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By far the greater part of the work at present in progress in the field of speech

acquisition depends on two related descriptive tools. The first comes directly

from classical phonetics and makes use of place, manner and voice descriptors

and a tradition al transcription. These investigations attempt to define the

sound contrasts of speech qualitatively, both in production and perception, in

what are primarily productive, articulatory, terms. The second method of

description uses a particular set of distinctive features (Chomsky and Halle,

1968) which are based on sub sets of these phonetic, articulatory, dimensions.

These distinctive features are intended to facilitate the definition of

phonological contrasts. This contribution is concerned with a complementary

description of some of the aspects of speech acquisition in strictly quantifiable

acoustic terms. The acoustic form of speech can be given a direct auditory as

well as an articulatory interpretation and this makes it possible to arrive at a

realistic appreciation of what elements in a speech sound sequence are likely to

be dominant in sensory terms and how these elements must be processed - in

normalization for example when listening to a small as opposed to a large vocal

tract - so that physically different acoustic stimuli can have a common phonetic

identity.

The use of a phonetic transcription necessarily limits the adult investigator and

may lead him to assign importance to aspects of a child’s speech which are of

little contrastive significance to the child himself. The use of quantitative

acoustic-auditory descriptors is beginning to reveal aspects of both productive

and perceptual processing which could not otherwise have been guessed at. A

first example of this, below, is drawn from a study of baby cries (see figure 1).

This is followed by a discussion of normalization (see figures 3, 4 and 5).

Normalization depends on an ability to perceive similarity of structure - or

pattern - and a general indication of the way in which pattern perception may

contribute to speech development is given in the discussion relating to figures

6, 7 and 8. The stimuli and data of figures 9, 10 and 11 relate to a particular

acoustic study of the way in which English and French children develop their

ability to perceive elements of what is phonetically described as the voiced-

voiceless distinction. Acoustic patterns not only provide a means for describing

speech events but also for the assessment of auditory dysfunction, using

synthetic speech, and the correction of inadequate production using pattern

displays. This work depends on the possibility of referring to normal

acquisition and this is briefly discussed finally.
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Fig. 1. Cry development
The two pairs of waveforms shown have been taken from a developmental study of one
child during the first six weeks after birth (I am grateful to Anne-Britte Parker for
making the recordings and to Simona Bennett for her co-operation). In each pair of
traces, Sp refers to the acoustic pressure and Lx indicates the output of an electro-
laryngograph, simultaneously recorded on an ordinary two channel tape recorder.
Laryngeal vibration in the first weeks after birth is not always well defined, and this is
shown by the irregularity of Lx in l(b). The Sp waveform shape, however, is determined
primarily by the first formant frequency and the relative inadequacy of larynx excitation
is responsible only for a small amplitude. When the child has increased his voicing skill
and his cry has greater amplitude, his larynx vibration is necessarily more regular and
his vocal tract movement necessarily more precise. This is shown clearly in the onset
waveforms of l(a). It is important to note that the application of the simple auditory
feedback criterion of loudness can guide quite complex productive skills.

CRY DEVELOPMENT

The waveforms in the top half of Figure 1 have been recorded from the cry of a

27-day-old baby. Sp refers to the acoustic pressure waveform and Lx designates

the synchronously recorded output of an electro-laryngograph (Fourcin, 1974).

During normal voicing in both adult and child the vocal folds vibrate regularly,

successive closures occur with a quite well-defined periodicity and the

maximum glottal opening and greatest degree of vocal fold contact during

closure typically vary little from cycle to cycle. The Lx waveform shows this

clearly since it is determined primarily by the nature of vocal fold contact
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during closure and it can be seen in Figure l(a) that this 27-day-old baby has the

type of closure sequence which, in its regularity, corresponds to normal

vibration. The frequency of vocal fold vibration , Fx, is markedly higher than

that normally found for child and adult (see Figure 3) and starts in this example

at about 400 Hz, falling to 340 Hz. Fx determines the fundamental frequency of

voiced sounds and is the primary physical correlate of their pitch. The Sp

waveform also has some mature features. This can best be seen when the two

waveforms in Figure l(a) are interpreted jointly. The Lx waveform starts before

there is an appreciable Sp pressure.

This results from the baby's breathstream initiating vocal fold vibration before

the release of a vocal tract articulatory closure. Prior to this release both nasal

and oral branches of the vocal tract have been held closed, and a controlled oral

release has then taken place relatively slowly during the 60 ms interval

following the initiation of vocal fold vibration. This sequence of combined

laryngeal control and vocal tract gestures is typical in general form - although

not in detail - of an initial voiced plosive consonant-vowel combination; it is an

essential basis for later contrastive speech productive ability.

