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ABSTRACT: 

Urban search and rescue (USaR) teams require a fast and thorough building damage assessment, to focus their rescue efforts 

accordingly. Unmanned aerial vehicles (UAV) are able to capture relevant data in a short time frame and survey otherwise inaccessible 

areas after a disaster, and have thus been identified as useful when coupled with RGB cameras for façade damage detection. Existing 

literature focuses on the extraction of 3D and/or image features as cues for damage.  However, little attention has been given to the 

efficiency of the proposed methods which hinders its use in an urban search and rescue context. The framework proposed in this paper 

aims at a more efficient façade damage detection using UAV multi-view imagery. This was achieved directing all damage classification 

computations only to the image regions containing the façades, hence discarding the irrelevant areas of the acquired images and 

consequently reducing the time needed for such task. To accomplish this, a three-step approach is proposed: i) building extraction from 

the sparse point cloud computed from the nadir images collected in an initial flight; ii) use of the latter as proxy for façade location in 

the oblique images captured in subsequent flights, and iii) selection of the façade image regions to be fed to a damage classification 

routine. The results show that the proposed framework successfully reduces the extracted façade image regions to be assessed for 

damage 6 fold, hence increasing the efficiency of subsequent damage detection routines. The framework was tested on a set of UAV 

multi-view images over a neighborhood of the city of L’Aquila, Italy, affected in 2009 by an earthquake. 

1. INTRODUCTION & RELATED WORK

Early post-disaster efforts, in particular the delineation and 

optimization of urban search and rescue (USaR) deployment, 

require fully automated, fast and detailed building damage 

assessment. This detailed damage information aids in the 

identification of viable rescue sites and is commonly performed 

by an USaR mobile team (United Nations 2015). However, in a 

hazard event such as an earthquake, ground observations have 

several limitations: limited access/points of view, procedure 

requiring a substantial amount of time and the need of sufficient 

USaR personnel. 

Remote sensing has been recognized as a critical aid in building 

damage assessment (Dong and Shan 2013). Optical (Dell’Acqua 

and Polli 2011; Vetrivel et al. 2017), radar (Gokon et al. 2015; 

Marin et al. 2015) or laser instruments (Armesto-González et al. 

2010; Khoshelham et al. 2013) have already been used 

successfully in building damage detection. These, mounted on 

aerial platforms may acquire data in a short time interval and 

allow the automatization of the damage detection procedures 

(Dell’Acqua and Gamba 2012).  

In particular, aerial images have been demonstrated to be suited 

for building damage assessment (Dong and Shan 2013; Vetrivel 

et al. 2016b). The use of overlapping images allows for the 

computation of 3D point clouds, adding geometric information to 

the radiometric content of the images. While the point clouds are 

usually used to detect damages in the form of geometrical 

deformations (e.g. collapsed building), the images are used to 

detect damage evidences which may not be clearly represented in 

the point cloud (e.g. cracks or spalling) (Fernandez Galarreta et 

al. 2015; Sui et al. 2014; Vetrivel et al. 2016a). 

* Corresponding author 

Nadir aerial imagery readily depicts totally collapsed buildings 

or damaged roofs (Ma and Qin 2012). However, nadir imagery is 

physically constrained by its capture geometry and cannot 

directly observe the façades. Even a pancake collapse of a 

building or a partially collapsed façade with an otherwise intact 

roof cannot be directly identified.  

To overcome this limitation, airborne multi-view images started 

to be exploited for building damage assessment. With this capture 

geometry it is possible to survey directly the façades, and 

consequently, assess them for damage evidences (Gerke and 

Kerle 2011). Nonetheless, unmanned aerial vehicles (UAV) with 

their fast data acquisition, centimetre resolution, high revisit 

capability, low cost and possibility of surveying otherwise 

inaccessible or dangerous areas, seem to be the fit-for-purpose 

platform for USaR building damage assessment. 

Similar to the airborne, the UAV multi-view images are usually 

collected with enough overlap to derive a 3D point cloud through 

the computationally expensive dense image matching (DIM). 

This allows to assess geometrical deformations through the 

extraction of 3D features (Fernandez Galarreta et al. 2015; 

Vetrivel et al. 2017). Assuming that a given façade is still 

standing or is only partially collapsed, the image information 

becomes critical to identify damage evidences that may not be 

translated into any deformation in an image-derived point cloud 

(Fernandez Galarreta et al. 2015). The relevance of the images 

for damage detection was also pointed out by Vetrivel et al. 

