual
resources allocated per customer in the context of an IaaS-
Cloud, an answer to the question of exactly how many VMs
a consumer should request from a Cloud within a budget.

In [35], a cost-aware provisioning system for Cloud
applications that can optimize either the rental cost for pro-
visioning a certain capacity or the transition cost of reconfig-
uring an application’s current capacity is proposed. The
system exploits both replication and migration to dynami-
cally provision capacity and uses an integer linear program
formulation to optimize cost.

There has been a substantial amount of work on the prob-
lem of tuning database system configurations for specific
workloads or execution environments [36] and on the prob-
lem of making database systems more flexible and adaptive
in their use of computing resources [37, 38]. In our study



we are tuning the virtual resources to a database system,
rather than tuning the database system for a given resource
setting. Also our study optimizes the objectives of minimum
money consumption and maximum benefit from the virtual
resources and optimizes this with an efficient multiobjective
genetic algorithm. In summary, our study focuses on the
elasticity of Cloud resources and produces multiple resource
deployment plans with alternative query plans for a set of
queries in a batch, enabling the user to select the desired
tradeoft with efficient cost models. To the best of our know-
ledge, no resource deployment processing system deals with
the concept of elasticity and cost-efficiency on relational
Cloud databases like our system.

3. Multiobjective Query Optimization
Problem Formulation

In this part, we first give the definitions of some main terms
that are used in the study to provide the reader a better
understanding and later we present the mathematical repre-
sentation of our multiobjective query optimization problem
of a data warehouse workload on the Cloud.

Virtual Machine (VM). VM is software that emulates the arch-
itecture and functions of a real computer. The number of
its processors and main memory can be changed through
virtualization.

Distributed Data Warehouse. Distributed data warehouse is
a TPC-H decision support data warehouse that is distributed
over a set of VMs on a network. VMs communicate with each
other by paying a cost required by Cloud vendor.

Workload (W). Workload is a set of queries that are submitted
as a batch to a distributed data warehouse. Our data ware-
house is a distributed database so that the tasks of the queries
are sent to the related VM and its results are received by other
VMs to join the data and give a result.

Response Time. Response time is the time that has elapsed
between the submission of the queries and obtaining of the
results.

Total Execution Time. Total execution time is the sum of the
time spent by the CPUs of the VMs and the time period
during the data transmission over the network.

Monetary Cost. Monetary cost of a Cloud data warehouse
workload (C,,,;) includes renting the resources to run the
database. These resources are mainly data storage (Cgyqroqe)
processing time of the VMs (C,,,,,) and the sum of data
transfer cost (C 10]:

comp

comm) [

Ctotal =C +C + Ccomm' (1)

storage comp
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Data storage cost, Cgyqrege depends on the size of the data
(including the structures such as indexes and replications)
and its storage time. Processing time of the VMs, Copp,»
is the total price for CPU usage. During the execution of
the queries, different VM configurations can be used and
the configuration of a VM (RAM, number of CPUs, etc.) is
flexible in accordance with the resources used. Micro, small,
large, and extra-large are some of the configurations provided
by the Cloud vendors at various prices [3]. Data transfer cost,
Comm> 18 related to the amount of data migrated between sites
and the pricing model applied by the Cloud provider.

Alternative Query Plans (QPs). QPs provide different ways for
executing a query. In Figure 3, we can see two different QPs
of TPC-H query Q3. QP, first joins the customer and orders
relations, whereas QP, joins the orders and lineitem relations
first. Alternative QPs can take advantage of different ways of
executing the same query; thus, cheaper resources can reduce
the total price of a query while increasing the response time.
This elasticity provides new opportunities for the solution of
our multiobjective problem.

The formulation of the problem consists of two parts: the
monetary cost and the response time of the query workloads
that will work on the selected VMs with the alternative QPs
of the queries.

The monetary cost is calculated in accordance with (1)
and the response time of the query workloads is calculated
with the parameters and statistics used by query optimizers.
The main goal of the problem is to minimize

F (x) = {Resp_time (x) , Total cost (x)}, (2)

where x denotes a solution vector consisting of a set of VMs,
QPs of m queries in workload W that will be executed on
selected VMs, and the following network:

x={{VM,,...,VM,},{QP,,...,QP,} ,Network;}. (3)

There are n VMs with independent DBMS and each VM
has a set of processors and a main memory. Each DBMS has
a workload that consists of a set of queries. W, represents the
ith workload. The resources to be deployed to VMs are CPU
and main memory.

M_Cost(W,, x;) is the total monetary cost of workload W,
for the solution vector x;.

Resp_Time(W,, x;) is the response time of workload W,
with the virtual resource and QP settings given in solution x;.

The main goal is to obtain the paretooptimal set of solu-
tions such that the overall workload cost is minimized. The
overall multiobjective objective function (finding solutions
closer to the ideal point given in Figure 2) is represented in
the following:

F(x;) = min \/ (Resp_time(x;) — Bes‘c:dme(x))2 + (M_cost(x;) — Best,cost(x))z, (4)
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FIGURE 3: Alternative QPs for TPC-H Q3 query.

where Best_time(x) is the best response time and Best_cost(x)
is the minimal monetary cost for workload W, with solution
vector x.

