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Abstract

There has been great interest in the use of linkographies to describe the events that take place in design
processes with the aim of understanding when creativity takes place and the conditions under which creative
moments emerge in the design. Linkography is a directed graph network and because of this it gives
resemblance to the types of large complex graphs that are used in the space syntax community to describe
urban systems. In this paper, we investigate the applications of certain measures that come from space
syntax analyses of urban graphs to look at linkography systems. One hypothesis is that complexity is created
in different scales in the graph system from the local sub-graph to the whole system. The method of analysis
illustrates the underlying state of any system. Integration, complexity and entropy values are measured at
each individual node in the system to arrive at a better understanding on the rules that frame the
relationships between the parts and the whole.
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INTRODUCTION

A linkography is a representation of the series of events that can be observed to occur and can be used to
help analyse processes of creativity during a design session. The difference between linkography and spatial
system is that linkography has a time factor. A linkograph is constructed from nodes that represent each
segment in the design process (according to time) and is based on parsing the dependency relationships
between those nodes.

Because it is a representation that traces the associations of every single utterance, the design process can
be looked at in terms of a linkographic pattern that displays the structure of the design reasoning. The
venues of dense interrelations (clusters of the design utterances) are overtly highlighted on the graph and
can be further interpreted through the emerging artefacts along the process.

The linkography system is hypothesised to deliver a variation of complexity degrees on different occasions.
The aim is to uncover the significant events that might be associated with creative insights and inspect the
artefacts that are formulated at such events. Linkography and urban systems deal with multi-level
complexities, the overall goal of the proposed analytical method is to reveal the relationship between the
parts (sub-networks) that constitute the system and the whole.

The relationship between the sub-systems or the partial assemblies is inspected looked at from two
perspectives, information theory and entropy theory, to see whether a conflict occurs between
uncoordinated sub-orders despite being orderly structured (Arnheim, 1971; Laing, 1965) or whether an
order system underlies an entire disorder state (Planck, 1969) — an entity that is dependent on a random
dispersion of limited sub-orders (Arnheim, 1971; Kuntz, 1968).

A computational model is proposed that covers the dependency relationships occurring between nodes, all
of which appear to have a sophisticated group of relations. The algorithm used is inspired by the T-code
string measure developed by Titchener (1998a; 1998b; 1998c; 2004).

1. APOINT OF DEPARTURE

A gridiron urban system is perceived as a highly organised structure if it delivers different chances to
navigate from one place to another. It is highly intelligible in this circumstance, but to some extent it can
become confusing. In a very symmetrical and identical system, the explorer has equal chances to move from
one point in the system to another and might get lost. Since intelligibility is the correlation between
connectivity and integration, hence the same correlation value is constituted for any element in this
particular system.

In reality, no system is perfectly set up as a 100% identical gridiron. Every city has some sense of
differentiation that adds to the structure and provides the capacity to grasp the relation between the
“whole” and the “parts”. The example of two forests, natural-spontaneous and farmed-grid, reflects two
different states. In the first case, trees are not aligned and the distribution is chaotic, while in the second,
trees are strictly planted along straight lines and the arrangement is similar everywhere in the network. In
both cases, systems disorientate the explorer from a proper navigation. Yet the highly ordered forest and
the disordered one are both considered extreme examples in terms of intelligibility.

What deserves attention is how we construct a system; a city for instance. Hanson (1989) has pointed that
order might be misleading about its function and that it could be a manifestation of another underlying
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state. Hence, the importance of distinguishing this kind of relationship is crucial to reveal the real state at
each stage of a multi-level complex system. What we mean is that something might occur on the system
midway between total chaos and total order, a certain point where it starts to behave differently from the
preceding state(s).

The demonstration of the gridiron order, despite being a singularity in intelligibility terms, is as unintelligible
as the total chaos state. Both systems deliver lack of intelligibility for the thinking subject. Order, in this
particular case, is just the same as complete disorder in delivering a lack of intelligibility. However, if we
impose a differentiation on the gridiron by adding some diagonals and routes, the whole structure has not
drastically changed but its intelligibility moves from one state to another (the system becomes more
intelligible otherwise).

In fact, working with systems that have multi-level complexity on different scales is common in urban and
linkography systems. One view is that there is a clear order and that the structure of the system can be
easily grasped and understood. The other view is that there is no rule in the complex world and that it is
actually just random. The paradox is that if it is truly random is there a simple way to describe it? Can a
complex world be reduced to a single value?