(2017). The authors indicated the negligible increase in accuracy 

when using 3D features and convolutional neural network (CNN) 

features in a multiple-kernel-learning approach, instead of the 

CNN features alone. This approach reached an average damage 

detection accuracy of 85%, solely using CNN features derived 
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from labelled image samples from UAV datasets, not containing 

samples from the dataset being analysed for damage. 

When the 3D information is not generated, the time needed for 

the damage detection part is reduced. However, the processing 

time is still lengthy, due to the high amount of images that are 

usually collected in such UAV-multi-view surveys. 

Procedures like the simple linear iterative clustering (SLIC) 

(Achanta et al. 2012) segmentation are often used as starting 

point for current object-based or damage classification 

procedures, as in the CNN approach indicated earlier. These are 

applied to every image of a given dataset, which is not efficient. 

The temporal inefficiency is not a problem in many applications 

but limits the use of such methods in the USaR context. 

The objective of this contribution is to propose a more efficient 

approach for a thorough façade damage detection using UAV 

multi-view imagery. Specifically, the aim is to avoid the 

computationally expensive procedures, and to direct all damage 

classification computations only to the images and image 

portions containing the façades, hence discarding the irrelevant 

areas of the captured UAV images. To accomplish this, a three-

step approach is proposed, taking advantage of the rapid data 

acquisition and ready revisiting capabilities of the UAV (see 

Figure 2): i) extract the building’s roof outline from the sparse 

point cloud generated from nadir images alone; ii) use the latter 

as a proxy for façade location in the oblique images, using the 

raw image orientation information of the UAV, and iii) damage 

detection only on relevant patches of the extracted façade image 

patch using the CNN as in Vetrivel et al. (2017). More details 

regarding the method are given in section 3.  

The remainder of the paper contains in section 2, a description of 

the data used in the experiment. Section 4, contains the results,  

followed by discussion and conclusion, in sections 5 and 6, 

respectively. 

 

2. DATA 

The proposed approach was tested on a set of UAV multi-view 

images, captured using a Sony ILCE-6000 mounted on an Aibot 

X6 hexacopter. It comprises a subset of 281 nadir images, and 

four subsets of oblique images (891 images in total, one set for 

each cardinal direction). These were captured using a flying 

height of approximately 100 m with 70-80% forward overlap and 

60-70% side lap. The average ground sampling distance is 

~0.04m. 

The captured images depict the damage caused by the M5.9 April 

6th 2009 earthquake in L’Aquila, Italy. These were acquired over 

a city block of approximately10 ha. The scene contains partial 

collapses and buildings with smaller signs of damage (e.g. cracks 

and spalling). In spite of the image capture only being performed 

in 2016, the area of the city covered was abandoned and still 

contains the damage evidences from the 2009 earthquake, with 

only very limited reconstruction taking place. Due to the time 

interval between event and capture, and since the area is still 

largely untouched since the earthquake, it contains several areas 

with high vegetation.  Hence, many of the façades are not visible, 

even in the oblique images (see Figure 1), making this dataset 

more challenging for research purposes. 

 

 

 

 

 

 

 

 

  

Figure 1 Three examples of vegetation occlusion in the UAV 

multi-view L'Aquila dataset 

 

3. METHOD 

The central idea behind the targeted efficiency increase in façade 

damage mapping, is to reduce not only the number of images that 

are used in a façade damage detection routine, considering a 

conventional grid flight; but also to reduce the area of the oblique 

images to be fed for damage classification. In a first stage the 

façades are defined. This façade location allows to select only the 

oblique images that contain a given façade. Moreover, knowing 

the façade location also enables the identification of the oblique 

image patch corresponding to a given façade. Only this patch is 

then fed to the damage detection step. The second core idea 

regarding this method is to avoid that the whole façade image 

patch is fed to the damage assessment phase. The façade image 

patch is divided into equilateral patches of a given size, where 

only patches with early evidence of damage are fed to the damage 

classification step, which will use a pre-trained CNN, more 

details in section 3.3. 

The approach can be divided in three main steps as presented in 

Figure 2. The initial step is to detect the buildings, that will be 

used as proxies for the presence of façades. The second step is to 

use the façade locations to extract the façade patch from the 

oblique images. The last step refers to the façade damage 

detection on the previously extracted façades.  

