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Abstract

The electrical activity in the very early human preterm brain, as recorded by scalp EEG, is mostly discontinuous and has
bursts of high-frequency oscillatory activity nested within slow-wave depolarisations of high amplitude. The temporal
organisation of the occurrence of these EEG bursts has not been previously investigated. We analysed the distribution of the
EEG bursts in 11 very preterm (23–30 weeks gestational age) human babies through two estimates of the Hurst exponent.
We found long-range temporal correlations (LRTCs) in the occurrence of these EEG bursts demonstrating that even in the
very immature human brain, when the cerebral cortical structure is far from fully developed, there is non-trivial temporal
structuring of electrical activity.

Citation: Hartley C, Berthouze L, Mathieson SR, Boylan GB, Rennie JM, et al. (2012) Long-Range Temporal Correlations in the EEG Bursts of Human Preterm
Babies. PLoS ONE 7(2): e31543. doi:10.1371/journal.pone.0031543

Editor: Pedro Antonio Valdes-Sosa, Cuban Neuroscience Center, Cuba

Received October 17, 2011; Accepted January 11, 2012; Published February 2 , 2012

Copyright: � 2012 Hartley et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: SM, JR and Neil Marlow are funded by the Wellcome Trust to SM, JR and NM are funded by the Wellcome Trust. CH was funded through CoMPLEX
(Centre for Mathematics and Physics in the Life Sciences and Experimental Biology), University College London. LB was funded by the EPSRC (Engineering and
Physical Sciences Research Council). SF was funded by UCLH CBRC (University College London Hospitals Comprehensive Biomedical Research Centre). (www.ucl.
ac.uk/complex, www.epsrc.ac.uk, http://www.uclh.org/Research/CBRC/Pages/Home.aspx, www.wellcome.ac.uk). None of the funding was specifically for this
study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: s.farmer@ucl.ac.uk

Introduction

The EEG of very preterm babies is discontinuous, with high

amplitude bursts of EEG activity interspersed within long periods

of very low background activity [1]. This discontinuous pattern,

known in older literature as tracé discontinu [2], is present between

approximately 23 and 35 weeks gestational age. The pattern has a

gradual age-related increase in the frequency of occurrence of the

EEG bursts along with the emergence of continuous EEG

oscillations throughout this age range [3]. By term gestation the

EEG pattern is dominated by low frequency (1–4 Hz) oscillations

with periods of nested higher frequencies [1]. In the very early

preterm discontinuous EEG (23–31 weeks), bursts of nested (high-

frequency) oscillations within large slow-wave depolarisations are

already a prominent EEG pattern; these will therefore be the focus

of this paper and will be referred to as BNOs henceforth.

Recent analyses of continuous EEG and MEG oscillations in

children and adults, both at rest and during the performance of

motor tasks, show power-law decay of temporal correlations in the

fluctuations of oscillation amplitudes [4–10]. A power-law decay

indicates complex temporal structure in the occurrence of events

such that: (a) correlations between distant events exist and extend

over longer time scales than random or short-range correlated

activity (where event timing is correlated only to neighbouring

previous events); and (b) the magnitude of these correlations has no

distinct scale. These long-range temporal correlations (LRTCs) are

characterised using estimates of the Hurst exponent [11] and it has

been suggested that they reflect a complex organisational state of

the brain [5]. These findings led us to the question of how early in

human brain development can an EEG signature of such complex

organisation be observed?

Little is known about the temporal structure of the discontin-

uous EEG activity in the preterm brain and what it may reveal

about the nature of the processes underlying early brain

development. Hitherto, the majority of quantitative studies have

focused on the number of EEG bursts in a given time period and

have related this measure to neonatal age and the presence of

brain pathology [12–15]. Other studies have examined the

spectral characteristics of the EEG, observing changes in spectral

band power with gestational age [16–18] and time since birth

[18,19]. However, these studies have not examined the temporal

organisation of the discontinuous preterm EEG. In this study we

ask whether BNOs in neonates between 23–30 weeks gestational

age are randomly distributed in time or whether their temporal

occurrence possesses a complex structure characterised by

LRTCs.