This paper proposes a hypothesis that in multi-level complex systems high orderliness tends to become less
complex overall, and therefore a highly linked node delivers few choices and probabilities. The alternative to
inspecting the system is therefore to measure the probability for each node and complexity at each level (at
every sub-network) included within the system. In doing so, we propose the adoption of strings of
information to code probabilities at each point and compute the information content from it. The practical
aims of using this method are twofold.

First, since all the inspected sub-networks have the same sub-graph size effect, the measures of strings at
each point in the system are already relativised and eligible for comparison. This is because the information
is extracted for all the possible relations that could be made from any point in the system to the others (the
sub-graph size always equals n-1).

Second, integration values are also relativised to the sub-graph size. Thus, integration, complexity, rate and
content of information are relativised parameters that we look at in order to specify the relation between
the parts constituting the whole.

2. ENTROPY AND INFORMATION

Space syntax and design process are multi-scaled complex contexts. The information content at different
scales reflects the complexity at each level in the system. In the proposed method, the system can be read in

two ways. The first looks at the probability of choice at any “item”, “point”, or “node”, while the second
looks at the rate of information measured for a “sequence” of items.

The methods correspond to entropy theory and information theory respectively. But while entropy is

concerned with “sets” of individual items, information is concerned with the individual “sequence” of those
items. The entropy theory asserts that a “set” should be treated as a “microstate”; the microstates

constitute the complexions of the overall process.” At this point, the main object of inquiry in information

! Arnheim (1971) described the microstate in the principle of entropy theory as: “the particular character of any microstate does not
matter; its structural uniqueness, orderliness or disorderliness does not count. What does matter is the totality of these innumerable
complexions adding up to a global macrostate of the whole process. It is not concerned with the probability of succession in a series of
items but with the overall distribution of kinds of items in a given arrangement.”
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theory is to investigate the probability of occurrence by establishing the number of possible sequences. The

“sequence” of items is not covered in entropy theory but is necessary for information theory. Table 1
illustrates the differences that distinguish the two perspectives.

Entropy theory Information theory

= |tems constitute the main characteristics of the Structure means nothing is better than those certain

Structure

structure “sequences” of items that can be expected to occur
= Concerned with “sets” of individual items = Focused on the individual “sequence” of items
= |s about the “overall distribution” of kinds of items in a = |s about “sequences” and “arrangements” of item.
Central given arrangement
points .
" The more-rer‘notej the arrangem.ent of setsis from a = The less predictable the sequence, the more information
ra.mdonrf distribution, the Iovyer its entropy, and the the sequence will yield, and the more remote its
higher its order representation representation from order
= A randomised distribution will be called by the entropy = A highly randomised sequence will be said to carry
theorist “highly probable” and therefore of low order “much information” by the information theorist because
Example . o . . T . .
because innumerable distributions of this kind can information in this sense is concerned with the
occur probability of this particular sequence
= For example, Kan and Gero’s (2005a; 2007; 2008 . , .
L P R ( ) = For example, Titchener et al.’s (2005) computation of
estimation method to acquire entropy from . i .
. strings of information
linkography
Application .

For example, Brettel’s (2006) adoption of Titchener’s
(2004) t-code measures to estimate entropy for
navigation routes

For example, Turner’s (2007) adoption of Shannon’s
formula to estimate entropy for urban systems with
Depthmap

Table 1: The differences that distinguish entropy theory and information theory

An observer would find that the most highly ordered system provides maximum information content and
thus is opposite to probabilistic entropy since the prediction is very high. If total disorder provides maximum
information as well, then maximum order is conveyed by maximum disorder (Arnheim, 1971). However the
distinction can be made through a parameter that measures the underlying system of any order. Since
information is a crude measure that confirms a clear increase in regularity overall, extreme regularity and
apparent similarity are likely to deliver a very low probability value.

Entropy grows with the probability of a state of affairs while information does the opposite and increases
with the improbability. The less likely an event is to happen, the more information its occurrence represents.
The least predictable sequence of events will carry the maximum information. Hence, this paper focuses on
how entropy could be estimated for multi-level systems in a way that views the relationship between the
nature of complexion between the partial assemblies that are made at each point and the whole. The
proposed method therefore adopts entropy and complexity as independent measures to assess complex
systems such as linkography. However, it should be noted that the structure state of any system needs a
variation of characteristics in order to construct an intelligible system.2 The next section reviews methods to
estimate entropy and introduces the computational method of strings of information.

