
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2013, Article ID 463059, 7 pages
http://dx.doi.org/10.1155/2013/463059

Research Article
Stability and Bifurcation Analysis of a Nonlinear
Discrete Logistic Model with Delay

Daiyong Wu,1 Hai Zhang,1,2 Jinde Cao,2,3 and Tasawar Hayat3,4

1 Department of Mathematics, Anqing Normal University, Anqing, Anhui 246133, China
2Department of Mathematics, Research Center for Complex Systems and Network Sciences, Southeast University,
Nanjing, Jiangsu 210096, China

3Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
4Department of Mathematics, Quaid-i-Azam University, Islamabad 44000, Pakistan

Correspondence should be addressed to Hai Zhang; zhanghai0121@163.com

Received 18 August 2013; Accepted 30 October 2013

Academic Editor: Zhan Zhou

Copyright © 2013 Daiyong Wu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider a nonlinear discrete logistic model with delay. The characteristic equation of the linearized system at the positive
equilibrium is a polynomial equation involving high order terms. We obtain the conditions ensuring the asymptotic stability of
the positive equilibrium and the existence of Neimark-Sacker bifurcation, with respect to the parameter of the model. Based on
the bifurcation theory, we discuss Neimark-Sacker bifurcation direction and the stability of bifurcated solutions. Finally, some
numerical simulations are performed to illustrate the theoretical results.

1. Introduction

Logistic type models are often used to model a single species
dynamics, for example, the underlying dynamics of tumour
cells [1–4]. Moreover, time delay is sometimes necessary
to better reflect the description of real processes [5, 6].
The continuous single population model described by the
ordinary differential equations has been studied very deeply
[7–9]. There are also very many results concerning the
discrete logistic model (see [10–15] and references therein).

In [13], Zhou and Zou considered a discrete logistic
equation:

𝑥 (𝑛 + 1) = 𝑥 (𝑛) exp [𝑟 (𝑛) (1 − 𝑥 (𝑛)

𝐾 (𝑛)

)] , (1)

where {𝑟(𝑛)} and {𝐾(𝑛)} are positive 𝜔-periodic sequences.
Sufficient conditions were obtained for the existence of a pos-
itive and globally asymptotically stable 𝜔-periodic solution.

In [14], Sun and Li considered the qualitative analysis of
the following discrete logistic equation with several delays:

𝑥
𝑛+1

= 𝑥
𝑛
exp(

𝑚

∑

𝑖=1

𝑟
𝑖
(1 −

𝑥
𝑛−𝑘𝑖

𝐾

)) , (2)

where 𝑟
𝑖
∈ (0,∞) for 𝑖 = 1, 2, . . . , 𝑚, 𝑘

𝑖
(𝑖 = 1, 2, . . . , 𝑚) are

positive integers, and 𝐾 ∈ (0,∞). They obtained sufficient
conditions for the global attractivity of all positive solutions
about the positive equilibrium of model (2). Moreover, the
oscillation about the positive equilibrium of model (2) was
also discussed.

Chen and Zhou [15] discussed the following nonlinear
periodic delay difference equation:

𝑥
𝑛+1

= 𝑥
𝑛
exp [𝑎

𝑛
+ 𝑏
𝑛
𝑥
𝑝

𝑛−𝑚𝜔
− 𝑐
𝑛
𝑥
𝑞

𝑛−𝑚𝜔
] ,

𝑛 = 0, 1, 2, . . . ,

(3)

where {𝑎
𝑛
}, {𝑏
𝑛
}, and {𝑐

𝑛
} are periodic sequences with a

common period 𝜔, 𝑎
𝑛
> 0, 𝑐
𝑛
> 0, 𝑚, 𝜔 are positive integers,

and 𝑝, 𝑞 are positive constants with 𝑞 > 𝑝. Some sufficient
conditions for the global attractivity and oscillation about the
periodic solution of (3) were obtained.

Recently, Liu et al. [16] investigated the stability and bifur-
cation of a class of discrete-time Cohen-Grossberg neural
networks with delays. Han and Liu [17] discussed the stability
and bifurcation for a discrete-time model of Lotka-Volterra
type with delay. He and Cao [18] studied the explicit formula
for determining the direction of Neimark-Sacker bifurcation
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and the stability of periodic solution by using the normal
form method and the center manifold theory.

