
Aesthetic local search of wind farm layouts

Michael Mayo Corresp.,   1  ,  Maisa Daoud  1 

1 Department of Computer Science, University of Waikato, Hamilton, New Zealand

Corresponding Author: Michael Mayo

Email address: michael.mayo@waikato.ac.nz

The visual impact of wind farm layouts has seen little consideration in the literature on the

wind farm layout optimisation problem to date. Most existing algorithms focus on

optimising layouts for power or cost of energy alone. In this paper, we consider the

geometry of wind farm layouts and whether it is possible to bi-optimise a layout for both

energy efficiency and the degree of visual impact that the layout exhibits. We develop a

novel optimisation approach for solving the problem, with our approach towards

measuring mathematically the degree of visual impact drawing inspiration from the field of

architecture. To evaluate our ideas, we demonstrate them on three benchmark problems

for the wind farm layout optimisation problem in conjunction with two recently published

stochastic local search algorithms. Optimal patterned layouts are shown to be very close in

terms of energy efficiency to optimal non-patterned layouts.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2864v1 | CC BY 4.0 Open Access | rec: 10 Mar 2017, publ: 10 Mar 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/190594273?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Aesthetic Local Search of Wind Farm1

Layouts2

Michael Mayo1 and Maisa Daoud2
3

1,2Dept. of Computer Science, University of Waikato, Hamilton, New Zealand4

Corresponding author:5

Michael Mayo1
6

Email address: michael.mayo@waikato.ac.nz; Tel.: +64-7-83844037

ABSTRACT8

The visual impact of wind farm layouts has seen little consideration in the literature on the wind farm

layout optimisation problem to date. Most existing algorithms focus on optimising layouts for power or cost

of energy alone. In this paper, we consider the geometry of wind farm layouts and whether it is possible

to bi-optimise a layout for both energy efficiency and the degree of visual impact that the layout exhibits.

We develop a novel optimisation approach for solving the problem, with our approach towards measuring

mathematically the degree of visual impact drawing inspiration from the field of architecture. To evaluate

our ideas, we demonstrate them on three benchmark problems for the wind farm layout optimisation

problem in conjunction with two recently published stochastic local search algorithms. Optimal patterned

layouts are shown to be very close in terms of energy efficiency to optimal non-patterned layouts.
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1 INTRODUCTION18

Worldwide, renewable energy production via wind is becoming increasingly important. In particular, it19

has been forecast that by 2030 approximately 18% of the planet’s total energy production will be sourced20

from wind farms (Global Wind Energy Council, 2014). The rapid growth in wind energy production is21

well-illustrated by examining some of the current and planned wind farms installations around the world:22

the London Array 1, for example, generates 630MW of power (enough for 490,000 households); similarly,23

the ongoing Gansu project in China (Watts, 2012) is planned to generate 20GW by 2020 (equating to24

power for approximately 15 million households). Concerns about the environmental impact of wind25

energy have also been increasing alongside growth in its production. In particular, it has been noted for26

some time that wind turbines have considerable impact on local wildlife populations such as birds, bats,27

and for offshore farms, various marine wildlife (Dai et al., 2015). So serious is the problem that there have28

been recent calls for entirely new research programs to be developed solely to study the effects of wind29

generation on wildlife and how to mitigate them (Piorkowski et al., 2012). The human impact of wind30

energy production is also considerable: wind farms tend to generate significant noise, and they have a31

major visual impact on the landscape due to the size of the turbines. On clear days turbines can be seen up32

to 30 kilometers away depending on the turbine height and terrain conditions (Dai et al., 2015). Moreover,33

the human impact can range in severity from a “mere” belief (strong or otherwise) that the wind turbines34

detract from the visual value of the landscape, to shadow flicker, a phenomenon caused by the interaction35

of a wind turbine’s blades with direct sunlight. Such a phenomenon is known to cause severe headaches36

when nearby residents are exposed to it for a long period (Tabassum-Abbasi et al., 2014).37

This paper concerns itself with one aspect of the environmental impact of wind farm design, specifi-38

cally, the arrangement of wind turbines into geometrical patterns, and the relationship of these geometric39

patterns with the overall energy efficiency of the farm.40

To partially mitigate the negative visual impacts of wind farms, it has been noted that farms with41

a regular layout of turbines tend to be perceived as blending into the visual landscape in a better way42

than farms with an irregular layout (Dai et al., 2015). More precisely, research by (Tsoutsos et al., 2006)43

discusses the aesthetic principles of wind farm layout design: farms have a higher aesthetic appeal either44

1http://www.londonarray.com/wp-content/uploads/London-Array-Brochure.pdf
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when turbines are arranged clearly into rows, or when they are arranged into uniform density small45

clusters of 2-8 turbines which are separated by obvious landmarks. The latter arrangement is particularly46

preferred when the wind farm must be integrated with agriculture.47

One significant issue arising when considering the layout of turbines on a wind farm is the loss of48

wind energy due to the interaction between nearby turbines, a phenomenon known as the “wake effect”.49

Therefore, all configurations of turbines in a wind farm are not equal, and often a computationally-50

expensive simulation (or an approximation thereof) is required to assess the wake effect so that it can be51

mitigated as much as possible. Sometimes other objectives may be also be considered (e.g. construction52

costs) but the commonality amongst many papers in the literature is a focus on wake effect minimisation.53