2 Referring back to the example of the gridiron system, all elements deliver the same correlation value between connectivity and
integration, however any imposed differentiation on the gridiron cause variations on intelligibility, and then system changes from a
state to another.
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3. ENTROPY OF SPATIAL SYSTEMS AND LINKOGRAPHY

The estimation of entropy for spatial systems is based on the frequency distribution of the point depths
(Turner, 2007). The point depth entropy of a location, s;, is expressed by utilising Shannon’s formula of
uncertainty as shown in the equation:

dmax
Point Depth Entropy for spatial system = si=> — P logs /4 L. (1)
d=1

Where d.x is the maximum depth from vertex v; and Py is the frequency of point depth d from the vertex

Estimating point depth entropy in this way shows how orderly a spatial system is structured from a certain
location. The method is a functional equation based on “mean depth”. In Depthmap, the information from a
point is calculated with respect to the expected frequency of locations at each depth. Turner (2007)
explained that the “expected” frequency is based on the probability of events occurring depending on a
single variable, the “mean depth” of the j-graph. The benefit of calculating entropy or information from a
“point” in space syntax pertains to how easy it is to traverse to a certain depth within the system. Low
disorder is easy; high disorder is hard.

In linkography, with referral to (Gero et al.; 2011, Kan and Gero, 2005b; 2005c; 2007; 2008; 2009a; 2011b;
and Kan et al.; 2006; 2007), Shannon’s theory of information (1949) is adopted to inspect the occurrence of
dependency relationships between utterances.’ This gives two possible choices to code the system:
“linked” and “unlinked” (or “on” and “off”). The formula used is:

Shannon Entropy for Linkography = H = = (Pikca. 1082 Pikea) + (Puniivicca 1082 Pntioica) o ()

Kan and Gero’s method looks at the overall distribution of “sets” (items of relations) regardless of the
“sequence” of occurrence of elements constituting the linkography according to time. The example in Figure
1 emphasises that the differences between two linkographic patterns are not considered in the estimation
process of entropy. This is owing to the summation step — processed over the whole network — for each of
the two probabilities, “linked” and “unlinked”, regardless of the position of items in the system that should
precede the estimation.”

* Goldschmidt (1992) defined a design “move” or “step” in the following terms: “a move is an act of reasoning that presents a coherent
proposition pertaining to an entity that is being designed”. Goldschmidt (1995) also stated: “a step, an act, or an operation, which
transforms the design situation relative to the state in which it was prior to that move”. See also: Goldschmidt (1990).

* Remember that linkography is a directed graph according to time factor.
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Example 1

Linkegraphy 1 Linkography 2
1 2 3 4 5 & 7 1 2 3 4 5 & 7

Figure 1: Two linkography patterns that are different in the arrangement
of dependency relafionships but have the same Shannon entropic value

Processing Shannon’s Entropy on linkography:
= - (Riinksd.. 1092 Piinkea) + (Puniinked - 1092 Puninked)
The total number of possible relationships = n[(n-1)/2] = 7(6/2) = 21

Where nis the total size of the linkography (the number of nodes).

The total number of “linked” relations in both graphs is =13 2> 0461.9%
The total number of “unlinked” relations in both graphsis =8 > 038.1%
H=—=1[(13/21) x (logz(13/21)] + [(8/21)x(log=(8/21]]

H=-[(0.62) x (-0.69)] + [0.38] x (-1.39)]

H=-0.4x0.5 = 0.2 bif/bifs

Both graphs have the same entropy value despite the clear difference of arrangements in each system. This
is because the equation is based on summing the values of each probability without considering the position
of each in the existing pattern. The next section provides a synopsis on intelligibility in space syntax. It
illustrates a brief from a previous study (Brettel 2006) that combined string measures with integration
values on spatial networks with distinctive configurations, investigating the connectivity between nodes
through navigation in various samples.

4. THE COMPUTATION OF STRINGS OF INFORMATION

An inclination towards the hypothesis is delivered throughout Brettel’s (2006) study, which investigated how
“order”, “structure”, and “disorder” of street layouts are perceived when navigating through an urban
environment. She stated that “an ordered environment tends to be more intelligible when broken up by an
irregularity occasionally.” In our study, we ask: Under which circumstances does the system change from one
state to another? But more specifically on Brettel, we ask: Are highly intelligible spatial systems predictable
to navigate through? and Does simple traverse through urban fabric deliver less complex structure?”

The string of information measures to deal with “event” structure was introduced in Brettel’s study6 in
order to compute barcodes of event sequences extracted from navigation routes, in addition to syntactical
analysis. The string measures were expected to relate to the perceived order along a route. The entropy of

® In other words, if the mechanism of access from one point to another is simple, does the synthesis form of its route deliver low
complexity?