Response Time Cost Model. In order to measure the response
time of a workload with a configuration of VMs, we deve-
loped a response time based cost model [21, 39] that uses
bushy-plan trees [40]. The cost model depends on the stat-
istics of the database catalog. The main parameters used in
the cost model are shown in Table 3.

Using the number of pages as a parameter, the response
time taken by a query is calculated as

Resp_time = (T¢py * seq-#insts) + (T}, * seq-#1/Os)

+ (Tysg * seq#msgs) + (Trg * seq_#bytes).
(5)

The network communication time of transferring an
intermediate query result from one site to another is calcu-
lated as

CT (#pages) = Ty + (Trr * #pages). (6)

4. Infrastructure and Pricing Scheme
Parameters of the Cloud

In this section, we describe the infrastructure details of the
Cloud database and the pricing scheme that we have used
during the optimizations. Each customer requests queries
from the Cloud by using Internet and contacts with the
aggregate node. The aggregate node distributes the query
to the appropriate VMs. The Cloud infrastructure provides
unlimited amount of storage space, CPU nodes, RAM, and
very high speed intra-Cloud networking. All the resources of
the Cloud are assumed to be on a network. The CPU nodes,

TABLE 3: Parameters used in the cost model.

Symbol Definition

Tyo I/O time for a page

#1/0 Number of page I/O operations
seq-#1/0 Max. number of sequential pages I/O
Tepy Time for a CPU instruction
seq-#insts Max. number of sequential instructions
Tusa Time to initiate and receive a message
seq-#msgs Max. number of sequential messages
Trr Time to transmit a page
seq-#pages Max. number of sequential pages
#insts Number of instructions

RAM, and I/O bandwidth of each VM are different and can be
deployed by using VM monitors (VMM) in milliseconds [14].
The storage system is based on a clustered file system where
the disk blocks are stored close to the CPU nodes accessing
them. I/O bandwidth of the storage is divided evenly to the
VMs (that may have multiple cores up to 8).

There are many Cloud service providers (CSP) in the
market and they offer different pricing schema for the services
they provide. Different pricing schema of Cloud server pro-
viders can be opportunities for customers in accordance
with the tasks they want to complete. In our study, we will
use a pricing scheme that is similar to Windows Azure [3].
VM configurations such as extra small (XS), small (S), and
medium (M) are provided by the Cloud service provider. The
detailed information of VM configurations can be seen in
Table 4. The cost for a small VM (1 GHz CPU, 768 MB RAM)
is $0.02/hr, whereas for A7 (8 x 1.6 GHz CPU, 56 GB RAM)
is $1.64/hr.



6
TABLE 4: Virtual machine prices.
Virtual
Symbol machine Price
configuration
XS 1GHz CPU, 768 MB RAM $0.02/hr
S 1.6 GHz CPU, 1.75 GB RAM $0.06/hr
M 2x1.6 GHz CPU, 3.5 GB $0.12/hr
RAM

4 x1.6 GHz CPU, 7 GB
L RAM $0.24/hr
XL 8 x1.6 GHz CPU, 14 GB $0.48/hr

RAM

4 x 1.6 GHz CPU, 28 GB

A ’ .82/h
6 RAM $0.82/hr

8 x 1.6 GHz CPU, 56 GB

A ’ 1.64/h
7 RAM $1.64/hr
TaBLE 5: Cloud database storage prices.
Database size Price
100 MB $5.00/mo
1GB $9.99/mo
2GB $13.99/mo
5GB $25.98/mo
10 GB $45.96/mo
50 GB $125.88/mo
150 GB $225.78/mo
TABLE 6: Network bandwidth prices.

Bandwidth Price
10 Mbps $0.05/hr
100 Mbps $0.50/hr
200 Mbps $1.00/hr

Data storage is also billed by the Cloud service providers.
In our model, monthly storage price is used. During our
experiments, the data storage price was constant for all the
queries. Therefore, we do not add this parameter to our
overall cost. The detailed information of database storage
prices can be seen in Table 5.

Most of the Cloud providers do not charge for the data
transfers in a private Cloud but the data that leaves the Cloud
and the bandwidth of the intra-Cloud network can reach up
to 10 Gbps. In order to make our problem more interesting
and handle this dimension of the optimization, we have
located our VMs on a virtual switch. Different bandwidth
networks can be chosen and the pricing scheme changes in
this communication infrastructure. The pricing we have used
for the network layer is given in Table 6. The bandwidth of the
network is increased from 10 Mbps up to 200 Mbps during the
experiments.
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FIGURE 4: Proposed heuristic value for MOBB algorithm.