Examples include the seminal work in the field by Mosetti et al. Mosetti et al. (1994) as well more recent54

works such as that by Wagner et al. (2013), Rodrigues et al. (2013), Guirguis et al. (2016), Mayo and55

Zhen (2016); and Mayo and Daoud (2016).56

In general there is a trade-off between the geometric constraints required to minimise the negative57

visual impact of a wind farm, and the energy output of the farm itself. A simple example would be58

the arrangement of turbines equidistantly around the perimeter of a circle: although a circle is visually59

interesting shape, there will always be a sizeable portion of turbines (on opposite sides of the circle) that60

lie in each other’s wakes regardless of the predominant wind direction.61

Beyond forcing turbines to be arranged into simple geometric shapes such as circles and grids, it is62

not immediately clear how to define “visually appealing” arrangements in a more general way. Most of63

the past and current works on wind farm layout optimisation (WFLO), therefore, tend to ignore geometric64

appearances and consequently highly optimised layouts may taken on a “random scattering” appearance.65

This is shown in some of the figures later in this paper.66

Very few authors have considered the visual aspects of layouts as part of the optimisation process.67

Two works exist as far as the authors are aware: an excellent paper by Neubert et al. (2010) in which68

turbines are constrained to a skewed grid, and the orientation and skew of the grid is optimised; and an69

approach by Al-Yahyai et al. (2015), in which turbines are also assigned positions on a grid but in this70

case only the grid’s orientation is optimised.71

In both cases, the geometric constraints are extreme and therefore the optimisation problem can be72

solved by varying only two or one variables respectively. Despite the limitations of these approaches,73

Neubert et al. show that the geometrically constrained layouts are almost (within a few percentage points)74

as efficient as completely unconstrained layouts that are optimised purely for energy efficiency.75

In this paper, we take a different tack. Rather than strongly constraining layouts in order to force a76

geometric pattern on them (as the previous authors have done), we instead add a pattern-based metric to77

the optimiser that assesses the quality of the pattern that the turbines form. Thus, each individual turbine’s78

position on the layout is still a degree of freedom, but at the same time, a poorly-arranged layout with the79

same energy efficiency as a well-arranged layout will score an overall worse objective value. Thus the80

optimiser should focus its search towards layouts with either minimal visual impact (or, alternatively, a81

strong aesthetic appeal).82

To evaluate our novel approach, we use two stochastic local search algorithms for the wind farm83

layout optimisation problem that have recently appeared in the literature. Both approaches are combined84

with our novel objective function, thus producing two new approaches. The first existing approach we85

utilise is called the Turbine Displacement Algorithm (TDA) (Wagner et al., 2013). The second approach86

is our own recently published approach known as BlockCopy (Mayo and Zhen, 2016; Mayo et al., 2016).87

In order to assess the geometric/pattern quality of layouts, we have utilised a pattern measure originally88

proposed by Salingaros (1997) and Klinger and Salingaros (2000). This metric has its origin in the89

architectural evaluation of building facades, but has been generalised for the evaluation of any kind of90

symbolic pattern. Therefore it is ideally suited for our purposes.91

The pattern metric we use as well as all other relevant technical details are described in the next92

section. Following that, we describe how we modify the objective function of the TDA and BlockCopy93

algorithms to optimise for geometric qualities. Sections 4 and 5 describe a comprehensive evaluation of94

both algorithms that was performed, and finally Section 6 concludes the paper.95

We acknowledge at this point that the work undertaken here is largely focussed on the aesthetics96

of two dimensional layouts. Thus, it would be applicable to situations where the wind farm is located97

off-shore or on a plain, but not in a situation where the farm is located on a three dimensional terrain98

(e.g. along a ridge). Furthermore, adjustments would also have to be made to the proposed method if99
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the importance of aesthetics varies across the layout. For example, an area of the farm close to a tourist100

attraction is likely to have much more visual impact than the part of the farm furtherest from the attraction.101

We address these concerns in the conclusion.102

2 TECHNICAL BACKGROUND103

2.1 Jensen Wake Model104

The Jensen far wake model, originally proposed in the mid-1980s (Jensen, 1983; Katic et al., 1986), is105

the approach we use in this research to assess the wake interactions between turbines in a wind farm106

layout. Although dated, the Jensen is still used widely in the community. To illustrate, Samorani (2013)107

describes it precisely in a recent 2013 introductory survey to the Wind Farm Layout Optimisation (WFLO)108

problem, and in a 2016 comparison of three kinematic far wake models and two field-based far wake109

models, Shakoor et al. (2016) concluded that “. . . Jensen’s far wake model is a good choice to solve the110

wind farm layout optimisation problem due to its simplicity and relatively high degree of accuracy.” We111

therefore adopt the Jensen model for our initial investigations reported here, while acknowledging that112

more sophisticated models do exist that we will explore in future work.113

In this section we therefore describe briefly the Jensen far wake model. As we are using, more or114

less, the same notation as Samorani (2013), the interested reader is referred to that publication for more115

specific details.116

The first element required in wind farm modeling is a power curve, which describes the relationship117

between incoming wind speed and the power generated by a single wind turbine. This is generally118

dependent on the type of wind turbine being modelled and therefore will vary depending on manufacturer119

and model. In general, however, the relationship can be modelled as a cubic function from wind speed120

to power between two bounding wind speeds: (i) the cut in speed, which is the wind speed at which the121

turbine begins generating power; and (ii) the nominal speed, which is the wind speed at which maximum122

power production is reached. A final element of the power curve is the cut out speed. This is the maximum123

allowable wind speed that the turbine can tolerate before shutting down to avoid damage.124