The pair of acoustic pressure and vocal fold closure waveforms shown in Figure

l(b) have been recorded from the same baby at the age of 2 days. The Sp

waveform has a dominant frequency of about 690 Hz and a smoothly

fluctuating amplitude which varies as a result of the baby's uncoordinated

control of his vocal tract shape. These rapid vocal tract changes - the first two

peaks are separated by 30 ms, the second pair by 18 ms - make it very difficult

to interpret the formant patterns of the corresponding spectrograms and add to

the obstacles which are ordinarily in the way of a spectrographic interpretation

of vocal fold excitation. The synchronously recorded Lx waveform is easy to

interpret, however. It shows a vocal fold vibration which is quite atypical of the

normal mature form. In the adult this regularly repeated sequence of doublets

or triplets of decreasing amplitude of closure is found in some of the samples of

phonation for unilateral vocal fold palsy (Fourcin, 1974). When the folds are

asymmetrically tensed their natural frequencies of vibration may be quite

different and they will not act in unison. This can result in a vocal fold version

of acoustic beats. A sequence of vocal fold beats will be reset by the relatively

violent closure which occurs when the phasing of the folds returns to that of

normal vibration. Normally phased vocal fold vibration occurs when the two

folds have symmetrical movements; this puts all the acoustic energy into the

basic harmonic spectrum and has a greater sound producing efficiency than

that of irregular vibration. The Lx waveform of Figure 1(b) in consequence

indicates an asymmetric tensioning of the baby's vocal folds which will be

associated with a weak cry of ill-defined voice pitch. The triplet sequences of

closure which are shown here have a frequency of about 230 Hz whilst the

intrinsic vocal fold frequency is about 690 Hz. This difference, if it is
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substantiated by other work, could account for the paradoxical developmental

increase in pitch of the neonate cry which has been observed to occur for some

babies in the first month after birth and partially explain the relative weakness

of the cry in this period. An increase in regularity of vocal fold vibration

improves the pitch definition and loudness of the cry and both of these features

are, in principle, readily capable of mediation by the baby's hearing mechanism.

In this case, loudness and pitch are directly related. He can, in consequence, use

loudness as a feedback control which will improve his cry in quite detailed

aspects of its laryngeal excitation. The uncoordinated control of his vocal tract

will also reduce the signalling effectiveness of his cry and can similarly be

improved by attention only to the auditory feature of loudness. This factor of

auditory feedback must also be of primary consequence in the development of

the sound productive skills shown in Figure 2.

Fig. 2. Voice pitch interaction

The top part of this figure shows the voice frequency contours, Fx, of a particular

sequence produced by a 4 week old baby in the company of its mother. Immediately

below these three tones are the three voiced segments ([a]) produced by the mother in

response to her child. The mother has repeated her baby’s sequence with constraints

coming partly from the phonology of English and partly, perhaps, from her desire to

tune the physical nature of her voice to that of the baby: her fall+rise sequence is a

typical English intonation form but is here displaced into an atypical high pitch range.

The distribution on the right hand side of the figure shows the range, and probabilities

of occurrence, of the voice frequencies in the mother's expressive speaking voice. Her

first fall, in this example, starts at a frequency which is at the top extreme of her range.

In normal speech this high to mid fall would not occur. Its production here enables her

to reduce the complexity of the baby’s matching task.
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IMPORTANCE OF LOW FREQUENCY ENERGY

The essential factor which distinguishes speech sounds from all others which

may be produced by the vocal tract, is that they are used contrastively. The

basis of contrast is provided by pattern difference and Figure 2 gives an

example of the first type of sound pattern which is used by a baby in a

controlled way. A sequence of a falling tone, level tone and slightly rising tone

is produced by the baby. This is reinforced by the mother and immediately

repeated by the infant. In order for the baby of Figure 2 to respond to his

mother's utterances and to repeat his own he must be able to make use of at

least some aspects of the pitch variations both of her voice and of his own.

There is strong empirical evidence that pitch is mediated in the human adult as

the result of two distinct types of acoustic signal processing. First and more

classically in terms of the place theory, by the positions along the length of the

basilar membrane of regions of maximum movement (Newby, 1972). Second,

by the transmission along the eighth nerve of time structure information about

the acoustic stimulus. When, like the majority of voiced vowels, the acoustic

stimulation is a complex waveform with a well-marked period then the

frequencies of the fundamental and its harmonics will operate the first pitch

mediating mechanism and the periodic waveform irregularities will contribute

to triggering the second (Fourcin, 1970). The new-born child has a nearly adult

size tympanum and a well formed cochlea (Northern and Downs, 1974).

Although a considerable amount of growth dependent development remains to

be accomplished, once the middle ear is fluid-free some mechanical cochlear

response to acoustic stimulation is to be expected at least at the lower end of the

frequency spectrum, since the acoustic impedance match of the immature ear to

air may improve as frequency diminishes.

Weir (1976) has examined the results of direct experimental assessments of the

auditory frequency sensitivity of the neonate. Her analysis gives credence to the

earlier conclusions that stimulation frequencies below 500 Hz and square rather

than sine waveforms are most effective in provoking startles in neonates.