5. Proposed Algorithms

In this section, we propose three algorithms for the solution
of the problem: simple heuristic algorithm (SHA), an exact
algorithm branch-and-bound which finds the paretooptimal
solutions, and a multiobjective genetic algorithm (MOGA).

5.1. Simple Heuristic Algorithm (SHA). In SHA, we have
ranked the VMs in accordance with the frequency of the
join operations. For example, with the database configuration
we have studied, the first one was the VM that most of
the join operations took place and we have assigned the
best configuration to this VM. For the rest of the VMs
we have assigned configurations with decreasing prices. The
effects of all network types and QPs are evaluated on these
configurations of the VMs. This algorithm is developed to
provide us a test environment to evaluate the performance of
other proposed algorithms, MOBB and MOGA.

5.2. Multiobjective Optimization of Cloud Database Config-
uration Using Branch-and-Bound Algorithm (MOBB). Mul-
tiobjective branch-and-bound algorithm (MOBB) is an
exhaustive optimization algorithm. It enumerates all candi-
date solutions, where fruitless subsets of candidates are
discarded, by using upper and lower estimated bounds of the
problem instance being optimized [41]. MOBB starts search-
ing with null initial values indicating that no QP has yet been
selected for any queries with the current VM configuration.
Later, QPs are assigned to selected VM configuration. At
each level of the tree, one additional QP is assigned to the
query workload. This procedure is repeated for every VM
configuration.

We define two initial upper bounds for MOBB. The
minimum monetary cost is the running time of VMs that
execute the queries in a workload of queries. The response
time is the finishing time of the workload with the given VM
configuration. In order to estimate a lower bound, different
heuristic functions can be used. The heuristic we proposed
here is reasonable and performs well during the optimization
process. We will explain the heuristic with a scenario. In
Figure 4 we can see the results of a sample multiobjective
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query workload optimization. The best response time and
the minimum monetary cost values are defined and marked
on the Figure. We can obtain these values with the most
expensive and the cheapest VM configurations easily. Hereby;,
we propose a heuristic point (marked as heuristic point on
the Figure), that is, the center of the square constructed by
the response time and monetary costs of the most expensive
and the cheapest VM configurations. If the response time of
a workload falls above heuristic point or if the monetary cost
is at the right-hand side of heuristic point on the Figure then
it is pruned according to our heuristic.

Table 7 gives us an execution order of a sample workload
W. QP denotes the first query execution plan of a query and
(QP,,QP;,...,QP,) is the sequence of submitted queries in
a workload. The first query is executed with query plan QP
the second query is executed with query plan QP;, and the
last query is executed with query plan QP,. The executions
in the table start with query execution plan of query 1 and
two null queries. The final solution is the state with no null
values. After finding the best and worst response times with
the most expensive and the cheapest VM configurations, we
set our heuristic point as monetary cost = $1.2 and response
time = 50 min.

The execution starts by assigning the queries to the cur-
rent VM configuration. The response time and the monetary
cost of the first query are calculated with its three different
QPs. The first QP is in the acceptable bounds (monetary
cost=$0.5 and response time = 10 min.) but the other two
QPs exceed the limits. The second one is more expensive than
the heuristic value ($1.3) and the third one is slower than the
heuristic value (55min.). Therefore, they are pruned. In the
second phase, we assign the QPs of the second query. They
are within the limits of the heuristic value and at the last phase
we add the third query. They do not exceed the limits of the
heuristic value and they become solutions. Pseudocode of our
MOBSB algorithm is given in Algorithm 1.

5.3. Multiobjective Optimization of Cloud Database Configu-
ration Using Genetic Algorithm (MOGA). The principles of
applying natural evolution to optimization problems were
first described in [42, 43]. The GA theory has been further
developed and GAs have become very powerful tools for
solving search and optimization problems [44-46]. GAs are
based on the principle of genetics and evolution and have
been frequently used to solve many NP-complete problems.
GAs use a computational model that simulates the natural
processes of selection and evolution. Individuals with better
quality have more chance to survive, to reproduce, and to
pass their genetic characteristics to future generations. Each
potential solution in the search space is considered as an
individual and is represented by strings called chromosomes.
Genes are the atomic parts of chromosomes and codify a
specific characteristic. Chromosomes are encoded in dif-
ferent ways for each application. A random population is
generated in the first step of the algorithm and by applying
selection, crossover, and mutation operations iteratively new
generations are created [47]. The individual having the best
fitness value in the population is returned as the solution of

the problem. Algorithm 2 gives the details of GA used in
MOGA system.

Multiobjective query optimization problem can be mod-
eled by evolutionary methods. A chromosome corresponds
to a solution instance including a set of relational Cloud
database QPs. Figure 5 shows the chromosome structure
of a solution instance. The chromosome consists of three
parts; leftmost segment represents the configuration of the
VMs. Middle segment is the set of QPs for the queries in
the workload. Rightmost part gene represents the selected
network layer of the solution vector.

We have defined three operators for the solution of GA
model.