Due to the variability and manufacturer-dependence of different wind turbine models, we adopt in this125

paper the power curve used by Mosetti et al. (1994) and also described by Samorani (2013):126

power(u) =















0kw where u < 2m/s

0.3u3kw where 2m/s≤ u < 12.8m/s

629.1kw where 12.8m/s≤ u < 18m/s

0kw where u > 18m/s

(1)

In this power curve, wind speed u is measured in metres per second (m/s) and power in kilowatts (kw). We127

acknowledge here that this turbine model is somewhat dated (for example, modern turbines may produce128

8-10MW of power), but it is a model that is frequently used in the literature and therefore we adopt it in129

this paper for the purposes of reproducibility ease.130

The next part of the Jensen far wake model is the modelling of the velocity deficit, i.e. the reduction131

in wind speed as wind passes through the blades of a turbine. This is best introduced schematically, and132

here we reproduce a diagram from Samorani (2013) in Figure 1.133

The key elements of Figure 1 are an illustration of the initial wind speed u0; the reduced wind speed134

u j at a distance x metres from the wind turbine; and the notion that the wake spreads out with linearly135

increasing radius as it gets further away from the turbine.136

In fact, the radius of the spreading wake is modelled by the following equation:137

r1 = αx+ rr (2)

where rr is the turbine’s radius and r1 is the radius of the wake. This equation shows that the rate of138

spreading is determined by a constant α which in turn depends on two further factors: first, the height of139

the turbine z; and second, the surface roughness, z0. The function to calculate α is:140

α =
0.5

ln z
z0

(3)
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Figure 1. Depiction of the wake effect (reproduced from Samorani (2013)).

Once the size of the spreading wake can be determined as a function of distance x, the degree of wind141

speed velocity deficit needs to be next computed. The relationship between wind speed and velocity142

deficit is modelled as143

u j = u0(1− vdi j) (4)

where u j is the wind speed at a position j which is inside the wake of a turbine at position i. The term vdi j144

represents the velocity deficit between positions i and j due to the turbine, and is calculated (according to145

Samorani (2013)) thus:146

vdi j =
2a

1+α(
xi j

rd
)2

(5)

where xi j is the distance between the two points and a, the “axial induction factor” is defined as147

a = 0.5(1−
√

1−CT ) (6)

while rd , the “downstream wake radius” is calculated as148

rd = rr(

√

1−a

1−2a
) (7)

This value rd is used as the input to the velocity deficit calculation (Equation 5 above) as per the model.149

A key corollary of these equations is that while power increases with the cubic of wind speed, velocity150

deficit decreases at a rate proportional to the square of the distance from a turbine. Therefore it follows151

that simply finding a “windier” site should increase power production regardless of whether wake effects152

are minimised or not.153

Next, the model also accounts for the fact that a turbine may be in the wake of not one, but many other154

wind turbines, at the same time. In this case, the velocity deficit calculation is more complex because the155

different velocity deficits must all be aggregated and subtracted from the incoming wind speed together.156

This is achieved in the Jensen model by calculating the square root of the sum of the squared velocity157

deficits:158

vs
de f ( j) =

√

∑
i∈W s( j)

vd2
i j (8)
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where vs
de f ( j) is the total velocity deficit and W s( j) is the set of turbines affecting the turbine at position j.159

Turbines are represented as points for the purposes of this set membership calculation and therefore they160

are either completely inside or outside the wake; we acknowledge that other wake models allow partial161

wake overlaps of the rotors, but we have followed the Jensen model rigorously in this work which treats162

turbines as points. As pointed out earlier by Shakoor et al. (2016), this should be sufficiently accurate.163

The index s denotes the wind scenario which specifies both the wind direction and the initial wind164

speed: both of these factors determine the wakes in which a turbine lies and therefore what the total165

velocity deficit will be.166

Two things must be noted about the calculation of the set W s( j). Firstly, computing the wakes within167

which a turbine j lies for any arbitrary wind direction requires some non-trivial 2D geometric calculations.168

This is because the wind may blow in any direction, and therefore wakes may expand in any direction.169

However, this calculation is readily computable with some standard trigonometry.170

Secondly, and much more significantly, a routine to calculate the velocity deficit for every turbine171

in a layout for a single wind direction is a function with quadratic complexity: this is because every172

turbine j in the layout must be compared to every other turbine in order to determine W s( j). Thus, layout173

evaluators can face scalability issues as the size of the layout increases.174

Finally, to complete our presentation of the Jensen model, there are several constants required.175