Methods

Ethics Statement
Ethical approval (NRES UK, London Central and the Clinical

Research Ethics Committee of the Cork Teaching Hospitals) and

written parental consent was gained for the use of the data for

research purposes.
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EEG Recordings
We analysed the EEG of 11 preterm babies born between 23–

30 weeks of gestation, recorded with 9 or 11 electrodes for a

median duration of 21.6 hours (range 5.2–24.0 hours). EEGs were

recorded at a corrected age of 23–30 weeks, at a median of one

day after birth (range 0–23 days after birth, see Table 1). The

EEGs were recorded on the neonatal intensive care unit at the

request of the treating clinician. Four children had intracranial

haemorrhages on ultrasound: all EEG recordings were classed as

normal for age by an experienced clinical neurophysiologist. (For

further subject details see Table 1.)

Babies were monitored using the NicOne digital video-EEG

system (Carefusion, Wisconsin USA) with a V32, C32 or O32

amplifier. Bipolar EEG was recorded and sampled typically at a

rate of 250 Hz (subjects 1–4 were recorded with the C32 or O32

amplifier with a sampling rate of 256 Hz and subject 11 with a

sampling rate of 1024 Hz). Electrodes were applied to the scalp

using soft paste to achieve impedances of below 5 kV and secured

using tape and an elasticated hat. Electrodes were placed on the

scalp at F3, F4, C3, C4, P3, P4, T3, T4, O1, O2 and Cz (P3, P4

were present for some older subjects only – see Table 1) according

to the 10:20 measuring system modified for neonates [20]. The

EEG was recorded referred to a midline cephalic reference

electrode at FCz and remontaged for bipolar derivation. The EEG

was filtered: low pass filter 70 Hz, high pass 0.5 Hz and 50 Hz

notch filter. Analysis was carried out on the longest artefact-free

contiguous section of each time series (median section length of

18.48 hours, range 5.23–23.96 hours).

Event Detection
The complexity of the temporal structure of a BNO, with both a

slow-wave component and a nested high-frequency oscillation,

means that thresholding on the basis of amplitude alone is an

insufficient detection method and a more sophisticated technique

is required. The presence of a BNO was determined using a novel

extraction algorithm based on the co-occurrence of a slow (0.5–

2 Hz) wave and higher (8–22 Hz) frequency oscillations in each

EEG channel (Figure 1). These frequency ranges were selected

from the literature as they encapsulate the BNO activity [3,21].

From the original signal x(t) three time series were obtained:

N x1(t), the low-pass filtered signal at 2 Hz (Figure 1b),

N x2(t), the band-pass filtered signal at 8–22 Hz (Figure 1c) and

N x3(t) = x(t)2x1(t), the signal with the low-frequency components

removed (Figure 1d).

The third signal is required to obtain the amplitude of the high-

frequency components. The Hilbert transform was applied to each

of the three new signals and the absolute value taken, in order to

obtain the amplitude envelopes hi = 1,..3 (Figure 1b, c, d). Next, for

each signal component we calculated a confidence value ci = 1..3

between 0 and 1 as:

Table 1. Subject Information.

Subject
Index

Gestational
age at birth
(weeks+days)

Gestational age
at recording
(weeks+days)

Bipolar
Montage

Remaining
electrodes

Recording
duration
(hours)

Number of
events per hour
(mean±s.e.m)

Ultrasound
details Further details

1 23+3 23+4 1 All 24.0 263.1626.7 N Normal at 6 months.

2 23+5 23+5 1 1–3,5,7,8 5.23 236.5616.7 N Chronic lung disease.

3 24+5 24+5 1 All 12.5 286.2620.9 N Normal at 10 weeks.

4 25+5 25+5 1 All 23.98 247.6620.1 N Normal at 9 months.

5 25+5 26+2 1 All 22.8 168.1618.4* A Laser treatment for
retinopathy, developed a
left porencephalic cyst,
chronic lung disease.

6 24+1 27+3 2 1,5–7,9,10 18.48 85.4614.3* B Head CT – left transparietal
shunt in situ, dilation of
lateral, 3rd and 4th ventricles.
Porencephalic cyst
secondary to germinal
matrix haemorrhage.
Retinopathy of prematurity,
chronic lung disease.