Crossover Operator. The operator uses two parents that are
selected from the population by a selection method. We
have proposed two types of crossover operators, global and
local. Global crossover operator swaps VM, QP, or network
part of two selected chromosomes with the same counter
chromosome. Below we can see two parents and their VM
parts are exchanged to provide two new chromosomes.
Details can be seen in Figure 6. Consider

{{VvM;,VM,, VM, VM, },

{QP,,QP,,QP,,QP,}, Network }

par;

par, = {{VM,;,VM,,VM,, VM, }, @
{QP,,QP,, QP,,QP, }, Network,} .
New offspring (offs) are
offs; = {{VM,,VM,, VM,, VM, },
{QP,, QP,, QP,, QP, }, Network, }
offs, = {{VM;,VM,, VM, VM, }, ®

{QP,,QP,,QP,,QP,}, Network, } .

The local crossover operator works on the VM and QP
segments of the chromosome by dividing the parents and
exchanging the segments with each other. Figure 7 gives
an example of local crossover that divides the QPs of the
chromosomes and exchanges to generate new offspring.

Mutation Operator. Mutation operator changes a randomly
selected gene of a chromosome. In our chromosome structure
this operator can act on any of the segments. Only a gene
is replaced at every mutation process. Figure 8 shows how a
mutation operator changes a QP in a chromosome.

Fitness Calculation. Multiobjective fitness evaluation does
not produce a single solution vector. Therefore, we have
selected the nondominant individuals in the population as
the resulting solution set. The fitness of the individuals is
evaluated in accordance with (4).

Parameters of MOGA are as follows:

(i) population size: total number of chromosomes (indi-
viduals) in each generation;
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TaBLE 7: Execution of multiobjective branch-and-bound algorithm with heuristic values (monetary cost = $1.2 and response time = 50 min.).

State Monetary cost ($) Response time (sec.) Action
(QP,,—,—) $0.5 10 min. Expanded
(QP,,—, —) $1.3 25 min. Pruned
(QP;, —, —) $0.5 55 min. Pruned
(QP,,QP,,—) $0.9 37 min. Expanded
(QP,,QP,,—) $0.9 37 min. Expanded
(QP,,QP,,QP,) $1.1 42 min. Solution
(QP,,QP,,QP,) $1.2 45 min. Solution

(1) QP: Query Plan
(2) Q: Queue of QPs

(4) S: Set of solutions

(18) return S;

Input: Set of VM types (VMs), Query workload (W)
Output: A set of pareto-optimal solutions

(3) Calculated_value: Multiobjective cost of optimization
(5) for (i = 1 to all configurations of (VMs)) do

(6) B_response_time «— Find_the_best_response_time (VM;, W)
(7) Cheapest_cost «— Find_the_cheapest_cost (VM;, W)

(8) Heuristic_value «— Calculate_heuristic_value (B_response_time, Cheapest_cost)
9) Q = null;

(10)  S=1{k

(11)  for (Each Query Plan QP in the workload W) do

(12) Q.Enqueue QP_in(W);

(13) Calculated_value = Calculate_with (VM;, Q);

(14) if (Calculated_value is worse than Heuristic_value}) then

(15) Break the loop and start with the next VM configuration;

(16) if (Wis empty and the Calculated_value is better than heuristic_value) then
(17) Add (VM) to the solution set of S;

ALGoRITHM l: Multiobjective optimization of Cloud database configuration using branch-and-bound.

(ii) number of generations: each iteration of a GA that a
number of crossovers and mutations are applied;

(iii) maximum number of genes to transfer: maximum
length of the crossed segment in segmented crossover
operation and maximum number of genes transferred
in a multiple-point crossover operation;

(iv) minimum number of genes to transfer: minimum
length of the crossed segment in segmented crossover
operation and minimum number of genes transferred
in a multiple-point crossover operation.

~

selection type (tournament): r chromosomes (r is the
tournament size) are selected from the population,
and the chromosome with the best fitness value is
chosen for the next generation from the r-element
group; this process is repeated as many times as the
population size of the next generation;

(v

(vi) tournament size: number of individuals entering a
selection in tournament selection technique;

(vii) truncate ratio: ratio of the best individuals, which
are sorted according to their fitness values, used for
producing the next generation;

(viii) mutation ratio: probability of mutations in a single
gene.

The results of the experiments with SHA, MOBB, and
MOGA are presented in Section 6.