Specifically, these are rr, the turbine radius, which we set to 20 meters; z, the hub height, which is176

initialised to 60 meters; z0, the surface roughness constant, which is 0.3 meters; and CT , which is 0.88. A177

minimum allowable distance between turbines must also be specified, because the Jensen model is not178

accurate at close distances. We set this constant to three times the diameter of the rotors, namely 120179

meters. These constants are all as-used by Samorani (2013). We expect that other situations will require180

different unique values for the above parameters since they depend on the model of wind turbine being181

used as well as characteristics of the site. However, these values are good defaults for the purposes of182

reproducibility, and we don’t expect the behavior of the approaches that we present later to be significantly183

dependent on particular choices of values.184

2.2 Objective Function185

Once the Jensen model is completely specified, the next step is to precisely specify the objective function186

for the WFLO problem. There are generally many different ways of doing this depending on what187

optimisation is required. One approach is to simply calculate the total expected power generated by a188

wind farm, which must be maximised (e.g. Song et al. (2016)). Another approach is to calculate the189

expected cost of energy: take the total expected power, convert it into units of currency that would be190

obtained if the power were sold at market, and divide that revenue by the cost of building and maintaining191

the wind farm (e.g. Mayo and Daoud (2016)). This is an objective that must be minimised.192

For this preliminary assessment of our new approach, we use a simple objective function that divides193

the total expected power generated by the farm with wake interference by the total hypothetical expected194

power that would be generated by the farm without wakes. Clearly, this ratio should result in a value195

between 0 and 1, with higher values being more desirable.196

If l is a wind farm layout, the objective function therefore is:197

F(l) = ∑
s∈S

rs

∑ j∈l power
(

us(1− vs
de f ( j))

)

∑ j∈l power(us)
(9)

where j is a turbine’s position in the layout, and vs
de f ( j) is the total velocity deficit at j. S is a set of wind198

scenarios, rs is the probability of scenario s ∈ S and us is the wind speed under scenario s. It should be199

evident that ∑s∈S rs = 1.0 in order compute proper expected power values.200

2.3 Turbine Displacement Algorithm201

The Turbine Displacement Algorithm (TDA) is a highly effective stochastic local search algorithm for the202

wind farm layout optimisation problem first introduced by Wagner et al. (2013). The algorithm shifts203

a single turbine at a time, and then re-evaluates the layout to determine if the turbine move should be204

accepted or not.205

Although initially designed to be used in conjunction with a specific wake model in order to reduce206

the computational complexity of layout evaluation, the algorithm is in fact competitive with many other207
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t0

t1

t2

t3

Figure 2. Illustration of the TDA operator. In this example, K = 3 and the displacement vector for t0
(and its potential inverted displacement vector after rescaling to prevent collisions) is shown.

approaches that use different wake models. A recent evaluation by Wilson et al. (2014) showed that TDA208

outperformed several other metaheuristic algorithms including genetic algorithms and particle swarm209

optimisation. We therefore use TDA as one of the algorithms in our evaluation.210

The basic behaviour of one iteration of TDA is shown in Figure 2. Essentially, a neighbourhood size211

K must be specified initially by the user. A random turbine is then picked, and it is moved either away212

from the K neighbours or, with reduced probability, towards the K neighbours. The direction that the213

turbine moves is called its displacement vector.214

In the original paper on TDA (Wagner et al., 2013) a study on the best value of K for different layout215

sizes was performed. It was found that for very small layout, a small K (e.g. K = 1) lead to an efficiency216

gain of just over 1%; however, as the layout size increased, the difference in efficiency caused by varying217

K approached a negligible value. K = 8 was the highest value tested in that paper.218

Each displacement vector has a specific size, and one feature of the algorithm is that the size of the219

displacement vectors is not constant. Instead, it varies on a per-turbine basis: if a turbine’s moves are220

frequently accepted (i.e. lead to improvements in objective value) then the size of the displacement vectors221

is gradually increased; conversely if a turbine’s moves are not accepted, the size decreases.222

A complete specification of TDA can be found in Wagner et al. (2013), and it suffices to state the223

parameters that we used: the best neighbourhood size we found in initial experiments was K = 8; the224

initial displacement vector size was set to 120 meters; the scaling factor for reducing displacement vector225

sizes was 0.9, and conversely the factor for increasing sizes was 1
0.9

; and finally the amount of “distance226

noise” added to the displacement vectors was set to 40 meters. All other parameters and properties of227

TDA are the same as reported in Wagner et al. (2013).228

2.4 BlockCopy Local Search Algorithm229

In comparison to TDA which moves one turbine at a time, the BlockCopy local search algorithm described230

in Mayo and Zhen (2016) and further extended in Mayo et al. (2016) operates by copying entire groups231

of turbines at a time. This operation is illustrated in Figure 3. The basic idea to replace one random232

square region (a “block”) of a wind farm layout with copy of another square region. Any turbines in the233

destination region before the copy occurs are deleted. After the copy, if the total number of turbines in the234

layout has either increased or decreased (because of differences in the number of turbines per block), then235

turbines are either randomly added or randomly purged in order to keep the total number of turbines in236

the layout fixed.237

An advantage of this approach is that the relative configuration of turbines is maintained whenever238

a block is copied, and therefore if a particularly good configuration of turbines (for the conditions) is239

present in the layout, then this configuration will quickly replicate itself across the layout via successive240

BlockCopy operations.241

In the initial evaluation of the algorithm that was recently published (Mayo and Zhen, 2016), the242

algorithm was shown to outperform TDA on a set of benchmark problems using a cost-based objective243

function and a different far wake model than Jensen. However, the number of iterations of each algorithm244

in that paper was only 2,000. In this paper, we give both algorithms ten times as many iterations, which245

should make TDA more competitive.246

BlockCopy is the second layout optimiser used in this paper, and the single main parameter for the247

algorithm (i.e. the block size) is set in this research to 250 meters × 250 meters. The block sizes and248
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t1

t2

t3

t6

t5

t4

(a) Initial layout with selected source block.

t1

t2

t3

t7

t8

t9

(b) Final layout showing new target block.