 

 

 
Figure 2 Overview of the method - divided into the three main 

components 
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3.1 Building detection and façade definition 

The first step of the method is to locate the façades, as shown in 

Figure 3. Considering that every façade is connected to a building 

roof, this need to be located and a building hypothesis 

formulated, to subsequently define the façades. Usually the DIM 

point cloud is used as the main source of information to perform 

the building extraction phase. This is due to the general 

assumption that building roofs are elevated (above ground) 

objects composed by planar surfaces. 

 

 
Figure 3 Building extraction and facade definition flowchart 

 

Since one of the aims of the proposed approach is to avoid the 

computationally expensive DIM, it is hypothesized that to detect 

the building’s roof, the (sparse) tie point  cloud suffices. A 

conventional UAV nadir flight generates a large amount of 

images, and it is expected that the sparse point cloud is dense 

enough to derive building information. To reduce the number of 

outliers only tie points present in at least three images are 

considered. 

The sparse point cloud is generated using Pix4D, which also 

generates the internal camera parameters and the updated 

orientation of the images. In a first step, a distinction is needed 

from on and off ground points, to identify the elevated objects 

present in the scene. This is achieved recurring to LAStools  

software package which uses the method proposed by Axelsson 

(2000).  Due to the common heterogeneity of sparse point clouds, 

since these rely on the texture present in the scene to compute the 

point correspondences, isolated points are removed with 

lasnoise. This is performed to avoid the inclusion of these 

isolated points in the building detection phase. With the isolated 

points removed, the following step is to differentiate between on 

and off ground points, using lasground. This further allows to 

obtain a normalized height surface by differencing each of the off 

ground points by its closest on groud point. 

1) Building detection from the off ground points: the off 

ground points of the sparse point cloud are segmented into 

disjoint planar segments as described in Vosselman (2012). An 

initial set of 10 points is used to estimate the plane equation and 

initialize the region growing algorithm. An initial distance 

threshold of 0.3 m is used to determine these points. New points 

are added considering a radius of 2 m to define the local 

neighbourhood: only those that have a distance from the plane 

lower than 1 m are added. These adopted parameters are 

intentionally lax in order to address the low and heterogeneous  

point density of some building roofs. Since there still may exist 

points on vertical elements of building roofs, segments with a 

slope greater than 70% are discarded. 

The resulting segments are then merged into building regions 

using a connected component analysis. 

2) Façades per detected building: the points belonging to a 

given building  region are initially projected into the xy plane. 

The proposed algorithm then assumes that each building has 4 or 

more facades and that they are mutually perpendicular. Using this 

assumption, the points are then fitted with a minimum-area 

bounding rectangle (Freeman and Shapira 1975), defining, in this 

way, the 4 main façade directions of a building region. The planes 

of the main façades directions are finally computed considering 

the same X, Y coordinates of the bounding rectangle corners and 

assigning as Z values the mean roof height and the ground mean 

values, respectively.  

 

3.2 Façade extraction from oblique views 

The façade regions defined before are used to locate their 

corresponding image patch on the oblique images, see Figure 4. 

The images are not relatively oriented by means of 

photogrammetric procedures but using the raw GNSS/IMU 

(X,Y,Z,ω,φ,κ) information from the UAV navigation system. 

The accuracy of such raw GNSS/IMU data can range from 2-10m 

for the positions and 0.5-5 deg for the attitudes (Eling et al. 2014).  

 

 
Figure 4 Flowchart regarding the facade extraction from the 

oblique images  

 

A projection matrix is built using the camera internal parameters 

and the raw orientation from the UAV stored in the image as exif 

metadata. With the projection matrix and the 4 3D corners of the 

façade it is possible to re-project the 3D corners into the image. 

The extracted image patch can then be rectified defining the real-

world plane formed by the 4 3D façade corners. However, since 

the raw UAV image orientation is not accurate, the extraction of 

the patch containing the whole façade can be a difficult task. The 

extracted image patch is therefore buffered in image space.  

The extracted image patch now contains other objects from the 

scene in its background, apart from the façade itself. This patch 

needs to be refined before its use in the damage assessment 

because: 1) it increases the image area to be analysed; 2) 

neighbouring objects could also contain damaged areas, 

hindering the damage classification of the analysed façade. 