6. Experimental Evaluation

In this section, we describe our experimental environment,
the setup of the selected TPC-H query workloads, VMM
Hyper-V, and parameter settings for MOGA and present the
results of the experiments we have obtained with multiob-
jective simple heuristic algorithm (SHA), branch-and-bound
(MOBB), and multiobjective genetic algorithm (MOGA).
The VM and network configurations are first optimized by
the algorithms and later we have run the workloads on a
real Cloud database to see the real results and measure the
correctness of our algorithms.
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(4) p: Population

(6) s: Generated individual

(9) p « truncate(p)

(16) s < Mutation(p, s)

(20) Update Cheapest_cost

Input: Set of VM types (VMs), Query workload (W)
Output: A set of pareto-optimal solutions

(1) VM: Set of Virtual Machine types

(2) QP: Set of alternative query plans

(3) N: Set of alternative network bandwidths

(5) par,, par,: Individuals (parent) selected for crossover or mutation

(7) p < Generate random individuals(VM, QP, N)
(8) Calculate fitness of individuals(p)

(10) B_response_time < Find_best_response_time(VMs, W)
(11) Cheapest_cost «— Find_cheapest_cost(VMs, W)

(12) for k := 1 to generations do

(13) (par,, par,) < Select pair of parents(p)

(14) s < Crossover(par;, par,)

(15) Replace with least-fit in the population(p, s)

(17) Replace with least-fit in the population(p, s)
(18) Replace duplicate_chromosomes(p)
(19) Update B_response_time

ALGORITHM 2: Multiobjective optimization of cloud database configuration using genetic algorithm.

| VM, | |VMn| :| QP1| |QPm| : | Network; |
CPU, CPU, P P | [Network type,
memory, memory,, - o ..

Configuration
of VM,

Configuration Query Query Network types

of VM, plans of q; plans
of g,

FIGURE 5: Chromosome structure for the proposed multiobjective
genetic algorithm that consists of the virtual machines, the query
plans, and the network layer.

6.1. Experimental Environment. We have performed our exp-
eriments on a private Cloud server: 4U DELL PowerEdge
R910 having 32 (64 with Hyper Threading) cores and each
core is Intel Xeon E7-4820 with a total of 2.00 Ghz process-
ing power. Server has 128 GB DDR3 1600 Mhz virtualised
memory and Broadcom Nextreme II 5709 1Gbps NICs.
Operating system is Windows Server 2012 Standard Edition
and as guest operating systems Windows Server 2008 R2
SP2 Enterprise Edition is used and on top of guest operating
system, SQL Server 2012 Enterprise Edition Service Pack 1
is implemented as the database server. Windows Hyper-V
3.0 is used as virtualization platform. Network page size was
4 KByte during the experiments. The configuration of dis-
tributed data warehouse infrastructure we have used during
the experiments is given in Figure 9. The resources (CPUs,
main memory, and network bandwidth) of the VMs are
changed according to the optimized solutions. VM aggregate
is used to submit the workloads and obtain the results.

Hyper-V, known as Windows Server Virtualization, is a
native hypervisor that enables platform virtualization on x86-
64 systems. Hyper-V implements isolation of VMs in terms of
a partition which is a logical unit of isolation, supported by
the hypervisor, where each guest operating system executes.
A hypervisor instance has to have at least one parent partition,
running a supported version of Windows Server (2008, 2008
R2, or 2012). The virtualization stack runs in the parent
partition and has direct access to the hardware devices. The
parent partition later creates the child partitions which host
the guest OSs.

6.2. TPC-H Workloads. A TPC-H database of size 10 GB is
used during the experiments. The TPC-H database has 8
relations: lineitem (8,145 MB), orders (1,757 MB), partsupp
(1,236 MB), part (290 MB), customer (256 MB), supplier
(2 MB), region (0,008 MB), and nation (0,008 MB). The tables
are assumed to locate at 5 different VMs. By replicating the
small tables, nation, supplier, and region, we aimed to obtain
a better performance.

We have used three different workloads that consist
of TPC-H queries. Our purpose was to test the proposed
algorithms under diverse workloads, in terms of the response
time of query execution times and total cost of ownership.
Each workload consists of 10 to 15 different TPC-H queries
with predicates. Workload 1 has first 10 TPC-H queries,
workload 2 has queries with smaller relations, and workload
3 has queries with larger relations and joined operations. For
each query we have selected two QPs (including the best QP)
on the average during the experiments. QPs can have more
than a single task and these tasks can have dependencies with
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Par,: | VM, | VM, | VM, |VM2 || QP, | Qp, l QP, | Qp, || Network,
Par,: | M, | M, | M, |VM1 || QP, | Qp, l QP, | QP, || Network2|
Offs, | VM, | VM, | VM, |VM1 || QP, | Qp, IQP2 | QP, ;| Networkl‘
Offgz;| VM, | VM, | M, | VM, || QP, | Qp, l QP, | Qp, || Network2|
FIGURE 6: Global crossover operator for the multiobjective optimization of query workloads.
Par1:| VM, | VM, | VM, |VM2 || QP, | QP, | QP, | QP, || Networkl‘
par2;| VM, | VM, | VM, |VM1 || QP, | QP, | QP, | QP, || Network2|
Offsl:| VM, | VM, | VM, |VM2 || Qp, | Qp, | QP, | Qp, || Networkl‘
Offsz;| VM, | VM, | VM, | VM, || QP, | QP, | QP, | QP, || Network2|
FIGURE 7: Local crossover operator for the multiobjective optimization of query workloads.
TasLE 8: TPC-H queries used in the workloads. the best option, population size 40 produces individuals that
- are more close to the ideal point that we aim to find.
Workload TPC queries

W, (10 queries)
W, (10 queries)
W, (15 queries)

1,2,3,4,5,6,78,9,10
2,3,4,9,10,11,12,13, 14, 16
1,3,5,6,78,9,10,11, 12, 13, 18, 20, 22

the other tasks to complete a query. Selected queries for the
workloads are given in Table 8.