® An “event” is defined as a segment of time at a given location that is perceived by an observer to have a beginning and an end
(Tversky and Zacks, 2001).
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each route’s string was interpreted as the probability of the uncertainty that a route provides for the
traveller, and was expected to relate to the perceived structure along routes.” When a route has very few
turns, the probability of choices is too low (for example, gridiron patterns such as New York and San
Francisco). However, entropy delivers high values (relatively) with complex patterns when the route consists
of some turns and deviations within it (for example, composite fabrics such as London and Rome).
Moreover, the isovist fields owed the differentiation of visual catchment areas between the analysed cities
not only according to the “delineation” in the route but also because of picking up structurally different
catchment areas, especially in the irregular patterns.

According to Brettel’s analyses, the computation process of strings could deliver meaningful correlations for

the perceived route. Nevertheless, the assumption that orderliness is likely to be more related to complexity

measure and structure to entropy could not be proven in her study, possibly due to limits of the survey
8

setup.

So are we measuring “Intelligibility” versus “complexity” or “integration” versus “complexity”? The central
point of attention is to realise that intelligibility is a system property; the correlation between connectivity
(C) and integration (l). Complexity (C;) of graphs is also a system property that reflects how many steps are
required to construct a string of information for the system (or sub-system). Consequently, values of the two
parameters can be compared and correlated together. The sub-graph at each node is also a sub-system and
the same measures can be used to inspect the characteristic within the whole.

4.1 The T-code Measure

The application of the “T-code” string computation method is based on the deterministic information theory
that was developed by Titchener (1998a; 1998b; 1998c; 2004). In this method, an algorithmic process is
applied to sets of information to compute the string measures, denoted as “T-complexity” and “T-entropy”
(see also: Titchener, 2004; Titchener et al., 2005; Speidel et al., 2006; Speidel, 2008). The string signifies
various types of information encoded into symbols.

If the string comprises a repeating sequence of one symbol only (one attribute), then entropy declines to
zero value and the complexity structure of the string get lower, e.g. 0000000000000, but if a string is
composed of two or more symbols then the probability of appearance gets higher, e.g.
LROORRORLOOLLLORLO00OOR. This means the complexity of string increases according to the size of the
symbols and the composition.

The size of string is a crucial factor since longer strings give more accurate measurements than short ones.
The complexity of string depends on the number of production steps that are required to construct this
string (Titchener, 2004). Example 2 gives a tape of 100 digital codes that is spontaneously composed by
typically duplicating one symbol code to another one, by processing the T-code measure:

” The probability of choices that could be made at decision points for directional turns. Accordingly, entropy describes how much
information is there in a “signal” or “event”.

& This result may be limited owing to the small size of samples and short strings.
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Example 2:

1. In the case of repeating one symbol for 100 fimes:
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
Length: 100 characters

T-COMPLEXITY T-INFORMATION T-ENTROPY
.64 [faugs) 10.4 [nats) 0.104 (ngis/char)
6.54 [faugs) 15.0 [bits) 0.130 [bits/char)

2. In the case of coding a string of two symibols (0 and 1) for 100 long:
100001110001 1000000001 100000001 10000000000011111000001000001 10000000001 100000000001 0000000001 0000010
Length [chars): 100

T-COMPLEXITY TANFORMATION T-ENTROPY
16.91 | 16.22 (taugs) 43.30 | 41.10 [nats) 0.43 | 0.411 [nats/char)
16.91 | 16.22 (tgugs) 62.46 | 59.29 [bits) 0.62 | 0.592 [bits/char)

There are a variety of means to illustrate a network; see Figures 2 and 3 for some examples. The scope of
this paper is not concerned with multiple representations to illustrate the system, but rather intends to
understand the constituting force that attunes the components of it (such as what is beyond the links and
relations between the nodes).

Linkography

1 2 3 4 5

E8S5 A
\ ~ % Archiograp

Markov Chain

Figure 3: Two different representations for the same large
system: a design protocol for one-hour design session consisting
of 453 nodes.

Above is the linkography pattern and below is displayed upon the

Chain. “connectivity strength” per nodes.