To the best of our knowledge, no similar results have
been reported regarding the nonlinear discrete logisticmodel
with delay. In this paper, we are interested in the bifurcation
analysis and the direction and the stability of the Neimark-
Sacker bifurcations for the following nonlinear discrete logis-
tic model:

𝑥
𝑛+1

= 𝑥
𝑛
exp [𝑟 (1 − 𝑎

1
𝑥
𝑛−𝑚

− 𝑎
2
𝑥
2

𝑛−𝑚
)] ,

𝑛 = 0, 1, 2, . . . ; 𝑚 ∈ Z+,
(4)

where 𝑟, 𝑎
1
, and 𝑎

2
are positive constants, together with the

initial condition

𝑥
𝑛
= 𝜙
𝑛
> 0, 𝑛 ∈ {−𝑚, −𝑚 + 1, . . . , 0} . (5)

Our works focus on the stability and bifurcation analysis
and the direction analysis of the Neimark-Sacker bifurcations
by applying the center manifold theorem and the normal
form theory. The method of the paper is similar to the work
of Yuri [19].

The paper is organized as follows. In Section 2, we analyze
the distribution of the characteristic equation associated with
themodel (4) and obtain the existence of the Neimark-Sacker
bifurcation. In Section 3, the direction and stability of closed
invariant curve from the Neimark-Sacker bifurcation of the
model (4) are determined. In Section 4, some numerical
simulations are performed to illustrate the theoretical results.
A brief discussion is given in Section 5.

2. Stability Analysis

In this section, we will employ the techniques of Guo et al.
[20] to study the distribution of the characteristic roots of
model (4). Then we will obtain the stability of the positive
equilibrium and the existence of local Neimark-Sacker bifur-
cations. Clearly, model (4) has a unique positive equilibrium
𝑥
∗

= 2/(√𝑎
2

1
+ 4𝑎
2
+ 𝑎
1
).

Set 𝑦
𝑛
= 𝑥
𝑛
− 𝑥
∗; then there follows that

𝑦
𝑛+1

= (𝑦
𝑛
+ 𝑥
∗

)

× exp [𝑟 (1 − 𝑎
1
(𝑦
𝑛−𝑚

+ 𝑥
∗

)− 𝑎
2
(𝑦
𝑛−𝑚

+ 𝑥
∗

)
2

)] − 𝑥
∗

.

(6)

By introducing a new variable 𝑌
𝑛
= (𝑦
𝑛
, 𝑦
𝑛−1

, . . . , 𝑦
𝑛−𝑚

)
𝑇, we

can rewrite (6) in the form

𝑌
𝑛+1

= 𝐹 (𝑌
𝑛
) , (7)

where 𝐹 = (𝐹
0
, 𝐹
1
, . . . , 𝐹

𝑚
)
𝑇 and

𝐹
𝑘
=

{
{
{
{

{
{
{
{

{

(𝑦
𝑛
+ 𝑥
∗

)

exp [𝑟 (1 − 𝑎
1
(𝑦
𝑛−𝑚

+ 𝑥
∗

)

−𝑎
2
(𝑦
𝑛−𝑚

+ 𝑥
∗

)
2

)] − 𝑥
∗

, 𝑘 = 0,

𝑦
𝑛−𝑘+1

, 1 ≤ 𝑘 ≤ 𝑚.

(8)

Clearly, the origin is a fixed point of (7) and the linear part of
(7) is

𝑌
𝑛+1

= 𝐴𝑌
𝑛
, (9)

where

𝐴 =(

1 0 ⋅ ⋅ ⋅ 0 −𝑟 (𝑎
1
+ 2𝑎
2
𝑥
∗

) 𝑥
∗

1 0 ⋅ ⋅ ⋅ 0 0

0 1 ⋅ ⋅ ⋅ 0 0

...
... d

...
...

0 0 ⋅ ⋅ ⋅ 1 0

). (10)

The characteristic equation of 𝐴 is given by

𝑃 (𝜆) = 𝜆
𝑚+1

− 𝜆
𝑚

+ 𝑟 (𝑎
1
+ 2𝑎
2
𝑥
∗

) 𝑥
∗

= 0. (11)

Lemma 1. There exists 𝑟 > 0 such that for 0 < 𝑟 < 𝑟 all roots
of (11) have modulus less than one.

Proof. When 𝑟 = 0, (11) becomes

𝜆
𝑚+1

− 𝜆
𝑚

= 0. (12)

The equation has, at 𝑟 = 0, an𝑚-fold root 𝜆 = 0 and a simple
root 𝜆 = 1.

Consider the root 𝜆(𝑟) such that |𝜆(0)| = 1. This root
depends continuously on 𝑟 and is a differential function of
𝑟. From (11), we have

𝑑|𝜆|
2

𝑑𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑟=0,𝜆=1

= [𝜆

𝑑𝜆

𝑑𝑟

+ 𝜆

𝑑𝜆

𝑑𝑟

]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑟=0,𝜆=1

= −2 (𝑎
1
+ 2𝑎
2
𝑥
∗

) 𝑥
∗

< 0.