In Figure 10, we have presented the response time
of the selected TPC-H queries we have used during the
experiments. These response times are obtained with the
highest configuration of VMs (XL) and network bandwidth
(200 Mbps).

6.3. Parameter Settings for Multiobjective Genetic Algorithm.
Population size and the number of generations of a genetic
algorithm are the most important parameters that must be
well tuned to obtain (near-)optimal solutions during the
optimization. Larger number of individuals and generations
explore the search space more effectively. On the other hand,
this may bring very long optimization times. In order to
diminish the effect of this drawback we have performed some
experiments with changing number of population sizes and
generations. In Figure 11, we give the performance details
of MOGA with different population sizes (10 to 100) and
number of generations (10 to 100) for workload 1. The figure
gives the average fitness value of populations during the
generations. As it can be seen, MOGA almost converges after
100 generations and continues to improve itself slightly after
this point. Although population size 10 seems to perform as

Figure 12 gives the optimization times of MOGA with
increasing number of populations. The optimization time
of MOGA increases in accordance with the number of
individuals in the population. For 10 individuals optimization
time is 3 seconds and for 100 individuals it is 60 seconds.
We have selected 40 individuals and 100 generations as
our (near-)optimal parameters for the optimizations. These
values provide good solutions for moderate size workloads
such as ours.

In Figure 13, we have analyzed the effect of increasing
number of submitted queries for MOGA with 40 individuals
and 100 generations. There are three sets of queries (10,
20, and 40). It can be seen that increasing the number of
submitted queries decreases the average fitness quality of
the population. With 10 queries, we can obtain solutions
below 0.01 fitness value. For 20 and 40 queries the solution
quality increases to 0.04 and 0.11, respectively. Although the
average fitness values get worse as the number of submitted
queries increases, the values are still not more than 0.1,
which is very efficient. MOGA improves the quality of the
individuals in accordance with the objective response time
and monetary costs. Table 9 shows our parameters settings
used for MOGA. Crossover and mutation ratio are the values
proposed by Holland [42]. Tournament is a very effective
selection mechanism we have applied in our previous studies
[44].

6.4. Experiments with the Workloads. In this part, we have
performed experiments with the three TPC-H workloads we
have defined previously. These workloads are first optimized
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Par:| VM; | VM, | VM, [ VM, || QP, | QP | QP, | QP |:|Network1|

Offs:| VM; [ VM, [ VM, [VM, |:| QP, [ QPs | QP, [ QP |:[Network,]

FIGURE 8: Mutation operator for the multiobjective optimization of query workloads.
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TABLE 10: Proposed paretooptimal VM and network configurations for workload 1.

Solution Virtual machines Network type
The most expensive VM, =A; VM, =A,;; VM, =A,;; VM, =A,; VM, = A,; VM, = A, 200 (Mbps)
The cheapest VM, = XS; VM, =XS; VM, = XS; VM; = XS; VM, = XS; VM, = XS 10 (Mbps)
SHA-1 VM, = L; VM, = A;; VM, = A;; VM, = XL; VM, = L; VM; = M 10 (Mbps)
SHA-2 VM, = L; VM, = A;; VM, = A;; VM, = XL; VM, = L; VM, = M 100 (Mbps)
SHA-3 VM, = L; VM, = A;; VM, = A;; VM, = XL; VM, = L; VM, = M 200 (Mbps)
MOBB-1 VM, = 8 VM, = A,;; VM, = XS; VM, = L; VM, = §; VM, = L 100 (Mbps)
MOBB-2 VM, = XS; VM, = XL; VM, = XL; VM, = $; VM, = $; VM, = XS 100 (Mbps)
MOBB-3 VM, =S VM, =L; VM, =A; VM, =A,; VM, =XS; VM; =L 100 (Mbps)
MOBB-4 VM, =XL; VM, = A;; VM, =XL; VM, = A,; VM, = XS; VM; = A¢ 100 (Mbps)
MOBB-5 VM, =L; VM, =L; VM, = M; VM; = L; VM, = A¢; VM, = A¢ 100 (Mbps)
MOGA-1 VM, = XS$; VM, = A;; VM, = $; VM, = XL; VM, = L; VM; = A, 100 (Mbps)
MOGA-2 VM, = $; VM, = XL; VM, = XL; VM, = XL; VM, = S; VM; = XS 100 (Mbps)
MOGA-3 VM, = XS; VM, = XL; VM, = XL; VM; = XL; VM, = $; VM, = S 100 (Mbps)
MOGA-4 VM, =L; VM, = $; VM, = XS; VM; = XL; VM, = A;; VM, = L 100 (Mbps)
MOGA-5 VM, = XS$; VM, = S; VM, = XS; VM, = Aj; VM, = Ag; VM; = XS 100 (Mbps)
TaBLE 11: Proposed paretooptimal VM and network configurations for workload 2.