7 25+1 27+4 2 1,4,5,7,10 21.59 94.4617.8* C Died from necrotizing
enterocolitis.

8 26+1 28+0 2 1–8,10 22.74 92.367.9* D Chronic lung disease.

9 26+3 28+2 2 All 12.36 329.3622.9 N Seen at 12 weeks post term,
behaving normally for age.

10 30+1 30+1 2 1,4,6–8,10 23.96 148.6619.5 N Discharge at term, well.

11 30+5 30+5 1 1,2,4–6,8 10.03 251.8657.5 N Normal at 6 weeks old.

1 Subject information. Ages are given as weeks+days. Two different bipolar montages were used. 1 = F4-C4, C4-O2, F3-C3, C3-O1, T4-C4, C4-Cz, Cz-C3, C3-T3, 2 = F4-C4,
C4-P4, P4-O2, F3-C3, C3-P3, P3-O1, T4-C4, C4-Cz, Cz-C3, C3-T3. Remaining electrodes indicates those electrodes used for analysis after artefact rejection and removal of
short (,1000) IEI sequences – see methods. Electrodes are numerically indexed corresponding to the list here. Number of events per hour is averaged across all
(remaining) electrodes. Subjects with haemorrhages (*) had significantly lower number of events per hour – two sample t-test, P = 1.4610214. Ultrasound details are
indicated by N = normal, A = intraventricular/parenchymal haemorrhage (grade 4) left hemisphere, intraventricular haemorrhage (grade 3) right hemisphere, B = left
germinal matrix haemorrhage, grade 4, C = bilateral germinal matrix haemorrhage grade 1 and cystic changes in post ventricular white matter and D = bilateral
intraventricular haemorrhage involving parenchyma on right, grade 3 left, grade 4 right. Further details provide known follow up details for each subject. One child
(subject 7) died of non-neurological complications of prematurity.
doi:10.1371/journal.pone.0031543.t001
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ci(t)~1{ exp
ln (0:05)hi(t)

2

qi(t)
2

 !

where q1 = 50, q2 = 10, q3 = 10 are the amplitudes of the slow and

nested high-frequency components of the BNO, taken from the

literature [3,21], and yielding ci values of 0.95.

Finally, we calculated:

c(t)~ P
3

i~1

ffiffiffiffiffiffiffiffiffi
ci(t)

3
p

which can be thought of as a confidence value on the presence of

nested activity. BNO events were defined as a contiguous section

of data for which c was greater than or equal to the extraction

threshold, taken throughout as 0.80 following sensitivity analysis.

This analysis, carried out on thresholds in the range 0.65–0.95,

revealed that the statistics were robust to a change in threshold

provided the resulting number of events remained sufficiently large

for correlations to be examined (see below). A threshold of 0.80

was chosen to correspond to high thresholds for each of the three

components ci (0.8.0.923). The validity of this choice of threshold

was then further confirmed through independent visual inspection

by four different researchers. As the time series of the c values may

fluctuate rapidly between values that are above and below the

extraction threshold, a moving average of c was taken with a

window size of half a second to smooth the time series. This

window size was chosen as it is the largest interval that does not

interfere with intervals between consecutive events – see below

with reference to minimum interval size.

Consecutive events that occurred within 0.5 seconds of one

another were counted as one. Similarly any events of duration less

than 4/22 of a second were discounted to ensure that there was

sufficient high-frequency activity (22 Hz) and at least one entire

oscillation at the lowest frequency (8 Hz).

IEI Sequences and Assessment of LRTCs
BNO events were detected in all EEG channels in all 11

preterm subjects. From the detected events we calculated the

period between events - the inter-event intervals (IEI, see Figure 2).