(13)

Consequently, |𝜆| < 1 for all sufficient small 𝑟 > 0. Thus,
all roots of (11) are inside the unit circle for sufficient small
positive 𝑟, and the existence of the maximal 𝑟 follows.

In the sequel, we define a parametric curve Σ with

𝑢 (𝑡) = cos (𝑚 + 1) 𝑡 − cos𝑚𝑡,

V (𝑡) = sin (𝑚 + 1) 𝑡 − sin𝑚𝑡.
(14)

Let 𝜃(𝑡) = V(𝑡)/𝑢(𝑡). It is easy to see that 𝜃󸀠(𝑡) > 0 for all 𝑡 ∈ R

such that 𝑢(𝑡) ̸= 0. Therefore, as 𝑡 increases from 0 to 𝜋, the
corresponding point (𝑢(𝑡), V(𝑡)) on the curve Σ moves from
origin and anticlockwise around origin. Moreover, it follows
from 𝑢(𝑡)

2

+ V(𝑡)2 = 2(1 − cos 𝑡) that the part of the curve Σ
with parameter 𝑡 ∈ [0, 𝜋] is simple; that is, it cannot intersect
itself. Let 0 ≤ 𝜔

0
≤ 𝜔
1
< 𝜔
2
< ⋅ ⋅ ⋅ < 𝜔

𝑚
< 𝜔
𝑚+1

≤ 𝜋 be
the 𝑚 + 2 zeros of V(𝑡) in the interval [0, 𝜋] and 𝑐

𝑗
= 𝑢(𝜔

𝑗
)

(𝑗 ∈ {0, 1, 2, . . . , 𝑚 + 1}). Obviously, we have

𝜔
0
= 0, 𝜔

𝑗
=

2𝑗 − 1

2𝑚 + 1

𝜋, 𝑗 = 1, 2, . . . , 𝑚 + 1,

𝑐
𝑗
= 2(−1)

𝑗 sin
𝜔
𝑗

2

, 𝑗 = 0, 1, 2, . . . , 𝑚 + 1.

(15)

Moreover, from the anticlockwise property of the curve Σ, we
further have that

(−1)
𝑗V󸀠 (𝜔

𝑗
) > 0, 𝑗 ∈ {0, 1, 2, . . . , 𝑚 + 1} . (16)
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From 𝑢(𝑡)
2

+ V(𝑡)2 = 2(1 − cos 𝑡), it follows that 0 ≤

√𝑢(𝑡)
2

+ V(𝑡)2 ≤ 2. This means that the curve is contained
in the region

{(𝑢, V) ∈ R
2

| 0 ≤ √𝑢(𝑡)
2

+ V(𝑡)2 ≤ 2} . (17)

Accordingly, we set

𝑟
𝑘
=

2

(𝑎
1
+ 2𝑎
2
𝑥
∗
) 𝑥
∗

sin
𝜔
2𝑘−1

2

, 𝑘 = 1, 2, . . . , [

𝑚

2

] + 1,

(18)

where [⋅] is the greatest integer function.
By Lemma 1 and the idea of Guo et al. (see Lemma 1

in [20]), we can obtain the distribution of the roots of the
characteristic equation (11).

Lemma 2. Consider the following.
(i) 𝑃(𝜆) has zeros on the unit circle if and only if 𝑟 = 𝑟

𝑘

for some 𝑘 ∈ {1, 2, . . . , [𝑚/2] + 1}. Moreover, if 𝑟 = 𝑟
𝑘

for some 𝑘 ∈ {1, 2, . . . , [𝑚/2] + 1}, then all the zeros of
𝑃(𝜆) of modulus 1 are 𝑒±𝑖𝜔2𝑘−1 , which are simple.

(ii) 𝑃(𝜆) has a simple zero −1 if and only if 𝑚 is even and
𝑟 = 2/(𝑎

1
+ 2𝑎
2
𝑥
∗

)𝑥
∗.

(iii) For a fixed 𝑘 ∈ {1, 2, . . . , [𝑚/2] + 1}, there exist 𝛿 > 0

and a 𝐶
1-mapping 𝜆 : (𝑟

𝑘
− 𝛿, 𝑟
𝑘
+ 𝛿) → C such

that 𝜆(𝑟
𝑘
) = 𝑒

𝑖𝜔2𝑘−1 and 𝜆(𝑟) is a zero of 𝑃(𝜆) for all
𝑟 ∈ (𝑟
𝑘
− 𝛿, 𝑟
𝑘
+ 𝛿).