Hence, a further refinement of the façade location is performed 

using two main sets of information: 1) salient object probability 

image (Tu et al. 2016),  and 2) line segments analysis on the 

façade (Yi Li and Shapiro 2002). 

1) Salient object probability image: the problem to distinguish 

the façade from its neighbouring objects in image space is in 

accordance with the objective  of salient object detection, which 

aims to distinguish the figure from the background in a given 

image (Borji et al. 2015). A real-time salient object detection 

algorithm (Tu et al. 2016), using a minimum spanning tree image 

representation, is used as one set of information to distinguish the 

façade from the background resulting from the applied buffer. 

This salient object detection approach uses the image boundary 

pixels as seed points for the background detection. In this 

approach, the boundaries of the buffered image patch extracted 

before are assumed to be dissimilar from the façade. The result 

of the application of this algorithm is an image containing the 

probability of a given pixel to belong to the figure, in this case, 

the façade.  This probability map is then transformed to a binary 

image, where only the blob occupying the largest image area is 

considered. 
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2) Façade line segments analysis: the images should provide a 

clear indication of horizontal and vertical elements on the image 

façade. These lines should appear as perpendicular in the rectified 

patches. The vertical and horizontal line segments are extracted 

using the line segment extraction as described in (Košecká and 

Zhang 2002), which uses the Canny edge detector (Canny 1986) 

followed by a line fitting stage (Kahn et al. 1990). Line segments 

which are not vertical nor horizontal (within a 10 degree 

tolerance) are not considered. In the case the intersection between 

a vertical and a horizontal line segment is on, or close to the edges 

of the extended line segments, these are considered as façade line 

segments (Yi Li and Shapiro 2002). 

The salient object detection blob and the façade line segments 

analysis are finally merged to detect the actual façade within the 

buffered façade image patch. Every façade line segment which 

overlays with the salient object blob is considered as part of the 

façade. The façade area is defined by the image coordinates of 

the detected façade lines: the maximum and minimum of both x 

and y pixel coordinates are used to define the rectangle to crop 

the façade image patch. 

 

3.3 Damage assessment on the refined façade image patch 

The cropped façade region is used as input for the damage 

assessment step. This patch is further divided into equilateral 

patches (50px size), these are the unit of analysis. 

The developed method exploits the presence of vertical and 

horizontal elements on the rectified patch to quickly analyse the 

façade. The gradient information has previously been used in 

contributions aiming at façade decomposition (Recky and Leberl 

2010; Teeravech et al. 2014). In this case, the objective is to early 

select patches in which the gradient information indicates the 

patches that are candidates for damage. The vertical and 

horizontal gradients are computed for each patch and posteriorly 

projected into the horizontal and vertical axes. For each axis, the 

local maxima and minima of the gradients are computed, and its 

concentration per axis is determined (peaks per pixel ratio). 

Figure 5 contains two examples (one damaged and one non-

damaged) of the projection of the vertical and horizontal 

gradients. The peaks ratio for the non-damaged patch (Figure 5, 

left) is of 0.11 and 0.12, respectively for the horizontal and 

vertical projection of the gradients. The peaks ratio for the 

damaged patch (Figure 5, right), is of 0.45 and 0.33, respectively 

for the horizontal and vertical projection of the gradients. A 

candidate for damage is considered when the ratio peaks/pixel is 

greater than 0.25 on both axes: this number has been 

experimentally defined and it is intentionally low in order to 

avoid discarding damaged patches. The image patches where 

anomalies are detected are further analysed using a pre-trained 

damage classification CNN as described in Vetrivel et al. (2017). 

The used model allows to distinguish between damaged and 

intact regions and it is pre-trained with a set of approximately 

8000 training samples (4000 for each class) obtained from 

several sets of UAV multi-view imagery.  

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5 Projection of the vertical and horizontal gradients :in a 

non-damaged façade patch (left) and damaged façade patch 

(right). 

 

4. RESULTS 

The described method has been applied to the set of data 

presented in section 2. For each sub-section of the method, a 

corresponding sub-section in this results section is given.  

 

4.1 Building hypothesis generation and façade definition 

This sub-section presents the results for the building detection 

and façade definition from the sparse point cloud. 