These were taken in order of occurrence in the EEG time series to

obtain IEI sequences. The presence of LRTCs in sequences of IEI

was assessed through estimation of the Hurst exponent, H. A

process with no or short-range temporal correlations (for example

white noise) has H,0.5, whereas an exponent of 0.5,H,1

indicates persistent long-range correlations in the data. The Hurst

exponent characterises self-similarity in the signal, which is also

captured in the autocorrelation function of the signal. A process is

said to have long-range correlations (power law decay of temporal

correlations) if the autocorrelation function f (t) is of the form

f (t)*t2H{2 as t?? where 0,H,1 is the Hurst exponent [22]

and t is the time-lag. The Hurst exponent is also therefore, by the

Wiener-Khinchin theorem, equivalent to the exponent of the

power spectral density of the signal [22]. There are a number of

methods for estimating the Hurst exponent and, since each

method provides a biased estimate (see for example [11]), it is

recommended practice to check consistency of results using two

methods [22]. We used detrended fluctuation analysis (DFA) [23]

and the Whittle estimator [24] to estimate the Hurst exponent of

the IEI sequences. These methods have been found to produce the

most accurate estimates of the Hurst exponent [11]. Further, DFA

provides an estimate through analysis in the temporal domain

while the Whittle estimator is a non-graphical method operating in

the frequency domain. Sequences of length less than 1000 IEI

were excluded from analysis to ensure robust estimates of the long-

range correlations (see Table 1). As the total recording length and

the number of detected BNOs differed between subjects, we also

calculated the exponents for the sequences of the first 1000 IEIs

(the minimum sequence length required for analysis). This allowed

direct comparison of subjects by controlling for the number of

BNOs.

DFA Analysis
DFA analysis of IEI was carried out as has been described

previously [23,25]. Briefly, the signal (i.e. the sequence of IEIs) is

first integrated and then divided into boxes of equal length, n. For

each box, a least-squares fit to the data is found and the integrated

signal is detrended by subtracting this local trend in each box. The

Figure 1. Example of nested activity detected within large depolarisations. EEG data recorded from subject 5, C4-O2. The shaded areas
show detected events and the arrow indicates the inter-event interval. These events are detected from the co-occurrence of slow wave and high
frequency activity. The insets show the circled signal (A), low-pass filtered at 2 Hz (B), band-pass filtered at 8–22 Hz (C) and with slow waves removed
(D) along with the corresponding absolute value of the Hilbert transforms (red).
doi:10.1371/journal.pone.0031543.g001

LRTCs in the EEG Bursts of Preterm Babies
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root mean square fluctuation of this detrended signal, F(n), is given

by:

F (n)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k~1

y(k){z(k)ð Þ2
vuut

where y is the integrated time series, z is the local trend and N is

the length of the signal. This process is repeated for different

window sizes and the average fluctuation is compared to box size

on a double logarithmic plot. A linear relationship indicates the

presence of scaling of the detrended fluctuations over all box sizes

and the slope of the line of best fit is the DFA exponent (see

Figure 2c).

The minimum window size was set to 5 IEI, following sensitivity

analysis. The maximum window size was set to one tenth of the

length of the IEI sequence (the recommended maximum window

size [26]), with 25 different window sizes equidistantly placed on a

logarithmic scale. 25 ensures that all window sizes are distinct even

for the smallest length sequences. To look at the presence of scale

invariance over a broader range of time scales we also carried out

DFA with a maximum window size of a quarter of the length of

Figure 2. Inter-event interval (IEI) sequence and detrended fluctuation analysis (DFA) estimates. (A) An example of an IEI sequence –
produced from the sequential ordering of IEI. This sequence is from the C3-O1 bipolar recording of subject 5. Index indicates the sequential order of
the IEI. (B) An example of a randomly shuffled sequence for the data set shown in (A). (C) DFA plot for both sequences with window size, n, against
root mean square fluctuation, F(n), open circles - DFA of the actual IEI sequence, filled circles - DFA of the shuffled sequence shown in (B). DFA was
calculated with a maximum window size of 1/10 of the length of the sequence. For each the line of best fit is shown (green for the actual IEI
sequence, red for the shuffled sequence). The Hurst exponent is estimated by the slope of the line of best fit which in these cases were H = 0.66 and
H = 0.49 for the IEI and shuffled sequences respectively.
doi:10.1371/journal.pone.0031543.g002

LRTCs in the EEG Bursts of Preterm Babies

PLoS ONE | www.plosone.org 4 February 2012 | Volume 7 | Issue 2 | e31543



the IEI sequence. These results were compared with those

obtained using a maximum window size of one tenth. Analysis

was carried out using the Matlab code of McSharry [27].