(iv) All zeros of 𝑃(𝜆) are inside the unit circle if and only if

0 < 𝑟 < 𝑟
1
=

2

(𝑎
1
+ 2𝑎
2
𝑥
∗
) 𝑥
∗

sin 𝜋

2 (2𝑚 + 1)

. (19)

Now we verify that the transversality condition is satisfied.

Lemma 3. Along (11), one obtains

𝑑|𝜆|
2

𝑑𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑟=𝑟𝑘

> 0, (20)

where 𝑘 = 1, 2, . . . , [𝑚/2] + 1.

Proof. By Lemma 2(i), from (14) and (16), it follows that

𝑑|𝜆|
2

𝑑𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑟=𝑟𝑘

= [𝜆

𝑑𝜆

𝑑𝑟

+ 𝜆

𝑑𝜆

𝑑𝑟

]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑟=𝑟𝑘

= −2R[𝜆

(𝑎
1
+ 2𝑎
2
𝑥
∗

) 𝑥
∗

(𝑚 + 1) 𝜆
𝑚
− 𝑚𝜆
𝑚−1

]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑟=𝑟𝑘

= − 2 (𝑎
1
+ 2𝑎
2
𝑥
∗

) 𝑥
∗

×

(𝑚 + 1) cos (𝑚 + 1) 𝜔
2𝑘−1

− 𝑚 cos𝑚𝜔
2𝑘−1

(𝑚 + 1)
2

+ 𝑚
2
− 2𝑚 (𝑚 + 1) cos𝜔

2𝑘−1

= − 2 (𝑎
1
+ 2𝑎
2
𝑥
∗

) 𝑥
∗

×

V󸀠 (𝜔
2𝑘−1

)

(𝑚 + 1)
2

+ 𝑚
2
− 2𝑚 (𝑚 + 1) cos𝜔

2𝑘−1

> 0.

(21)

Remark 4. Since 𝜔
2𝑘−1

̸= 𝜋/2, 2𝜋/3, 𝑒
𝑖𝑠𝜔2𝑘−1

̸= 1 for 𝑠 =

1, 2, 3, 4 (𝑘 = 1, 2, . . . , [(𝑚 − 1)/2] + 1); that is, the nonde-
generacy condition is satisfied.

Theorem 5. Consider the following.
(i) If

0 < 𝑟 < 𝑟
1
=

2

(𝑎
1
+ 2𝑎
2
𝑥
∗
) 𝑥
∗

sin 𝜋

2 (2𝑚 + 1)

, (22)

then the fixed point of model (4) 𝑥∗ is asymptotically stable.
(ii) If

𝑟 > 𝑟
1
=

2

(𝑎
1
+ 2𝑎
2
𝑥
∗
) 𝑥
∗

sin 𝜋

2 (2𝑚 + 1)

, (23)

then the fixed point of model (4) 𝑥∗ is unstable.
(iii) If

𝑟 = 𝑟
𝑘

=

2

(𝑎
1
+ 2𝑎
2
𝑥
∗
) 𝑥
∗

sin
𝜔
2𝑘−1

2

, 𝑘 = 1, 2, . . . , [

𝑚 − 1

2

] + 1,

(24)

then the model (4) undergoes a Neimark-Sacker bifurcation at
the positive fixed point 𝑥∗; that is, a unique closed invariant
curve bifurcates form 𝑥

∗. Moreover, if𝑚 is even, the model (4)
undergoes a flip bifurcation when

𝑟 =

2

(𝑎
1
+ 2𝑎
2
𝑥
∗
) 𝑥
∗

. (25)

3. Direction and Stability of
the Neimark-Sacker Bifurcation

In this section, we will study the direction and the stability of
the Neimark-Sacker bifurcation inmodel (4).Themethodwe
used is based on the techniques developed by Yuri [19].

Without loss of generality, denote 𝜔
2𝑘−1

by 𝜔∗ and the
critical value 𝑟

𝑘
(𝑘 = 1, 2, . . . , [(𝑚 − 1)/2] + 1) by 𝑟

∗ at
whichmap (7) undergoes aNeimark-Sacker bifurcation at the
origin.