Figure 2: A variety of means to illustrate a system
network: Linkography, Archiography, and Markov
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Before embarking on an analysis of the distribution of integration in each of the individual nodes in the
system, we begin with a number of common features of the set of linkographies, which give some idea of
the nature of the processes envisaged. After a preliminary study on some samples of linkography, the
concluded points are twofold:

First, since the total number of links in any system of size n is (n-1), then the size of any node’s possible
relations equals (n-1) as well. This means that at any node, the sheer number of links in the sub-graph
created from this node to the others in the system has the same size effect with every node. Accordingly, all
the measures are relativised at every level in the system before embarking on comparisons. A second
feature that differentiates between systems is the varied distribution of links. This should be considered in
the estimation process of strings of information to include the sequences of sets in our interpretation rather
than viewing the system at the node level only.

The linkography contains a structural hierarchy: the first level starts with the "nodes" that aggregate to form
the "network" or "sub-system". Nodes and networks together construct the linkography pattern. It might
happen in some cases that networks (sub-graphs) do not intersect together because the train of thoughts in
this design venue is disconnected and the chunks of ideas are unrelated. However, in most cases networks
intersect in one or more nodes. This means the design thoughts are structurally interrelated and built up. In
this sense, linkography has different patterns and configurations: highly ordered/fully-saturated, structured,
or disordered. There are some other configurations beyond these intrinsic types such as the mechanistic
"saw-tooth" pattern that reflects a highly ordered and systematic (repetitive) process, or the "fully sparse"
disconnected one that resembles a totally "unrelated" discourse, and so forth.

4.2 Processing the System as Multiple Sub-graphs

Any system can be transferred into strings of information by coding the dependency relations between
nodes. In the case of linkography, a binary digit format is proposed: “1” for linked relationships and “0” for
unlinked. The position of each symbol in the string refers to its sequence in the pattern according to time
and thus the distribution of the dependency relationships is included while constructing the string. This
section suggests a method to study the sub-graph at any node and extract the strings from it in order to
compute the T-code measure on the linkography patterns.

Method: Computing the T-code measure on the sub-graph for each node

The estimation process is based on the concatenation of “back” and “fore” links together for each node in
the system (see Figure 5). Despite the sub-graphs (“concatenation” of links per node) having equal sizes at
every node, T-complexity and T-entropy values fluctuate along the linkography. An example of how to
extract a string of information for a certain node’s sub-graph is shown in Figure 6.
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101110
Fore string of node 15

01111011011111
Back string of node 15

Figure 5: Processing dynamic T-complexity on complete linkography by concatenating the back and fore links together per node

Example 3:

According to Figure 5, the sub-graph created at node no.15 consists of the following relations:

15‘0“\\ F .1‘0‘1‘1‘1‘0
am Fc;;fnks

The string of node *15" is produced in this way:
Backlinks string is: "'011110110111171°
Forelinks string is: ‘101110’

The concatenated string comprises both strings but separated by a different symbol, creating a break in the
string, such as a dot: '01111011011111.101110

1|23 |4]s|el7|8]o]o|n|12]3|1a] 16|17 18] 19] 2] 21|

Figure 6: Example of extracting the string of information per sub-graph

4.3 Intelligibility, Complexity and Entropy

Intelligibility and complexity are properties of system. For a graph that consists of 100 nodes, each node will
have two values: (1) intelligibility, which is the correlation between two values: connectivity and integration;
and (2) complexity, which is measured for the “sub-graph” of relations at this particular node. Both
measures have “size” effects. For intelligibility, where a system size “n” (n<50) this means intelligibility will
tend to be high (for example, a small village with 50 links, paths or axes gives the range of values 0<0.5<1.0).
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The system is “intelligible” if the correlation value is more than 0.5, and "unintelligible" if the value is less
than 0.5).

String measures such as complexity, information content and entropy also have “size” effects. For a string of
size “n”, (n<20), values are “inaccurate”. Accuracy for information and entropy is limited for short strings
due to the approximation of bound by the logarithmic integral function (see Titchener, 2004). For a string of
(n>20), the T-complexity we are looking at is a “sub-graph” of the whole linkography, namely those directly

connected to node we are estimating.

Subsequently, the T-complexity and T-entropy measures are comparable to the integration value at that
same node. Hence, the highly connected nodes at any system could be correlated to the string measures at
the same node in order to investigate the proposed hypothesis. According to Brettel (2006), that
intelligibility is signified throughout orderly systems.

As a rule of a thumb, the shortest line between two points is a straight line that has a first order synthesis
form. A piazza is highly accessible from all its surrounding points (areas), the proposed path of navigation is
clear and easier to travel, and thus the expectedness is high and the complexity is low. A cul de sac has a
very low integration value in the system and not many options exist to approach it — only one access point.
That makes it very complex to reach.