Figure 3. Illustration of the BlockCopy operator. In this example, the left block of a small layout is

duplicated to the right hand side of the layout.

positions are fixed, non-overlapping, and completely exhaustive across the layout.249

2.5 Harmony Pattern Metric250

In order to assess the visual elegance of wind farm layouts, we selected an aesthetic pattern metric called251

harmony first proposed by Salingaros (1997) as a method of assessing the aesthetics of building designs.252

Subsequently the approach was generalised so that it could be applied to any type of pattern, as long as253

the pattern could be represented by an array of discrete symbols (Klinger and Salingaros, 2000).254

One motivation for selecting this metric over some of the more recent methods from the field of255

computational aesthetics (den Heijer and Eiben, 2010; Galanter, 2012) is that harmony does not expect256

patterns to be derived from images. Other metrics frequently assume they are being used for image257

assessment and therefore rely on the calculation of quantities such as compression ratios, or statistics258

related to image properties such as colour, which make them difficult to apply to non-image patterns.259

The harmony metric can be described as follows in the remainder of this section. We use a slightly260

more succinct notation than that presented in the original paper, mainly for improved clarity.261

Firstly, the pattern must be represented as a rectangular (preferably square) array of symbols, where262

each symbol corresponds to one basic constituent of the pattern For example, in architecture, one element263

might correspond to a curved corner and another to a window. In our approach, we make use of only two264

symbols (1 or 0) which correspond to the presence or absence of a turbine in a particular small region in265

the layout. Examples of some small symbol arrays, two of which are from Klinger and Salingaros (2000)266

are shown in Figure 4. Note that in the figure, the entries {0,1,2,3} denote symbols and H denotes the267

harmony metric which is defined next.268

Once the symbol array is available, the harmony metric is computed by first of all evaluating a269

number of functions on the symbol array. Each function concerns one particular class of symmetry, either270

reflective, rotational, or in relation to another pattern. The functions (nine of them) are listed in Table 1,271

and each returns either 1 or 0 depending on whether the pattern has the particular class of symmetry that272

the function is concerned with.273

Before showing how the overall harmony of a pattern is computed, we must first define the value274

h(a,B). This quantity, where a is a pattern and B is a set of different patterns of the same size, is defined275

as follows:276

7/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2864v1 | CC BY 4.0 Open Access | rec: 10 Mar 2017, publ: 10 Mar 2017



2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2
(a) H = 8

2 2 2 2 2 2

2 0 0 0 0 2

2 0 1 3 0 2

2 0 3 1 0 2

2 0 0 0 0 2

2 2 2 2 2 2
(b) H = 2.67

0 0 0 0 1 0

1 1 1 0 1 0

0 0 0 0 1 0

0 0 0 0 1 0

1 1 1 0 1 0

0 0 0 0 1 0
(c) H = 3.89

Figure 4. Examples of three 6×6 patterns and their harmonies, computed using levels N = {6,3,2}.

Harmony Description

h1 Symmetry about the x axis.

h2 Symmetry about the y axis.

h3 Symmetry about the y = x diagonal.

h4 Symmetry about the y =−x diagonal.

h5 ±90◦ rotational symmetry.

h6 180◦ rotational symmetry.

h7 Translational symmetry with another pattern.

h8 Translation plus reflectional symmetry with another pattern.

h9 Translation plus rotational (±90◦ or 180◦) symmetry with another pattern.

Table 1. The six possible internal symmetries and the three additional hierarchical symmetries required

to compute the harmony metric. Each h value is either 1 or 0.

h(a,B) =
6

∑
i=1

hi(a)+
9

∑
i=7

hi(a,B) (10)

The functions h1–h6 measure top-level properties of the pattern. The functions h7–h9 measure properties277

of the pattern in relation to all of the patterns in B. For these three latter functions, if a matches any of the278

elements in B, then 1 is returned; otherwise (or if B is empty) 0 is returned. Therefore h(a,B) must return279

a value either between 0 and 9 if B is non-empty, or 0 and 6 if B is empty.280

We now define Bn×n(a) to be the set of all non-overlapping n×n sub-patterns of a that can be obtained281

by dividing a into n×n-sized subarrays. It can be seen that if the size of a is 6×6 then B3×3 will have282

four distinct elements, B2×2 will have nine elements, and B6×6 will have one element. If the size of a is283

36×36, on the other hand, then |B6×6|= 36.284

The final harmony for a pattern a can thus be defined as:285

H(a) =
1

|N|(a)| ∑
n∈N

[

1

|Bn×n(a)|
∑

b∈Bn×n(a)

h(b,Bn×n(a)\b)

]

(11)

where H(a), being an average across values computed by the h function, is also in the range 0 to 9286

inclusive. In the definition of H, the set N consists of positive integers which are not greater than (and287

preferably divide evenly into) the smallest dimensionality of a. The elements of N define the sizes of the288

sub-patterns to consider. In the original paper (Klinger and Salingaros, 2000), N = {6,3,2} and we use289

the same values, although we do increase the sizes of the patterns being considered from 6×6 to 36×36.290