For map (7), we obtain

𝑌
𝑛+1

= 𝐴𝑌
𝑛
+

1

2

𝐵 (𝑌
𝑛
, 𝑌
𝑛
) +

1

6

𝐶 (𝑌
𝑛
, 𝑌
𝑛
, 𝑌
𝑛
) + 𝑂 (

󵄩
󵄩
󵄩
󵄩
𝑌
𝑛

󵄩
󵄩
󵄩
󵄩

4

) ,

(26)
where

𝐵 (𝑌
𝑛
, 𝑌
𝑛
) = (𝐵

0
(𝑌
𝑛
, 𝑌
𝑛
) , 0, . . . , 0)

𝑇

,

𝐶 (𝑌
𝑛
, 𝑌
𝑛
, 𝑌
𝑛
) = (𝐶

0
(𝑌
𝑛
, 𝑌
𝑛
, 𝑌
𝑛
) , 0, . . . , 0)

𝑇

,

𝐵
0
(𝑌
𝑛
, 𝑌
𝑛
) = − 2𝑟 (𝑎

1
+ 2𝑎
2
𝑥
∗

) 𝑦
𝑛−𝑚

𝑦
𝑛

+ [(𝑟 (𝑎
1
+ 2𝑎
2
𝑥
∗

))
2

− 2𝑟𝑎
2
] 𝑥
∗

𝑦
2

𝑛−𝑚
,

𝐶
0
(𝑌
𝑛
, 𝑌
𝑛
, 𝑌
𝑛
)

= 3 [𝑟
2

(𝑎
1
+ 2𝑎
2
𝑥
∗

)
2

− 2𝑟𝑎
2
] 𝑦
𝑛
𝑦
2

𝑛−𝑚

+ {6𝑎
2
𝑟
2

(𝑎
1
+ 2𝑎
2
𝑥
∗

) − [𝑟 (𝑎
1
+ 2𝑎
2
𝑥
∗

)]
3

} 𝑥
∗

𝑦
3

𝑛−𝑚
.

(27)



4 Discrete Dynamics in Nature and Society

Let 𝑞 ∈ C𝑚+1 be a complex eigenvector corresponding to 𝑒𝑖𝜔
∗

,

𝐴𝑞 = 𝑒
𝑖𝜔
∗

𝑞, 𝐴𝑞 = 𝑒
−𝑖𝜔
∗

𝑞. (28)

We also introduce an adjoint eigenvector 𝑞∗ ∈ C𝑚+1 having
the properties

𝐴
𝑇

𝑞
∗

= 𝑒
−𝑖𝜔
∗

𝑞
∗

, 𝐴
𝑇

𝑞
∗
= 𝑒
𝑖𝜔
∗

𝑞
∗ (29)

and satisfying the normalization ⟨𝑞∗, 𝑞⟩ = 1, where ⟨𝑞∗, 𝑞⟩ =
∑
𝑚

𝑗=0
𝑞
∗

𝑗
𝑞
𝑗
.

Lemma 6. Let 𝑞 = (𝑞
0
, 𝑞
1
, . . . , 𝑞

𝑚
)
𝑇 be the eigenvector of 𝐴

corresponding to eigenvalue 𝑒𝑖𝜔
∗

and let 𝑞∗ = (𝑞
∗

0
, 𝑞
∗

1
, . . . , 𝑞

∗

𝑚
)
𝑇

be the eigenvector of 𝐴𝑇 corresponding to eigenvalue 𝑒−𝑖𝜔
∗

.
Then

𝑞 = (1, 𝑒
−𝑖𝜔
∗

, 𝑒
−2𝑖𝜔
∗

, . . . , 𝑒
−𝑚𝑖𝜔

∗

)

𝑇

,

𝑞
∗

=
(

(

𝑞
∗

0

−𝑒
𝑖𝑚𝜔
∗

𝑟
∗

(𝑎
1
+ 2𝑎
2
𝑥
∗

) 𝑥
∗

𝑞
∗

0

−𝑒
𝑖(𝑚−1)𝜔

∗

𝑟
∗

(𝑎
1
+ 2𝑎
2
𝑥
∗

) 𝑥
∗

𝑞
∗

0

...
−𝑒
𝑖𝜔
∗

𝑟
∗

(𝑎
1
+ 2𝑎
2
𝑥
∗

) 𝑥
∗

𝑞
∗

0

)

)

,

(30)

where

𝑞
∗

0
=

1

1 − 𝑒
−𝑖(𝑚+1)𝜔

∗

𝑟
∗
(𝑎
1
+ 2𝑎
2
𝑥
∗
) 𝑥
∗
𝑚

. (31)

Proof. Let 𝑞 = (𝑞
0
, 𝑞
1
, . . . , 𝑞

𝑚
)
𝑇 be an eigenvector of 𝐴 corre-

sponding to eigenvalue 𝑒𝑖𝜔
∗

. Then

𝑞
0
− 𝑟
∗

(𝑎
1
+ 2𝑎
2
𝑥
∗

) 𝑥
∗

𝑞
𝑚
= 𝑒
𝑖𝜔
∗

𝑞
0
,

𝑞
𝑗
= 𝑒
𝑖𝜔
∗

𝑞
𝑗+1
, 𝑗 = 0, 1, 2, . . . , 𝑚 − 1.