Figure 6 presents the sparse point cloud and the corresponding 

detected buildings (coloured). As can be noted in this figure, the 

sparse point cloud density is not homogenous throughout the 

project area, as it highly depends on the texture of the different 

regions and the image block overlap. 

 

 
Figure 6 Sparse point cloud, left ; building hypothesis 

(coloured) overlaid on the sparse point cloud , right 

 

Three examples of the façade definition are given in Figure 7. As 

can be noted, the proposed approach successfully defines the 4 

main façade directions. Since the building edges are usually good 

candidates for tie points, most of the extracted building regions 

had a greater concentration of points in those regions. As such, 

even in the case the point density is low, the main façade 

identification was successful. This is central to correctly define 

the minimum bounding rectangle. 
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Figure 7 Façade definition. Nadir view of 3 buildings, left and 

corresponding xy projected sparse points (blue points), and 

minimum area bounding rectangle (red rectangle), right 

 

With this approach only a building was not identified, because it 

was partially covered by vegetation, this biased the plane based 

segmentation and the following building detection. Another issue 

was the inclusion of points outside the building roof see Figure 

8, that happened in one building, hindering the following façade 

definition. 

 

  
 

Figure 8 Details of 3 detected building roofs. Left nadir image; 

right sparse point cloud overlaid with the detected buildings - red 

circle indicates a segment which is part of the vegetation but is 

identified as part of a roof segment. 

 

4.2 Façade extraction from oblique views 

This subsection presents the result of the façade extraction from 

the oblique images, using the façades defined previously. The 

used buffer was 350px, to account for the use of the raw 

orientation coming from the UAV. This buffer was sufficient to 

successfully capture the whole extent of the façades.  

From the 40 considered buffered façade image patches, only 2 

were incorrectly extracted due to an incorrect result in the salient 

object detection (see Figure 9, a and d). This resulted in the 

extraction of only a small patch of the whole façade. The edges 

of the buffered image patch in Figure 9 a, contain radiometric 

similarities with the façade itself. This hindered the real-time 

salient object detection (since this approach assumes that the 

image edges are background hence a cue to distinguish it from 

the façade). The façade line segments, in this case, enclosed only 

a part of the façade.  

 

a) b) c) 

   
d)

 

e)

 

f) 

 
Figure 9 Three examples of the salient object detection results, 

second row (white regions show a higher probability of the 

pixel pertaining to the façade) 

 

Figure 10 and Figure 11, show the result of the application of the 

salient object detection combined with the façade line segments 

to define the façade image patch. In these figures is also visible 

how the façade line segments information complemented the 

salient object detection. As it can be noticed in Figure 10, there 

was no significant impact of the building having more than 4 

façades, due to the fitting of the minimum-area bounding 

rectangle. In this case, and since the other smaller façade shared 

the same plane orientation, the rectification procedure had a 

different scale for each  façade plane. On the other hand, the 

results depicted in Figure 11 were hindered by both the presence 

of façade line segments of a neighbouring façade and by the 

inclusion of that same façade in the salient object detection. In 

this case, however, the whole façade patch was still considered. 

a) 

 

b) 

 

c) 

 

d) 

 
Figure 10 Results of the façade line segments and salient object 

map: a) façade line segments overlaid in buffered façade patch, 

b) real-time salient object, c) final refined facade patch, d) binary 

image of the salient object detection in b) 
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a) 

 

b) 

 
c) 

 

d) 

 
Figure 11 Results of the façade line segments and salient object 

map: a) façade line segments overlaid in buffered façade patch, 

b) real-time salient object, c) final refined facade patch, d) binary 

image of the salient object detection in b) 

 

4.3 Damage assessment on the refined façade image patch 

This sub-section presents the results for the damage detection on 

the refined façade image patch. 

Table 1 provides the damage classification results, considering 

the building façades as unit of analysis. Considering 11 damaged 

façades, 10 contained at least one patch classified as damaged. 

However, 1 façade was incorrectly classified as not-damaged. 

Considering the non-damaged façades, 23 were correctly 

identified as not-damaged, while 6 were incorrectly classified as 

damaged.  

 

Façade damage classification  No. 

Correctly classified as damaged 10 

Incorrectly classified as damaged 6 

Correctly classified as not-damaged 23 

Incorrectly classified as not-damaged 1 

Precision = 62% ; Recall= 90% ; Accuracy= 83% 

Table 1 Results of the façade damage classification on 40 façades 

 

The visual outcome of the damage classification is depicted in 

several examples in Figure 12. Ground regions and overhanging 

elements of the façade contain most of the false positives.  