A brief consideration of Equation 11 should make clear fact that what is being computed is the average291

of the harmonies of each sub-pattern at the various different scales defined by N. This is represented by292

the inner summation, with each individual n×n sub-pattern being represented by b in the equation.293

Then the average harmony across scales, represented by the outer summation and division by |N|, is294

calculated. The resulting quantity is the final metric. Thus, a higher harmony indicates that the pattern295

contains more symmetries at the various scales, while a lower harmony indicates fewer multi-scale296

symmetries.297
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Problem Direction(s) Expected Speed(s) #Wind Scenarios

A {0◦} {12m/s} 1

B {0◦,10◦, . . . ,350◦} {12m/s} 36

C {0◦,10◦, . . . ,350◦} {8m/s,12m/s,17m/s} 108

Table 2. Problems from Samorani Samorani (2013).

3 OPTIMISING WIND FARM LAYOUTS FOR BOTH ENERGY EFFICIENCY298

AND HARMONY299

We define in this section two new approaches that extend both TDA and the BlockCopy local search300

method with the harmony metric explained in the previous section. We dub these new approaches TDA∗
301

and BC∗.302

The basis is fairly straightforward. Rather than optimising directly for energy efficiency (i.e. maximis-303

ing F only, which is defined by Equation 9), we instead replace F with a composite objective function F ′
304

obtained by adding F and H. This new objective function is defined as follows:305

F ′(l) = F(l)+λH(pattern(l)) (12)

Two key parts of the new approach are (i) a function pattern() that converts a layout (consisting of306

real-valued double coordinates) into a symbolic pattern array, and (ii) a parameter λ that specifies how307

much influence harmony will have in objective calculations.308

For the pattern() function, we simply divide the layout (which is square in our experiments) into309

36× 36 “cells”. Each cell maps to a symbol in a 36× 36 symbol array representing the layout, and310

corresponds to the number of turbines in that cell. As it turns out, on our test layout, the cells were311

relatively small and so they only ever contain either one turbine or no turbines due to the minimum turbine312

distance constraint.313

The choice of value for λ was a more difficult decision, however, and we therefore decided to test314

four different values: 0, corresponding to harmony having no influence on the optimisation process;315

0.001 and 0.01, corresponding to harmony having small to medium effects on the objective function;316

and 0.1, corresponding to harmony being nearly equally weighted with energy efficiency. The choice317

of these values was made because the range of the H parameter (0..9) is nine times the range of the F318

parameter (0..1) and thus small values of λ make sense. Any larger values of λ would result in harmony319

overwhelming the combined objective function.320

The case of λ = 0 is thus our baseline because it essentially reverts the TDA∗ and BC∗ approaches321

back into their original versions.322

4 EXPERIMENTS323

To evaluate our new modified objective functions, we implemented Jensen’s far wake model and used it324

to simulate a wind farm layout of size 1.5 kilometers ×1.5 kilometers, with 64 turbines to be sited. The325

turbine power curve and the other settings for the wake model are described in Section 2.1. The optimisers326

used are the algorithms described in the previous sections. Each algorithm was initialised with a starting327

random layout created by iteratively adding turbines at random locations within the layout bounds, subject328

to the constraint of not placing any two turbines too closely together, until all 64 turbines were placed.329

Samorani (2013) describes three different problems of increasing complexity for testing wind farm330

layout optimization algorithms, and we adopted these three benchmark problems for our experiments.331

The problems, referred to as A, B and C, are described by Table 2.332

Essentially, Problem A is the simplest benchmark, and comprises a single wind scenario in which wind333

blows with a single expected speed and in a single constant direction. The set of scenarios S therefore334

(used in Equation 9 for calculating F) consists of only a single element. Problem B, on the other hand,335

consists of 36 different wind scenarios, each differing only in the wind direction. Unlike Problem A, there336

is no dominant wind direction: instead , the expected wind speed is the same for all directions. Although337

this is an unrealistic setting, it is useful for testing purposes.338

Problem C, on the other hand, is the most interesting and challenging benchmark. In Problem C, as339

in Problem B, there are 36 possible wind directions. In Problem C’s case, however, for each different340

9/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2864v1 | CC BY 4.0 Open Access | rec: 10 Mar 2017, publ: 10 Mar 2017



Direction us = 8m/s us = 12m/s us = 17m/s

0◦-260◦ 0.00404 0.00865 0.0115

270◦ 0.00404 0.0107 0.0127

280◦ 0.00404 0.0121 0.0156

290◦ 0.00404 0.0141 0.0185

300◦ 0.00404 0.0138 0.0300

310◦ 0.00404 0.0190 0.0352

320◦ 0.00404 0.0138 0.0300

330◦ 0.00404 0.0141 0.0185

340◦ 0.00404 0.0121 0.0156

350◦ 0.00404 0.0107 0.0127

Table 3. Probabilities used for the 108 wind scenarios under Problem C (rounded to three significant

figures) derived from a chart in Samorani (2013). Please note that the first row the table, labelled

“0◦-260◦”, represents 27 rows, each of which have the same values. We have written these values once

only to prevent unnecessary duplication in the table.