Giving an example of a particular spatial structure, Figure 7 illustrates two hypothetical network systems
that are connected via only one node (resembling a bridge between two riverbanks), the real relative
asymmetry value of this single node equals zero. Since integration and real relative asymmetry (RRA) are
inversely correlated, this means that the most integrated point in the system is the highly linked node. Other
nodes in each side are equivalent in integration and RRA values (see Figure 7).

This network will still be represented in several ways. It is obvious to infer that both network sides are highly
ordered. However the string of information for each node in the system contains repeated symbols that
indicate only one possible option (symbol) of interconnectivity inside each side. This will significantly affect
the computed barcode measures for each node in the system. For example, taking node ‘9”:

Sting processed: ‘11111111111111111111°
Iength (c hars): 20

FCOMPIEXTIY FINFORVMATION FENIROPY
4.32 (taugs) 5.4 (nats) 0.274 (nats/char)
4.32 (taugs) 7.9 (bits) 0.396 (bits/char)

(N.B. Accuracy for information and entropy is limited for short strings, due to approximation of bound by the logarithmic integral
function, li().
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Example 4:

G B WMo

w oo

Archiography Linkography

Figure 7: RRA values of two hypothetical network systems (connected through a single node resembling a bridge between two
riverbanks)

5. APPLICATIONS: EXAMPLES AND CASE MATERIAL
5.1 Hypothetical Cases of Short Strings

The following hypothetical cases are generated to inspect the relation between highly connected nodes and
the T-complexity and T-entropy measures. The patterns vary between orderliness and structured
configurations. The RRA value is utilised to search for the most integrated node(s) in each pattern and
process the comparison with the string measures.
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Circular Boundary System

Each node has two links only; with the
preceding and the following

RRA values are identical for all nodes

The “overall” enfropy of the system equals
1, which is the maximum value in case of
applying Shannon’s theory. This means
two choice are equally probable, “link” or
‘no link™

Example: Node: ¢

String processed: 10000001

Length (chars): 8

t-complexity | t-information | t-entropy

Ex

o EBERESEEEER

"
-
»

Fully Linked/Saturated System

Every node is connected with all the
othersin the system

RRA values are equal and all equals zero
since the system is fully saturated and
symmetrical

All the nodes deliver low enfropy value
since there is only one probabilty of
choice in the system (all are “linked”)

ample: Node: 1

String processed: 11111

Le

ngth (chars): 5

t-complexity | t-information | t-entropy

Radial/Polar System

The central node is strongly connected to
others on the periphery

The peripheral nodes have one link only
with the cenfral one

RRA values are equal for all nodes except
the cenfral one that delivers zero RRA due
to its high integratfion within the system
Entropy af cenfral node 1 is low since only
one choice is possible to go anywhers
within the system

Example: Node: 1

String processed: 111111

Length (chars): &

t-complexity | t-information | t-entropy

3.81 (taugs 4.5 (nats) 0.5 (nats/char) 2.32 (taugs 2.4 (nafs) 0.4 (nats/char) 2.58 (augs. 2.8 (nats) 0.4 (nats/char)
— 4.4 (bits) 0.8 [bits/char) — 3.5 (bits) 0.7 [bits/char) 2.58 (fgugs) 4.0 [bits) 0.4 [bits/char)
113 5 7 9 11 13

!
1
2 4 6 8 10 12114 )

al B ulowka
¥
Y

12835458 FdiBBEEN

Saw-Tooth Sequential System

RRA walues vary along the system and
fake the form of “cafenary” parabolic
chain

The more points towards the cenfre
(infermediary nodes), the less RRA value.
This means integration increases whenever
the nodes are sef in the middle of the
network

Example: Node: 8

$tring processed: 0000001100000
Length (chars): 13

t-complexity | t-information | t-entropy

4.95(faugs) 46.65(nals) 0.45(nais/char)
4.95(taugs)  9.65(bits) 0.7 (bits/char)

Doubly-l oaded/Staggered System

A linear route with four prongs branching
out in both sides and staggered. This
configuration  has  three levels of
connections: nodes with sclo link only,
nodes with fwo links, and nodes with friple
links

Given the RRA wvalues, the lowest values
are delivered by the intermediary nodes
with more links (4 & 5], and the highest are
delivered by the oufer-edge nodes
(1,8.2,16)

Example: Node: 4

S$tring processed: 0010100000001000
Length (chars): 14

t-complexity | t-information | t-entropy

5.38(faugs) 7.57 (nats) 0.47 [nais/char)
5.38(laugs 10.92(bits) 0.68(bits/char)