(32)

Similarly,

𝑞
∗

=
(

(

𝑞
∗

0

−𝑒
𝑖𝑚𝜔
∗

𝑟
∗

(𝑎
1
+ 2𝑎
2
𝑥
∗

) 𝑥
∗

𝑞
∗

0

−𝑒
𝑖(𝑚−1)𝜔

∗

𝑟
∗

(𝑎
1
+ 2𝑎
2
𝑥
∗

) 𝑥
∗

𝑞
∗

0

...
−𝑒
𝑖𝜔
∗

𝑟
∗

(𝑎
1
+ 2𝑎
2
𝑥
∗

) 𝑥
∗

𝑞
∗

0

)

)

. (33)

For satisfying the normalization ⟨𝑞∗, 𝑞⟩ = 1, we choose

𝑞
∗

0
=

1

1 − 𝑒
−𝑖(𝑚+1)𝜔

∗

𝑟
∗
(𝑎
1
+ 2𝑎
2
𝑥
∗
) 𝑥
∗
𝑚

. (34)

Let 𝑇𝑐 denote a real eigenspace corresponding to 𝑒
±𝑖𝜔
∗

,
which is two-dimensional and is spanned by {R(𝑞),I(𝑞)},
and let 𝑇𝑠 be a real eigenspace corresponding to all eigenval-
ues of 𝐴𝑇 other than 𝑒±𝑖𝜔

∗

being (𝑚 − 1) dimensional.
For any 𝑢 ∈ R𝑚+1, we have its decomposition

𝑢 = 𝑤𝑞 + 𝑤𝑞 + V, (35)

where𝑤 ∈ C,𝑤𝑞+𝑤𝑞 ∈ 𝑇𝑐, and V ∈ 𝑇𝑠.The complex variable
𝑤 can be viewed as a new coordinate on 𝑇𝑐, and

𝑤 = ⟨𝑞
∗

, 𝑢⟩ ,

V = 𝑢 − ⟨𝑞
∗

, 𝑢⟩ 𝑞 − ⟨𝑞
∗
, 𝑢⟩ 𝑞.

(36)

In this coordinate, the map 𝐹 at 𝑟 = 𝑟
∗ has the form

𝑤 󳨃󳨀→ 𝑒
𝑖𝜔
∗

𝑤 + ⟨𝑞
∗

, 𝐹 (𝑤𝑞 + 𝑤𝑞 + V)⟩ ,

V 󳨃󳨀→ 𝐴V + 𝐹 (𝑤𝑞 + 𝑤𝑞 + V) − ⟨𝑞∗, 𝐹 (𝑤𝑞 + 𝑤𝑞 + V)⟩ 𝑞

− ⟨𝑞
∗
, 𝐹 (𝑤𝑞 + 𝑤𝑞 + V)⟩ 𝑞.

(37)

Using Taylor expansions, we obtain

𝑤 󳨃󳨀→ 𝑒
𝑖𝜔
∗

𝑤 +

1

2

𝑔
20
𝑤
2

+ 𝑔
11
𝑤𝑤 +

1

2

𝑔
02
𝑤
2

+

1

2

𝐺
21
𝑤
2

𝑤 + ⟨𝐺
10
, V⟩𝑤 + ⟨𝐺

01
, V⟩𝑤,

V 󳨃󳨀→ 𝐴V +
1

2

𝐻
20
𝑤
2

+ 𝐻
11
𝑤𝑤 +

1

2

𝐻
02
𝑤
2

+ 𝑂 (|𝑤|
3

) ,

(38)