direction, there are also three different expected wind speeds which evidently correspond to three different341

meteorological conditions. Furthermore, there is a clear dominant wind direction: the probability of the342

greatest wind speed (and therefore the greatest power production) is maximised at 310◦. In total, this343

problem comprises 108 different wind scenarios.344

Since Samorani (2013) only describes this problem benchmark graphically by means of a histogram of345

wind speeds vs. directions, in order to implement this benchmark, we reverse-engineered the probabilities346

from his published chart. The probabilities we used for Problem C are given in Table 3.347

To summarise, our experiments consist of algorithms with a new modified objective function (TDA∗
348

and BC∗) with four different λ values on three different benchmark problems. This amounts to 24 different349

configurations.350

Next, for each configuration, we ran 30 repetitions. Each repetition consisted of one run of a local351

search algorithm for 20,000 iterations. We note that the number of iterations is significantly higher than352

the number of iterations (2,000) in a previous comparison of TDA and BlockCopy (Mayo and Zhen,353

2016).354

5 RESULTS355

The summary results are depicted in Figures 5–7. The figures show the mean and maximum F and356

H values achieved by algorithm over all thirty runs. We note in this section that our use of the term357

“performance” refers to the best objective values achieved by the various algorithms and not, as is the358

common interpretation, to computational efficiency.359

Broadly speaking, then, the figures show that BlockCopy local search “outperforms” TDA in terms of360

energy efficiency when λ is small. The difference between the algorithms for Problem A is approximately361

up to 10%; for Problems B and C the difference is less pronounced.362

In terms of the harmony metric, however, the BlockCopy approach generally scores a much higher363

value than TDA, especially as λ increases. This is most likely due to the approximate preservation of364

translational symmetry, a property of the BlockCopy operator discussed earlier.365

Overall, under both algorithms, the best layouts degrade in terms of energy efficiency as λ increases.366

This energy loss is approximately 6% on average for Problem C. Analysing the final best layouts produced367

by every 30-run configuration, we found that there is a significant negative correlation between final F368

and H values. This confirms that the two objectives, energy efficiency and harmony, tend to trade off.369

Testing more advanced multi-objective algorithms may therefore be worthwhile in the future.370

Next, we were also interested in the statistically significant differences in performances for a more371

quantitative comparison.372

To this end, we performed a post-hoc Tukey Honest Significant Difference test comparing F value373

mean between all eight techniques on each of the three different benchmark problems. The test was374

performed at 95% significance. The results indicate that for Problems A and B, there is no significant375

difference in mean performance between algorithms in the following sets:376
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Figure 5. Optimisation performance over 30 runs with different λ values on Problem A
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Figure 6. Optimisation performance over 30 runs with different λ values on Problem B
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Figure 7. Optimisation performance over 30 runs with different λ values on Problem C

• {(TDA∗, λ = 0), (TDA∗, λ = 0.001), (TDA∗, λ = 0.01)}377

• {(BC∗, λ = 0), (BC∗, λ = 0.001), (BC∗, λ = 0.01)}378

• {(TDA∗, λ = 0.1), (BC∗, λ = 0.1)} (Problem B only)379

The result of these tests show that small to moderate values for λ do not significantly impact on optimisa-380

tion performance. The figures quantify the actual difference in mean performances between algorithms.381

For Problem C, the situation is a slightly more complex. The sets of algorithms with no statistically382

significant difference in mean performance are:383

• {(BC∗, λ = 0.001), (BC∗, λ = 0), (TDA∗, λ = 0.001)}384

• {(TDA∗, λ = 0.001), (TDA∗, λ = 0), (BC∗, λ = 0.01)}385

• {(TDA∗, λ = 0), (BC∗, λ = 0.01), (TDA∗, λ = 0.01)}386

• {(TDA∗, λ = 0.1)}387

• {(BC∗, λ = 0.1)}388

These results clearly are more difficult to interpret, which suggests that no conclusion can be drawn389

without more repetitions of the algorithms.390

We note at this point that tests for statistical significance only determine the likelihood of average391

algorithm performance variations. The results, however, show that best-of-run performance is often quite392

different from the mean. This is illustrated most clearly in Figure 7(a) for the algorithm BC∗ with λ = 0.1:393

the best layout identified by the algorithm is comparable to average layouts found by the other algorithms394

with λ < 0.1, even though the mean F values performance of this algorithm is quite low.395

Finally, we examined visually some of the optimal layouts found after different runs of the various396

techniques. Examples of different optimised layouts are shown in Figures 8–10.397

Focussing firstly on Figure 8, which depicts some layout solutions to Problem A, we can see clearly the398

difference between the TDA and BC. For the TDA-based layouts (Figure 8(a) and (b)), the arrangement399

of turbines has a clear random character. This is even the case where the λ value is at its highest in Figure400

8(b) – in this case, the H objective is not much different than it is in (a) where it is not optimised at all.401

In contrast, the BC∗ algorithms tend to produce more patterned layouts. For example, Figure 8(c)402

does not make use of the harmony metric at all but it still produces a degree of translational symmetry403
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(a) TDA∗,λ = 0,F = 0.967,H = 4.71
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(b) TDA∗,λ = 0.1,F = 0.954,H = 5.73
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(c) BC∗,λ = 0,F = 0.978,H = 4.81