Table 2 provides the results regarding the number of the 

classified patches on all the façades. The projection of the 

gradient information in the form of a peaks/pixel ratio allowed to 

successfully omit  1233 patches from the CNN damage 

classification. A total of 179 image patches were classified by the 

CNN, 83 of which as damaged. 

 

Patches assessed 

for damage 

Patches 

confirmed 

damaged (CNN) 

Patches not 

considered 

(gradient peaks) 

179 83 1233 

Table 2 Results regarding the early selection of patches to be fed 

to the CNN, considering the 40 façades 

 

 

 

 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 12 Refined façade damage detection results: a, b, c and d. 

Damaged patches overlaid in red. 
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5. DISCUSSION 

The use of the sparse point cloud to extract the buildings, through 

a plane base segmentation followed by a connected component 

analysis,  has been validated on 40 façades. In spite of the 

heterogeneous 3D point density in such a point cloud, only one 

building was not identified due to vegetation occlusions that 

hindered the plane based segmentation. However, in cases where 

the  building roof does not reflect the actual orientation of the 

façades, these are not properly rectified, hindering the consequent 

analysis. 

The buffer used in the extraction of the façade image patch  also 

sufficed to account for the poor raw orientation from the UAV 

navigation system. However the adoption of  the same buffer size 

for every façade is not optimal due to the variability in the image 

georeferencing inaccuracies and due to the varying façade size. 

The posterior façade patch refinement using line segments and 

the salient object image, successfully depicted the façade 

location. However, 2 façades were incorrectly extracted due to a 

wrong salient object detection. 

The use of the projection of the vertical and horizontal gradient, 

allowed to decrease the  refined façade image patch regions to be 

processed by the damage classification step. Only approximately 

1/6 of the total regions contained in the refined façade image 

patch were considered for classification. 

The results of the damage classification using a CNN, at a refined 

façade image patch level, are in accordance with the results 

obtained in Vetrivel et al. (2017). Scene characteristics like 

ground regions, overhanging objects in the façade, construction 

sites and roof tiles, are the main cause of the false positives (6) 

reported in the results. 

In spite of the increase in efficiency it must be noted that the 

façades which were wrongly defined from the sparse point cloud 

or incorrectly extracted from the images, are not assessed for 

damage. This is one of the main drawbacks of the proposed 

method. 

 

6. CONCLUSIONS 

In this paper a methodology to increase the efficiency of façade 

damage detection using a set of UAV multi-view imagery was 

presented. The higher productivity of the method was achieved 

by reducing the number of images and image regions to be 

analysed for damage in a three step approach. 

One of the major contributions of the presented approach was the 

possibility of using the sparse point cloud to detect building 

roofs. This allowed to omit the generation of the computationally 

expensive DIM, increasing the speed of the façade damage 

detection. 

The 4 main façade directions, together with the raw orientation 

information from the navigation system of the UAV, were used to 

identify the façades in the oblique images. Due to the 

uncertainties of such orientation information, a wide image 

buffer was adopted. Future work will address this issue, by 

relating, the façade size with the size of the buffer to apply.  

The salient object detection coupled with the façade line 

segments, successfully identified the façade in the buffered 

image patch, reducing the area to be used in the subsequent 

damage classification step.  

The damage detection using the CNN approach gave 6 false 

positives. The performances of the CNN for this step will be 

addressed in a future work by re-designing the network (as 

suggested in Cheng et al. (2017)) and by extending the used 

training dataset. In this regard, the reduced number of post-

earthquake UAV multi-view datasets could represent a limiting 

factor. Another possibility to improve these results would be to 

consider more than one image to assess the damage state of a 

given façade.  

The presented methodology is still an on-going work, the final 

goal would be to reach a  near-real-time façade damage detection. 

In this regard, a new way to acquire images could be considered, 

planning the acquisitions of the oblique views on the basis of the 

buildings extracted from the sparse point cloud, hence decreasing 

the amount of collected images. Moreover, the information 

provided by nadir images may be also used to detect evidences 

of façade damage, such as blow out debris or rubble piles in the 

vicinity of the building. This would enable a prioritization of the 

planed oblique views. 
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