Solution Virtual machines Network type
The most expensive VM, =A; VM, =A; VM, =A; VM; =A; VM, =A; VM, = A, 200 (Mbps)
The cheapest VM, = XS; VM, = XS; VM, = XS; VM, = XS; VM, = XS; VM, = XS 10 (Mbps)
SHA-1 VM, =L; VM, = A;; VM, = A;; VM; =XL; VM, =L; VM; = M 10 (Mbps)
SHA-2 VM, =L; VM, = A;; VM, = A;; VM; =XL; VM, =L; VM; = M 100 (Mbps)
SHA-3 VM, = L; VM, = Aj; VM, = A;; VM, = XL; VM, = L; VM, = M 200 (Mbps)
MOBB-1 VM, =XS§; VM, = XL; VM, = §; VM; = XL; VM, = XL; VM; = XS 100 (Mbps)
MOBB-2 VM, = XS; VM, = XL; VM, = XL; VM, = XL; VM, = XL; VM, = XS 100 (Mbps)
MOBB-3 VM, =S§; VM, =XL; VM, =§; VM, =XL; VM, =XL; VM; =L 100 (Mbps)
MOBB-4 VM, = XL; VM, = M; VM, = L; VM, = XL; VM, = XS; VM; = A, 100 (Mbps)
MOBB-5 VM, = XS$; VM, = XL; VM, = S; VM, = XL; VM, = XL; VM, = S 100 (Mbps)
MOGA-1 VM, =XS; VM, =XL; VM, =XS; VM, = XL; VM, =XL; VM, =S 100 (Mbps)
MOGA-2 VM, =L; VM, =XL; VM, =L; VM; =XL; VM, = M; VM, =S 100 (Mbps)
MOGA-3 VM, =M; VM, =A;; VM, =S; VM; = A; VM, = XL; VM; = M 100 (Mbps)
MOGA-4 VM, = S; VM, = XL; VM, = M; VM, = A;; VM, = XL; VM, = S 100 (Mbps)
MOGA-5 VM, =S; VM, = A;; VM, =XS; VM, =XL; VM, = XL; VM, = S 100 (Mbps)

with SHA, MOBB, and MOGA algorithms. Later, selected
solutions are executed in our Cloud database environment to
verify the correctness of our approach. There are 15 alternative
virtual resource configurations in these tests: 3 SHA, 5 MOBB,
5 MOGA, the highest performance VM configuration, and
the cheapest VM configuration. The last three solutions
are used to measure the effectiveness of other solutions.
The workloads are executed 10 times with the selected VM
configurations and the average values are used.

Figure 14 shows snapshots of CPU, network, and memory
consumptions of WMs during the execution of workload W,
respectively. As it can be seen WM, demands the largest CPU
resource and memory usage and VM, and VM, ship larger
amounts of data. These snapshots are provided to give an idea
about the resource demands of VMs during the execution of
a workload.

The results of experiments with workloads 1, 2, and 3 are
as follows.

In Figures 15, 16, and 17 and Tables 10, 11, and 12 we
have presented the solutions produced by SHA, MOBB,
and MOGA algorithms and the set of proposed VM and
network bandwidths, respectively. The solutions with the
highest and the cheapest performance VMs are also added
to define upper and lower bounds. VMs with the highest
configuration capabilities (A7) give the best response time
and WMs with the cheapest configurations (XS) give the
longest execution time. In this sense, they provide meaningful
results to evaluate the quality of solutions provided by MOBB
and MOGA.