Whittle Analysis
To obtain robust results the Hurst exponent for each IEI

sequence was also estimated using Whittle analysis. The Whittle

estimate was calculated [11] as the value of g which minimizes the

function Q, where Q is given by:

Q(g)~

ðp
{p

I(l)

f (l,g)
dl

where l is a frequency, f (l,g) is the spectral density at frequency

l, I(l) is the periodogram given by I(l)~
1

2pN

XN

k~1

Xkeikl

�����
����� and

N is the number of terms in the time series X. For calculations we

used the function FDWhittle in the R package fractal with

sdf.method = ‘‘wosa’’2Welch’s overlapped segment averaging.

Statistical Analysis
The Hurst exponent of each IEI sequence was compared with

the Hurst exponents of 5,000 new sequences generated by

randomly shuffling the original sequence, a process that destroys

any LRTCs present. For each subject, and for both estimates of

the Hurst exponent, the distribution of IEI exponents was

compared to the distribution formed from combining all shuffled

exponents for that subject, using the nonparametric one sample

Wilcoxon signed rank test.

Results

We assessed the presence of BNOs in 11 preterm subjects (23–

30 weeks gestational age at birth; 9/11 EEG records obtained

from subjects aged 23–28 weeks). The average number of detected

events per hour for each subject is given in Table 1 and ranged

from 85.4 to 329.3. The number of events did not vary with

corrected age (gestational age plus time since birth), but subjects

with cerebral haemorrhages (see Table 1) had significantly lower

event rate (110.1638.9 events per hour), compared to subjects

without brain haemorrhage (251.7655.1 events per hour),

Wilcoxon signed rank test (P = 2.46610210).

The presence of LRTCs in the occurrence of BNO events was

assessed through two estimations of the Hurst exponent of the IEI

sequences. Figure 2 shows a typical IEI sequence and the

corresponding resultant DFA plot, which in this case gave an

exponent of H = 0.66. A total of 80 valid IEI sequences, out of a

possible 98 sequences, were analysed from across the 11 subjects.

The other 18 IEI sequences were rejected either due to artefacts

or, in most cases, as the length of the IEI sequences was less than

1000 – see Table 1. The average Hurst exponent of all IEI

sequences analysed was 0.68 (DFA with a maximum window size

of 1/10 of the length of the data, range 0.55–0.81) and 0.63

(Whittle, range 0.53–0.77). There was no difference in Hurst

exponents between subjects with and without cerebral haemor-

rhage in either DFA (P = 0.07, Wilcoxon signed rank test) or the

Whittle estimate (P = 0.06, Wilcoxon signed rank test). The

exponent of each IEI sequence (by subject and electrode) was

compared with the exponents of 5,000 new sequences generated

by randomly shuffling the original IEI sequence. An example of a

shuffled sequence compared with an actual IEI sequence is shown

in Figure 2 along with the corresponding DFA plots. The shuffled

exponents had distributions with mean6standard deviation of

0.51060.023 (DFA) and 0.49660.018 (Whittle), consistent with

the theoretical asymptotic value of H = 0.5 for uncorrelated noise.

Figure 3 shows the pooled shuffled distributions and the average

exponent values for each subject. The exponents for the actual IEI

sequences are clearly distinct from the shuffled distributions. For

each subject, and for both estimates of the Hurst exponent, IEI

exponents were found to be significantly different from those of

shuffled distributions (P,0.001), indicating the presence of

LRTCs in the temporal distribution of events of every subject

studied.

It is recommended practice to only apply DFA up to a

maximum window size of 1/10 of the length of the signal [26]. It is

possible to extend the range of timescales considered by increasing

the maximum window size but in doing so the statistics of the

fluctuations for large window sizes become less robust and so the

results should be taken with caution. However, if there is a strong

correlation between the exponent calculated with larger window

sizes and that calculated for the more conservative estimate with

window sizes up to 1/10 of the data length then this provides

evidence that the LRTCs observed apply to a broader range of

time scales. We carried out a further DFA analysis up to a

maximum window size of 1/4 of the length of the IEI sequences.