= This system

w @ v Fwll ok

Incomplete/Disconnected System

represents a  disconnected
urban fabric where @ move through a full
loop is necessary to access the otherside
RRA values vary, the highest measurss are
delivered by the far-side nodes {on both
edges)

Example: Node: 1

String processed: 10000001

Length [chars): 8

t-complexity | t-infermation | t-entropy

3.81 (tqugs 4.5 (ngis) 0.5 (ngis/char)
— 6.6 (bits) 0.8 (bits/char)

Figure 8: Values of RRA and String of Information for Hypothetical Cases of Small Systems
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According to the results of short strings, the following points can be concluded at this preliminary stage:

1. The high certainty of prediction in some networks might deliver only one choice (100% choice); thus
entropy equals zero if applying Shannon’s equation, and T-entropy decreases if applying T-code
algorithms.

2. First, the total number of relations in any system of size “n” is n(n-1)/2. However, the size of any
subgraph string equals (n-1). (See Figure 6)

3. Despite the differences between the RRA values in any system, it might happen that all nodes have the
same string measures since all have the same percentage choices (number of links).

4. The fall of T-complexity and T-entropy indices with the rise of RRA in the cases looked at misleads our
hypothesis and causes disruption to the correlation values. The reason for this is the lack of accuracy
experienced with short strings of information (less than 20 codes).

5. Either Shannon entropy or the “deterministic” entropy is “inversely” proportional with RRA, but
sinceintegration equals (1/RRA), the question arises of whether this confusion comes about because of
inaccurate computation of short strings, or might there be another parameter that has its effect on both
measures?

The application of T-complexity and T-entropy is tricky in this sense. Two points can be made from our
experience of processing the computation method: (1) The position of nodes within the system determines
the synthesis (structure of symbols) of the extracted string since the connections (links) that could be made
from a certain node to the other(s) are based on the choices of routes/links; (2) Since each node's “forelink”
is another point's “backlink” within the system, then an introduction to some “redundancy” in this way
should be considered in the estimation process to avoid replications (in case of concatenating the overall
strings into one for the whole system). To reconcile these findings, another series of long string cases are
analysed in the next section.

5.2 Hypothetical Cases on Large Systems

The case studies are extended to include the analyses of eight examples of longer length in order to further
test the hypothesis and to overcome the inaccuracy experienced with short strings. These hypothetical
systems are divided into two categories: modular order and structural, where the former is known by its
repetitive and rhythmic patterns and the latter is distinguished by its variation of choices. Syntactical and
string measurements are applied to study the degree of correlation between integration and “dynamic
Tcomplexity” and “dynamic T-entropy”.’ See Figures 9a and 9b.

Table 2 shows the correlation values for all the hypothetical cases. According to Figure 10 (drawn from the
results of Table 2), a strong inverse correlation between integration and T-complexity and T-entropy is
proved in all the ordered cases. Figure 9a shows the highlighted nodes in each case. The shallower the
system (e.g. case 4), the higher the degree of correlation between integration and T-complexity. The denser
the system (e.g. case 3), the lower the degree of correlation between integration and T-complexity.
However, in Figure 9b, only one case delivers a high correlation between integration and T-complexity,
reaching 0.55 in case 3. This lack of evidence is due to the low degree of diversification in the structure of
the system (the pattern is shallow) that was not the case in the other patterns. T-complexity and T-entropy
are un-correlated along ordered and structured cases.

° The term dynamic entropy, introduced by Gero et al. (2011) to indicate that each node in the system has its own entropic measure
and therefore the values fluctuate along the linkography. See also: Kan and Gero (2011a; 2011b).
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Variables of Correlation Modular Order Systems
Casel Case 2 Case 3
Integration : T-complexity -0.76 -0.22 -0.86
Integration : T-entropy 0.17 -0.13 0.022
T-complexity : T-entropy 0.25 0.07 0.01

Structured Systems

Table 2: Values of correlation for the hypothetical systems
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—Three
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Pivotal Nodes

Case 3 Case 4
0.55 -0.01
-0.28 0.09
0.24 0.18
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Figure 9a: The relationship between integration values and T-complexity and T-entropy in Ordered Linkography-system
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Figure 10: The Correlation Values Of Integration: T-complexity and Integration: T-entropy

According to Figure 10 (drawn from the results of Table 2), a strong inverse correlation between integration
and T-complexity and T-entropy is proved in all the ordered cases. According to Table 2, Figure 10 illustrates
the correlation values for each case study. It is apparent that some values are negative: “negative
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correlation”. This means that in a relationship between the two variables one variable increases as the other
decreases and vice versa. A perfect negative correlation means that the relationship that appears to exist
between two variables is highly negative (might reach -1) of the time.”® Nevertheless, the inverse
correlation between T-complexity and T-entropy brings out another point to test. It is hypothesised that the
more complex a string (the variety of symbols), the higher the probability of uncertainty. In short, would
entropy increase with higher complexity measures? How would the hypothesis of a converse correlation
with integration be affected?