In the figures, a hypothetical ideal point is defined to
show the optimal fitness value that can be achieved within the
given minimum response time and minimum pricing. The
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TABLE 12: Proposed paretooptimal VM and network configurations for workload 3.
Solution Virtual machines Network type
The most expensive VM, =A; VM, =A,;; VM, =A,;; VM, =A,; VM, = A,; VM, = A, 200 (Mbps)
The cheapest VM, = XS; VM, = XS; VM, = XS; VM, = XS; VM, = XS; VM, = XS 10 (Mbps)
SHA-1 VM, =L; VM, = A; VM, = Ag; VM, = XL; VM, = L; VM, = M 10 (Mbps)
SHA-2 VM, =L; VM, = A; VM, = A;; VM, = XL; VM, = L; VM, = M 100 (Mbps)
SHA-3 VM, =L; VM, = A; VM, = Ag; VM, = XL; VM, = L; VM, = M 200 (Mbps)
MOBB-1 VM, = S$; VM, = XL; VM, = L; VM, = XL; VM, = M; VM, =M 200 (Mbps)
MOBB-2 VM, = XS; VM, = XL; VM, = XL; VM, = XL; VM, = XL; VM, = § 200 (Mbps)
MOBB-3 VM, =L; VM, = Ag; VM, = L; VM, = M; VM, = M; VM, = XS 200 (Mbps)
MOBB-4 VM, = A,; VM, = M; VM, = A; VM, = XL; VM, = Ag; VM = A, 200 (Mbps)
MOBB-5 VM, = Ag; VM, = A,; VM, = L; VM, = $; VM, = L; VM, = A, 200 (Mbps)
MOGA-1 VM, = M; VM, = M; VM, = Ag; VM, = A;; VM, = A;; VM, =L 200 (Mbps)
MOGA-2 VM, = Ag; VM, = A,; VM, = XS; VM, = M; VM, = Ag; VM, = XL 200 (Mbps)
MOGA-3 VM, =XS§; VM, =XL; VM, = L; VM; =XS; VM, =L; VM; =L 200 (Mbps)
MOGA-4 VM, =S; VM, =L; VM, = $; VM, = A.; VM, = A; VM, = XS 200 (Mbps)
MOGA-5 VM, = M; VM, = Aj; VM, = M; VM, = A,; VM, = L; VM, = S 200 (Mbps)
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FIGURE 14: CPU, network, and memory consumption of the virtual machines.
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MOBB, and MOGA algorithms.

SHA, MOBB, and MOGA algorithms.

solutions that are chosen from the set of solutions produced
by MOBB and MOGA algorithms construct a paretooptimal
convex curve where a decision maker can choose any of

the solutions according to his/her requirements. The most
expensive VMs option gives the fastest response time and the
cheapest VMs option is the most time consuming.
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FIGURE 17: Proposed paretooptimal solutions for workload 3 by
SHA, MOBB, and MOGA algorithms.

The optimal solutions are produced by MOBB algorithm.
MOGA also gives almost the same solutions with faster opti-
mization times than MOBB. The optimization time of MOBB
is the longest and it can be prohibitive with workloads having
more than 20 queries. In workload 3, MOBB algorithm was 20
times longer than MOGA. The solutions of SHA are slightly
above the paretooptimal curve but they are far from the ideal
point. Mostly, the most expensive VMs are assigned to VM1
that executes much of the join operations. Workloads 1 and
2 used 100 Mbps network but workload 3 that needs more
communication between the VMs tends to use 200 Mbps
network.

The solution sets produced by MOBB and MOGA con-
struct a paretooptimal curve and decision makers can choose
any of these solutions depending on their needs. The best
solutions are near the ideal point. They have fast response
times and cheaper monetary costs.

7. Conclusions and Future Work

In this paper, we solve the multiobjective optimization prob-
lem of Cloud data warehouse query workloads by making
use of the elasticity of the virtual resources and alternative
query execution plans. We minimize the monetary cost
as well as providing fast response times. We formulate
the problem and propose three algorithms, namely, simple
heuristic (SHA), multiobjective branch-and-bound (MOBB),
and multiobjective robust genetic algorithm (MOGA) for the
optimization of the problem. To the best of our knowledge,
the multiobjective query optimization problem is being
solved for the first time with such a method. There are studies
that are concerned with the best virtual resource deployment
or the minimal monetary cost of workloads in static hardware
resources; however, we combine both of these optimization
techniques together with alternative query plans and obtain
remarkable results as they are presented in our study. It is
possible to design and expand the study with additional
elastic resources such as I/O bandwidth and dynamic RAMs.
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Appendix

A. Alternative Query Execution Plans for
TPC-H Query Q3

TPC-H Q3 statement in accordance with the query execution
plan 1 where all of the tables are shipped to query issuing
node:

select top 10 l_orderkey,. . ., o_shippriority

from  [vm,].customer ¢,
[vm, ].lineitem [,

[vm,].orders o,

where c.c_mktsegment = “building”

and c.c_custkey = o.0_custkey

and Ll_orderkey = o.0_orderkey

and o.o_orderdate < “1995-03-15"

and L.l_shipdate > “1995-03-15”

group by L.l_orderkey, o.0_orderdate, o.0_shippriority
order by revenue desc, 0.0_orderdate.

TPC-H Q3 statement in accordance with query execution
plan 2 where customer and orders tables are joined at virtual
machine 3 and the resulting tuples are shipped to virtual
machine 2 to join with lineitem table:

select top 10 I_orderkeys,. . ., o_shippriority
from

openquery ([vm,]. “select o_orderdate, o_shippriority,
o_orderkey

from [vm,].customer ¢, [vm;].orders o

where c.c_mktsegment = “building”

and c.c_custkey = o0.0_custkey

and o.o_orderdate < “1995-03-15"

group by o.o_orderdate, o.0_shippriority, o_orderkey
order by o.0_orderdate) remotel, [vm, ].lineitem I
where and 1.1_orderkey = remotel.o_orderkey

and l1_shipdate > “1995-03-15”

group by Ll_orderkey, remotel.o_orderdate,
remotel.o_shippriority

order by reveneu desc”
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