We found a strong correlation, with R2 = 0.79, between the DFA

values calculated with a maximum window size of 1/10 and those

found with a maximum window size of 1/4 (see Figure 4A).

Comparison with shuffled distributions showed that the exponents

calculated with a maximum window size of 1/4 are distinct from

the shuffled distributions (Figure 4B) and IEI exponents were

found to be significantly different from the shuffled distributions

(P,0.001).

As signal lengths and the number of BNOs within the signal

differed between subjects, we analysed sequences of 1000 IEIs in

order to better compare the exponents between subjects. For each

subject and channel, both estimates of the Hurst exponent were

calculated for the first 1000 IEI recorded at that channel. Figure 5

shows examples of such IEI sequences, along with the corre-

sponding DFA and Whittle exponents. Due to the strong

correlation observed above between DFA exponents calculated

with different maximum window sizes, DFA was calculated with a

Figure 3. Comparison of the DFA and Whittle exponents with
the shuffled data. The DFA (A) and Whittle (B) exponents for each
subject (vertical lines, averaged across channels) are clearly distinct
from the pooled probability distributions of exponents formed from
5000 shuffled sequences. The exponents from the IEI sequences were
found to be significantly different from the shuffled distributions
(P,0.001) using the one sample Wilcoxon signed rank test, indicating
LRTCs in the IEI sequences of all subjects studied. The data is plotted
here using the same format as Figure 4 [10].
doi:10.1371/journal.pone.0031543.g003
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maximum window size of 1/4 of the length of the signal. Figure 6

shows the DFA plots for each subject, averaged across all channels,

along with comparison of actual exponents and the probability

distributions of shuffled sequences for these short fixed length

sequences of 1000 IEI. For these fixed length IEI sequences the

mean estimates of the Hurst exponent were 0.66 (DFA with a

maximum window size of 250, range 0.53–0.84) and 0.62 (Whittle,

range 0.50–0.76). Comparison of these exponents with the pooled

exponents for the shuffled distributions showed them to be

significantly different (P,0.001). Figure 7 shows the exponents for

the whole IEI sequences (A) and the fixed length first 1000 IEI

sequences (B) plotted with respect to corrected age at the time of

the recording.

Discussion

These findings provide, to our knowledge, the first demonstra-

tion of LRTCs in the temporal sequence of bursts of high-

frequency oscillations nested within large slow-wave depolarisa-

tions, in the preterm human brain. We have focussed on the

discontinuous EEG and the BNOs that dominate the EEG activity

in the age group studied (less than 31 weeks gestational age), and

although this study analysed a small number of subjects, LRTCs in

the IEIs were consistently observed in all subjects. The subjects in

this study were born at 30 weeks of gestation or less, and four of

the subjects had significant intracranial complications of prema-

turity detected on transcranial ultrasound. It should further be

noted that even without the overt brain injuries that can be

identified by neonatal ultrasound abnormalities, important clinical

outcomes, such as low IQ [28] and special educational needs [29],

are much more prevalent in the extreme preterm population [30].

Thus we cannot assume that the EEG dynamics we have detected

will be present in a healthy (foetal) brain at this age. Recent new

techniques using MEG have enabled the recording of foetal brain

activity in utero [31] and such recordings may enable exploration

of the temporal dynamics of the foetal brain in the future.

Nonetheless, examination of the EEG in this preterm population

has provided a unique insight into the dynamics of the very

immature human brain, which we show displays complex

organisation even at these very low gestations.