5.3 Application To Real Linkographies

Figure 11 presents two different linkographies based on real design processes. The most integrated nodes
are identified and correlated with T-complexity and T-entropy in addition to two other graph parameters,
“betweenness” and “closeness centrality”. The values of correlation are listed in Table 3. Both systems
depict the following outcomes:

1. Asignificant correlation between integration and closeness centrality.

2. A ssignificant correlation between T-complexity and T-entropy particularly proves the earlier result that
short strings computations are inaccurate and require to be inspected through large systems.

3. Adirect correlation between integration and closeness centrality.

4. Aninverse correlation between integration and each of T-complexity, T-entropy and betweenness.

Closeness Centrality Betweenness 0.37 0.41

Variables of Correlation Linkography 1 (size n = 328) Linkography 2 (size n = 453)
Integration ; T-complexity 0.23 0.23
Integration E T-entropy 0.22 0.23
Integration E Closeness Centrality 0.73 0.85
Integration Betweenness 0.07 0.21
T-complexity E T-entropy 0.99 0.98
T-complexity Closeness Centrality 0.46 0.39
T-complexity E Betweenness 0.37 0.24
T-entropy Closeness Centrality 0.46 0.39

Table 3: Values of correlation for two large linkographies

A correlation in which large values of one variable are associated with small values of the other; the correlation coefficient is
between 0 and -1. It is also possible that two variables may be negatively correlated in some, but not all, cases. A perfect negative
correlation is represented by the value -1.00, while a 0.00 indicates no correlation and a +1.00 indicates a perfect positive correlation
(definition from http://www.investopedia.com/terms/n/negative-correlation.asp#ixzz1lceYmvKXE).
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6. IN CONCLUSION

In this paper, we have been investigating the applications of certain measures that come from space syntax
analyses of urban graphs to look at linkography systems. One hypothesis is that complexity is created from
the local sub-graph at different scales in the graph system than from the whole system. Since linkography
and urban systems deal with multi-level complexities, the overall goal of the proposed analytical method is
to reveal the relationship between the parts (sub-systems) that constitutes the system and the whole.

Two perspectives are given: the entropy theorist who looks at the overall distribution of sets of items that
form the system while the information theorist looks at the individual sequence of items or the arrangement
of sets that will probably occur. The application to linkography and the point depth entropy are examples of
the former while the T-code computation of strings of information is adopted in this paper to look at the
latter. Two different contexts are given in the case studies. Since urban configurations and linkography
systems are drawn from different characteristics, the assumption is thus made to examine whether the
syntactical and string parameters receive similar correlation responses in both contexts or not.

The methodology merges syntactical and string measures to highlight the significant nodes in any system
and investigate the proposed hypothesis: are highly intelligible systems associated with complexity and
entropy? Since intelligibility, complexity, and entropy are “system” properties, the method to process any
system of “n” size is an aggregation of “sub-graphs” for each node in the system. The case studies include
small and large systems, hypothetical and real. In order to highlight the significant nodes further, other
parameters are added into the correlation: real relative asymmetry, closeness centrality and betweenness.

The relationships between string measures (T-complexity and T-entropy) and syntactical measures
(integration and real relative asymmetry — RRA) are not clearly defined because of the inaccuracy of short
barcodes. The assumption is then made that variable length barcode holds within it many possibilities and
choices. Proving this hypothesis requires further investigation with larger systems.

The more a node is connected to the surroundings, the greater the repetition frequency in the barcodes, the
less predictable the information, and therefore low string complexity results. The asymmetry of the overall
distribution of nodes within the system accounts for the “associativeness” in the system and consequently
gives an indication of the structure. RRA and integration values (inverse measures) can be tracked to trigger
the degree of associativeness and incubation within the system.

The importance of this study lies, on one hand, from the definition it purveys about the responsiveness
between the configuration of a system and the internal structure. On the other hand, it provides an
analytical framework to acknowledge the degree of homogeneity between the “parts” and the “whole”.

To study a configuration that underlies arrangements of nodes is about the “exposition” of facts that are
called “orderly” when the observer can grasp both their overall structure and the ramifications in some
details.
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