where 𝑔
𝑖𝑗
∈ C, 𝐺

10
, 𝐺
01
∈ C𝑚+1, and

𝑔
20
= ⟨𝑞
∗

, 𝐵 (𝑞, 𝑞)⟩ , 𝑔
11
= ⟨𝑞
∗

, 𝐵 (𝑞, 𝑞)⟩ ,

𝑔
02
= ⟨𝑞
∗

, 𝐵 (𝑞, 𝑞)⟩ ,

𝐺
21
= ⟨𝑞
∗

, 𝐶 (𝑞, 𝑞, 𝑞)⟩ , ⟨𝐺
10
, V⟩ = ⟨𝑞

∗

, 𝐵 (𝑞, V)⟩ ,

⟨𝐺
01
, V⟩ = ⟨𝑞

∗

, 𝐵 (𝑞, V)⟩ ,

𝐻
20
= 𝐵 (𝑞, 𝑞) − ⟨𝑞

∗

, 𝐵 (𝑞, 𝑞)⟩ 𝑞 − ⟨𝑞
∗
, 𝐵 (𝑞, 𝑞)⟩ 𝑞,

𝐻
11
= 𝐵 (𝑞, 𝑞) − ⟨𝑞

∗

, 𝐵 (𝑞, 𝑞)⟩ 𝑞 − ⟨𝑞
∗
, 𝐵 (𝑞, 𝑞)⟩ 𝑞,

𝐻
02
= 𝐵 (𝑞, 𝑞) − ⟨𝑞

∗

, 𝐵 (𝑞, 𝑞)⟩ 𝑞 − ⟨𝑞
∗
, 𝐵 (𝑞, 𝑞)⟩ 𝑞.

(39)

Now, we seek the centermanifold which has the represen-
tation

V = 𝑉 (𝑤,𝑤) =

1

2

𝑧
20
𝑤
2

+ 𝑧
11
𝑤𝑤 +

1

2

𝑧
02
𝑤
2

+ 𝑂 (|𝑤|
3

) ,

(40)

where ⟨𝑞∗, 𝑧
𝑖𝑗
⟩ = 0. Substituting (40) into (38), we have

𝑧
20
= (𝑒
2𝑖𝜔
∗

𝐼 − 𝐴)

−1

𝐻
20
, 𝑧

11
= (𝐼 − 𝐴)

−1

𝐻
11
,

𝑧
02
= (𝑒
−2𝑖𝜔
∗

𝐼 − 𝐴)

−1

𝐻
02
.

(41)
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Figure 1: The positive equilibrium is asymptotically stable, where 𝑎
1
= 1.6, 𝑎

2
= 0.8,𝑚 = 2, and 𝑟 = 0.49 < 𝑟

1
= 0.515.
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Figure 2: A stable invariant closed circle bifurcating from 𝑥
∗, where 𝑎

1
= 1.6, 𝑎

2
= 0.8,𝑚 = 2, and 𝑟 = 0.5156 > 𝑟

1
= 0.515.

When restricting (38) to the center manifold, up to cubic
term, then we have

𝑔
20
= ⟨𝑞
∗

, 𝐵 (𝑞, 𝑞)⟩ , 𝑔
11
= ⟨𝑞
∗

, 𝐵 (𝑞, 𝑞)⟩ ,

𝑔
02
= ⟨𝑞
∗

, 𝐵 (𝑞, 𝑞)⟩ ,

𝑔
21
= ⟨𝑞
∗

, 𝐵 (𝑞, 𝑧
20
)⟩ + 2 ⟨𝑞

∗

, 𝐵 (𝑞, 𝑧
11
)⟩ + ⟨𝑞

∗

, 𝐶 (𝑞, 𝑞, 𝑞)⟩

= ⟨𝑞
∗

, 𝐶 (𝑞, 𝑞, 𝑞)⟩ − 2 ⟨𝑞
∗

, 𝐵 (𝑞, (𝐼 − 𝐴
−1

) 𝐵 (𝑞, 𝑞))⟩

+ ⟨𝑞
∗

, 𝐵 (𝑞, (𝑒
2𝑖𝜔
∗

𝐼 − 𝐴)

−1

𝐵 (𝑞, 𝑞))⟩

+

𝑒
−𝑖𝜔
∗

(1 − 2𝑒
2𝑖𝜔
∗

)

1 − 𝑒
−𝑖𝜔
∗ ⟨𝑞

∗

, 𝐵 (𝑞, 𝑞)⟩ ⟨𝑞
∗

, 𝐵 (𝑞, 𝑞)⟩

−

2

1 − 𝑒
−𝑖𝜔
∗

󵄨
󵄨
󵄨
󵄨
⟨𝑞
∗

, 𝐵 (𝑞, 𝑞)⟩
󵄨
󵄨
󵄨
󵄨

2

−

𝑒
𝑖𝜔
∗

𝑒
3𝑖𝜔
∗

− 1

󵄨
󵄨
󵄨
󵄨
⟨𝑞
∗

, 𝐵 (𝑞, 𝑞)⟩
󵄨
󵄨
󵄨
󵄨

2

.

(42)

Define

𝑐 (𝑟) =

𝑔
20
𝑔
11
(𝑤 − 3 + 2𝑤)

2 (𝑤
2
− 𝑤) (𝑤 − 1)

+

󵄨
󵄨
󵄨
󵄨
𝑔
11

󵄨
󵄨
󵄨
󵄨

2

1 − 𝑤

+

󵄨
󵄨
󵄨
󵄨
𝑔
02

󵄨
󵄨
󵄨
󵄨

2

2 (𝑤
2
− 𝑤)

+

𝑔
21

2

.