Our data extraction method was based on predefined amplitude

and frequency criteria (taken from the literature [3,21]) for

detecting high-frequency oscillations nested within slow EEG

activity. Due to this constraint we did not analyse event amplitude

or duration, but rather the data was analysed as a temporal series

of events from which the temporal structure of the IEI sequence

was ascertained [25]. During the recording period the subjects

were connected to a ventilator and subject to normal nursing and

medical care. Trends in data sets that result from extraneous

factors can lead to erroneous estimation of the Hurst exponent

[26]. To look for such effects we examined the behaviour of the

detrended fluctuations looking for loss or disruption of the linear

trend across window sizes. Underlying trends in the data cause

‘crossover’ points [26] between groups of window sizes in the DFA

where the detrended fluctuations follow different trends. For

examples of such data see [26]. The data presented here was linear

throughout and did not show crossover points; i.e. the same scaling

was observed across all window sizes (see Figures 2C and 6A for

examples), suggesting the Hurst exponent estimate was not

affected by external stimuli.

While some studies have analysed the spectral characteristic of

the preterm EEG and how this varies with age [16–19], clinical

studies of the distribution of events in discontinuous EEG patterns

in the premature population to date have only examined

maximum or mean inter-burst intervals (defined as periods of

silence in all electrodes) [12–15]. Therefore the presence of

LRTCs observed here reveals a significantly greater complexity in

the preterm EEG than previously appreciated. Studies have shown

that neurological prognosis is worse in babies with less frequent

EEG bursts [12]. Consistent with this, we observed that the 4

subjects with intracranial haemorrhages had a significantly lower

number of BNO events per hour. However, we did not observe a

difference in Hurst exponents between subjects with and without

haemorrhages, indicating that despite the lower event frequency

the temporal complexity of event occurrence is maintained.

Further investigations will be required to establish whether the

Hurst exponent is affected by pathologies in the very premature

brain and whether, if differences are observed, these translate into

later functional impairments.

In this data set there is no clear effect of age at recording on the

Hurst exponent (see Figure 7) but it should be noted that the time

since birth has not been controlled for; a larger study with

correction for time of recording since birth will be required to

make more definitive statements regarding the relationship

between the Hurst exponent, gestational age and time since birth.

Figure 4. Extension of DFA to longer window sizes. Extending
DFA from a maximum window size of 1/10 of the length of the signal
(N = the length of the signal) to a maximum window size of 1/4 of the
length of the signal showed a strong correlation between exponents
(A) with R2 = 0.79 indicating that the LRTCs apply to this broader range
of time scales. DFA exponents (B), calculated with a maximum window
size of 1/4, for each subject (vertical lines, averaged across channels),
are again clearly distinct from the pooled probability distributions for
the shuffled sequences.
doi:10.1371/journal.pone.0031543.g004

LRTCs in the EEG Bursts of Preterm Babies

PLoS ONE | www.plosone.org 6 February 2012 | Volume 7 | Issue 2 | e31543



This is important because recent longitudinal studies have

reported changes in preterm neonatal EEG patterns with respect

to time since birth, including changes in band power [18,19] and

decreases in the duration of inter-burst intervals [19]. These

studies analysed either continuous recordings over the first few

days of life [18] or recordings from the same subject for a short

period on each consecutive day during the first few days of life

[19]. The data we analysed here were single recordings for each

subject at a time after birth dependent on clinical decisions. In

order to study the effects of extra-uterine aging on the Hurst

exponent further studies are required with longitudinal data sets.

The EEG recordings studied here were AC-coupled and used

the conventional high-pass filter of 0.5 Hz. Recent DC-coupled

EEG of preterm subjects has revealed very slow (0.1–0.5 Hz)