0 250 500 750 1,000 1,250 1,500

x

0

250

500

750

1,000

1,250

1,500

y

(d) BC∗,λ = 0.1,F = 0.955,H = 7.60

Figure 8. Example layouts produce by TDA∗ (a,b) and BC∗ (c,d) on Problem A.
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(a) TDA∗,λ = 0,F = 0.896,H = 4.61
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(b) TDA∗,λ = 0.1,F = 0.867,H = 5.93
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(c) BC∗,λ = 0,F = 0.903,H = 4.76
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(d) BC∗,λ = 0.01,F = 0.891,H = 6.42

Figure 9. Example layouts produce by TDA∗ (a,b) and BC∗ (c,d) on Problem B.
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(a) TDA∗,λ = 0,F = 0.960,H = 4.63
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(b) TDA∗,λ = 0.1,F = 0.948,H = 6.06
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(c) BC∗,λ = 0,F = 0.962,H = 4.78
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(d) BC∗,λ = 0.1,F = 0.956,H = 6.65

Figure 10. Example layouts produce by TDA∗ (a,b) and BC∗ (c,d) on Problem C.

across the layout. When λ is high however, as in Figure 8(d), the translational symmetry is increased404

dramatically to produce a considerably more regular arrangements of turbines.405

A somewhat different story can be told for the examples shown in Figure 9 which depicts example406

solutions to Problem B. This benchmark problem has no dominant wind direction, which becomes evident407

when the layouts are examined. To illustrate, both algorithms optimising solely for efficiency (see Figures408

9(a) and (c)) tend to push turbines out to the furtherest possible edge of the layouts, thus maximising409

the space between turbines in all directions. The BC algorithm interestingly produces a layout that is410

somewhat grid-like in structure in this case (see Figure 9(c)).411

Finally, Figure 10 depicts selected solutions to Problem C. Similar trends can be observed in the412

solutions to this problem as were observed for the other problems. For example, BC∗ produces more413

regular layouts than TDA regardless of λ value on this problem. Also of considerable interest with regards414

to Problem is the difference in efficiencies achieved: the BC∗ algorithm with λ = 0.1 produces an optimal415

layout in the Figure with an efficiency of only about half a percent less than TDA∗’s best layout with416

λ = 0.417

As a final comment, it will be pointed out that the harmony metric is maximised for patterns that are418
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completely uniform. For example, see Figure 4(a). The practical effect of this bias is that the search is419

more likely to be focussed on sparse layouts – i.e. layouts with several empty blocks. This is because420

empty blocks correspond to uniform patterns which maximise H.421

To illustrate, see Figure 8(d) for an extreme example, and Figure 10(d) for a less extreme example. The422

practical consequences of this are considerable, since less land can be used for the same or approximately423

the same efficiency. This may positively impact on both the cost of land (e.g. see Chen and MacDonald424

(2012)) and the effect on wildlife (e.g. see the survey on environmental implications of wind energy by425

Tabassum-Abbasi et al. (2014)) and warrants further investigation as well. This finding also suggests that426

purely regular approaches (e.g. Neubert et al. (2010)) may not be ideal solutions to this problem because427

such approaches distribute turbines uniformly across the layout without any chance of free space areas428

such as those in figures appearing.429

6 CONCLUSION430

To conclude, we have investigated a metahuristic optimisation approach to solving the wind farm layout431

optimisation problem, in which one objectives concerns maximising layout aesthetics while the other432

concerns maximising energy efficiency. The aesthetics of layouts is an important consideration which433

most other literature in this field to date has not considered. Our experiments reported here were successful434

and encourage future research to further refine this initial approach. In particular, while the Jensen model435

is adequate for this initial work, future work should explore more realistic wind farm simulations that436

better account for both wind (e.g. Feng and Shen (2015a)) and partial wakes (e.g. Feng and Shen (2015b)).437

As mentioned in the Introduction section, there are two main limitations of the work presented here.438

Firstly, our approach is largely constrained to two dimensional layouts, as would typically be encountered439

offshore or on sites that are plains. Clearly therefore, Salingaros’ approach must be generalised to three440

dimensions before the same ideas can be applied to other types of site. Our current thinking is that there441

are two possible approaches to this generalisation: (i) topography could be included in the definition of442

the symbols, which would complicate the definition of what a symbol is somewhat (e.g. a turbine on the443

top of a knoll would result in a different symbol compared to a turbine at the same relative position but in444

the middle of plain); or alternatively (ii) the method could be generalised to include transformations in the445

z dimension – this approach would require expanding the set of symmetries listed in Table 1 to include all446

3D symmetries as well.447

The second main limitation of this work is that it focusses on the overhead view of the layout only and448

assumes by default that aesthetics is uniformly important across the entire layout. This is in fact a false449

assumption for farms located near places that people frequent such as nearby towns, tourist attractions450

and highways. In such situations, the aesthetics of the portion of the farm in clear view of the people will451

be far more important than the parts of the farm that are obscured. Therefore vantage point is important in452

this situation. We therefore feel that our “global” approach to aesthetics could be complemented by a453

corresponding “local” approach that takes into account viewpoint. The local approach could take an image454

aesthetics-based approach and render the farm and its surrounding terrain, skyline and other features as an455

eye-level scene, and then assess its aesthetics using machine learning. Marchesotti et al. (2015) is one456

example of such an approach that could be gainfully employed here.457
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