(43)

Substituting 𝑤 = 𝑒
−𝑖𝜔
∗

into (43), we can obtain 𝑐(𝑟∗).

From the above argument, we have the following result.

Theorem 7. The direction and stability of Neimark-Sacker
bifurcation of model (4) can be determined by the sign
of R[𝑒

−𝑖𝜔
∗

𝑐(𝑟
∗

)]; that is, the Neimark-Sacker bifurcation of
model (4) at 𝑟 = 𝑟

𝑗
is supercritical (resp., subcritical)

and unique closed invariant curve bifurcation from 𝑥
∗ is

asymptotically stable (resp., unstable) whenR[𝑒
−𝑖𝜔
∗

𝑐(𝑟
∗

)] < 0

(resp.,R[𝑒
−𝑖𝜔
∗

𝑐(𝑟
∗

)] > 0).

4. Numerical Simulations

In this sectionwewill give an example to illustrate the analytic
results. Here we takemodel (4) with 𝑎

1
= 1.6, 𝑎

2
= 0.8,𝑚 = 2,

and 𝑚 = 5, respectively. From 𝑎
1
= 1.6, 𝑎

2
= 0.8, and 𝑚 = 2,

we have 𝑥∗ = 0.5 and 𝑟
1
= 0.515. By the simple calculation,

we obtain R[𝑒
−𝑖𝜔
∗

𝑐(𝑟
∗

)] = −0.1452. Similarly, when 𝑚 = 5,
we have 𝑥∗ = 0.5, 𝑟

1
= 0.2372, andR[𝑒

−𝑖𝜔
∗

𝑐(𝑟
∗

)] = −0.0948.
From Theorem 5, we conclude that, with 𝑎

1
= 1.6, 𝑎

2
=

0.8, and 𝑚 = 2, the positive equilibrium 𝑥
∗

= 0.5 of model
(4) is asymptotically stable when 𝑟 < 𝑟

1
= 0.515, and

model (4) undergoes the Neimark-Sacker bifurcation at 𝑥∗
when 𝑟 = 𝑟

1
= 0.515. Furthermore, from Theorem 7 and

R[𝑒
−𝑖𝜔
∗

𝑐(𝑟
∗

)] = −0.1452 < 0 theNeimark-Sacker bifurcation
of model (4) at 𝑟 = 𝑟

1
is supercritical and unique closed

invariant curve bifurcating from 𝑥
∗ is asymptotically stable.

These are shown by Figures 1 and 2.
Similarly, with 𝑎

1
= 1.6, 𝑎

2
= 0.8, and 𝑚 = 5, the

positive equilibrium 𝑥
∗

= 0.5 of model (4) is asymptotically
stable when 𝑟 < 𝑟

1
= 0.2372, and, from Theorem 7

and R[𝑒
−𝑖𝜔
∗

𝑐(𝑟
∗

)] = −0.0948 < 0, the Neimark-Sacker
bifurcation of model (4) at 𝑟 = 𝑟

1
is supercritical and unique
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Figure 3: The positive equilibrium is asymptotically stable, where 𝑎
1
= 1.6, 𝑎

2
= 0.8,𝑚 = 5, and 𝑟 = 0.23 < 𝑟

1
= 0.2372.
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Figure 4: A stable invariant closed circle bifurcating from 𝑥
∗, where 𝑎

1
= 1.6, 𝑎

2
= 0.8,𝑚 = 5, and 𝑟 = 0.238 > 𝑟

1
= 0.2372.

closed invariant curve bifurcating from 𝑥
∗ is asymptotically

stable. These are shown by Figures 3 and 4.

5. Conclusion and Discussion

There has been a large body of work discussing the stability
and bifurcation in logistic model, but most of them dealt
with only the continuous logistic models, or only the discrete
logistic model without delays. In this paper, we discuss the
dynamical behaviors of nonlinear discrete logistic model
with delay. The characteristic equation (11) is a polynomial
equation involving high order terms, which make it difficult
to find all parameters such that the characteristic roots have
modulus 1 or less. By analyzing the characteristic equation,
some sufficient and necessary conditions are derived to
ensure that all the characteristic roots havemodulus less than
1. Moreover, we obtain that when the parameter 𝑟 varies, the
positive equilibrium of the model (4) exchanges its stability
and Neimark-Sacker bifurcation occurs. Furthermore, the
direction and stability of closed invariant curve from the
Neimark-Sacker bifurcation of the model (4) are determined.
Numerical simulations also show the occurrence of the stable
bifurcate periodic solutions when 𝑟 passes the critical 𝑟∗.
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