spontaneous activity patterns with nested oscillations at many

higher frequencies, known as spontaneous activity transients

(SATs) [32–34]. SATs are thought to correspond to the delta-

frequency activity (with nested higher frequencies) observed in the

conventional EEG recordings [32]. Thus, in characterising the

temporal distribution of BNOs it is likely we are examining the

distribution of high-frequency oscillations nested within SAT

events. Future analysis of DC-coupled recordings would be

required to confirm this directly. The nested oscillations observed

in conventional recordings, and by extension SAT events, have

been suggested to be equivalent to spontaneous activity observed

in the early developing rat brain [33]. Khazipov et al., [35] noted

the similarity between spindle bursts evoked in the rat pup

(postnatal days 1–8) somatosensory cortex and nested oscillatory

activity in the human preterm brain (reviewed in [36,37]). Spindle

bursts are often associated with spontaneous movement and

Figure 5. Examples of inter-event interval (IEI) sequences from each of the 11 subjects. Each sequence consists of the first 1000 IEIs from
the recording at F4-C4 for each subject (1–11). The corresponding Whittle and DFA exponents for these fixed length sequences are indicated. DFA 1/
10 is the exponent calculated with a maximum window size of 1/10 of the length of the data (which in this case is always 100 IEIs). DFA 1/4 is the
exponent calculated with a maximum window size of 1/4 of the length of the data (which in this case is always 250 IEIs).
doi:10.1371/journal.pone.0031543.g005
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myoclonic twitches. This pattern of activity persists, although is

reduced, following spinal cord transection and is thus not entirely

dependent on movement-triggered sensory feedback, but can also

occur as the result of spontaneous intrinsic brain events [35].

Experimental results in rats suggest that the subplate (a transient

population of neurons that constitutes a prominent anatomical

structure [38] and provides active input to the cortex during the

period of development studied here [39]) plays a fundamental role

in the generation of nested oscillatory activity through amplifying

thalamic input to the developing cerebral cortex [40,41].

Disruption of subplate activity causes long-term alterations in

cortical connectivity [39,42]. Additionally, early spontaneous

network activity is thought to play a vital role in normal

connectivity development [43] and the development of functional

synaptic pathways [37]. Future studies will explore in humans the

relationship between the cortical subplate, spontaneous neuronal

activity and the temporal distribution of BNOs. Furthermore,

future studies should investigate the temporal structure of

spontaneous activity in animal models and explore whether

disruption of any temporal structure leads to a functional

alteration in the formation of cortical connections.

The values of the Hurst exponents recovered from our data are

comparable with those observed using a similar approach of inter-

spike interval sequence analysis of single unit data recorded from

human hippocampus during epilepsy surgery [44]. They are also

in the range of those values described for amplitude fluctuations in

MEG and EEG oscillations of adults and children [4–10].

Significantly, however, whereas the temporal organisation of

fluctuations of amplitudes may relate to a form of avalanche

dynamics [45] (in which cascades of network activity – termed

neuronal avalanches - recorded in local field potentials in vivo and

in vitro are characterised by a power law distribution of size [46–

Figure 6. Averaged DFA plots and comparison with shuffled distributions for fixed length IEI sequences. (A) Average (across channels)
DFA plots of window size, n, against root mean square fluctuation, F(n), for each subject for the first 1000 IEIs. DFA is calculated up to a maximum box
size of 1/4 of the length of the signal i.e. 250. Exponents are as indicated. (B,C) Averaged DFA (B) and Whittle (C) exponents (vertical lines) for each
subject from sequences of the first 1000 IEIs, along with the probability distributions of the shuffled data.
doi:10.1371/journal.pone.0031543.g006
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49]) our findings suggest an alternative, but no less interesting,

form of complex temporal dynamics in which discrete events

exhibit a power law in their distribution of IEIs. This pattern may

be indicative of some form of relaxation dynamics such as that

observed in far-from-equilibrium systems near a phase transition

[50]. Empirical evidence in support of the presence of long-range

correlations in burst occurrence in neuronal systems comes from

Segev et al. [51], who analysed the inter-burst intervals of

spontaneous synchronous bursting activity of in vitro neural

activity that is similar, albeit without the more complex structure

of nested oscillations, to the activity observed here. The complex

spatial dynamics of nested oscillations (theta-beta/gamma), which

appear in the second postnatal week in rats (a period when the

cortex is still under development) and which organise as neuronal

avalanches with long-range spatial correlations have been suggest-

ed to provide a template important for cortical maturation and

neuronal circuit formation [47]. LRTCs observed here in the

temporal occurrence of BNOs might also play an important role in

brain formation. Demonstrating the presence of LRTCs in very

early brain EEG activity is a first crucial step in understanding the

dynamical structure of preterm neuronal activity in humans, and

will stimulate further research into how nested oscillatory activity

shapes brain development.
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