Although this practical demonstration of the relative effectiveness of low

frequency, temporally well defined, acoustic stimulation requires further

experimental support; three other factors make it seem possible that the low

frequency end of the acoustic spectrum is most important not only to the

neonate but also to the young child. The first of these additional factors comes

from the preferential masking of high frequency energy by low in hearing; this

is a classic result using pure tone stimuli (Wegel and Lane, 1924) and occurs

also with voiced formants (Nye, Nearey and Rand, 1974); it appears to result

partly from the hydromechanical response of the cochlear partition and is likely

to occur in the neonate cochlea as well as in the adult. The second of these

factors arises from- a hypothesis (Salus and Salus, 1974) concerning the child's

neurophysiological development. The process of myelination is known to
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influence the high frequency transmission characteristics of nerve fibres and if

myelination is incomplete this might (although not according to a strict place

theory of hearing) reduce hearing ability for higher frequencies. Finally, and

most certainly, the nature of voiced speech sounds is such that ordinarily there

is always greater energy at the fundamental frequency than elsewhere and the

first formant ordinarily is greater in amplitude than all others. This physical

spectral bias would in consequence act to direct auditory attention to these

components of speech.

Fig. 3. Environmental voice frequency ranges

Three superimposed voice frequency, Fx, distributions are shown. They have been

obtained from three-minute samples of laryngograph waveforms separately recorded by

normal man, woman and child speakers. Each speaker produces his or her intonation

forms within these physical confines and the developing child must learn to recognise

Fx patterns as being identical although their absolute ranges may, as here, be markedly

different.

FIRST INTERACTIVE COMMUNICATION

Figure 3 illustrates the quantitative nature of the baby's task when he interacts

with the other members of his family solely on the basis of voice pitch. In order

to produce the same pattern of change as his father when the father produces a

simple falling [a], or to be reinforced when the father imitates the baby's [a], the

baby must, as in Figure 2, be capable of pattern rather than absolute imitation.

This imitative interaction with the father is likely to be facilitated by a previous

extension of the interaction with the baby's mother. Since her normal range of

larynx frequencies is already considerably below that of the baby, any

successful use of ordinary voice by the mother, in responding to or in eliciting a

corresponding response from the baby will contribute to the baby's ability to

abstract pattern form. In this way, simple intonation forms produced by parents

or siblings can be treated as being perceptually the same and the first step can

be made towards the solution of the general problem of acoustic pattern

identification. This perceptual congruence is the basis of phonetic identity and it

involves a hypothetical processing level which is often referred to as

normalization (Fourcin, 1971; 1975).
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For the child who is born in a tone language environment we must expect that

ease of pitch pattern normalization will provide a first introduction to

phonological contrast since contrasting fundamental frequency patterns can be

used lexically. At first the contrasts are likely to be crude and oppositions which

are the least pitch confusable will precede those which have similar levels and

contours.

Fig. 4. Cantonese tones

In terms of fundamental frequency structuring, Cantonese has six main tones. The

choice of tone by a speaker determines the lexical value of a word. The main pattern

relations between the tones - in a given accent - are fixed from one speaker to another

and the developing child must learn these relations, and ignore absolute physical

differences, in order to perceive and produce lexical tonal contrasts. In the tonal

language environment this normalization will be basic to a child's first phonological

skills.

The fundamental frequency basis of lexical tone contrast is shown in Figure 4

for two Cantonese speakers. If, in a tone language environment, the baby's

mother restricts her use of articulatory contrast and relies only on the simple

pitch distinction which can be based on these Fx contours, we can expect that

the first stages of phonetic discrimination will be easier than if the spectral

envelope contrasts of non-tonal languages are used. English babies in their first

year can make communicative use of voice pitch changes (Ricks, 1975; Lewis,

1968) and it has been commonly observed that at the babbling stage the English

child uses English pitch forms. Tone does not have a simple lexical significance

in English, however, and the first lexical contrasts depend not on the excitation

of the vocal tract but on the spectral envelope of its output. The normalization

process must now make use of more complex physical information.
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[ æ з, Λ ]

Fig. 5. English vowel formant frequencies

In English, phonological oppositions are carried by vocal tract rather than vocal fold

features and tonal differences are of minor lexical importance. Formant frequencies

provide the primary acoustic information which enables an auditory assessment of these

vocal tract differences to be made and, once more, the listener must allow for physical

differences between speech sources in his appraisal of pattern forms. Vowel formant

patterns are simpler than consonantal and their essential independence of source is

illustrated here.

Figure 5 shows the average formant frequencies of English vowels produced by

young English adult males and, below, the particular values for a four-year-old

child. Just as for Cantonese tones, the overall patterning for the two phonetic

sets of contrasts is the same although the physical size of the speech sources is

markedly different. Although it is generally agreed (Anthony and Mclsaacs,

1970; Sheridan, 1948; Fry, 1966) that the English vowel system is fully acquired

long before the consonant system, little is known concerning the pattern of

confusions which arises in the early stages of acquisition. In terms only of the

first spectral peak, Fl, [i] and [u] are most distinct from and it seems
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probable that in the very early stages on the basis of purely auditory

information [i] will be highly confusable with [u], as is the case for the deaf

child with little high frequency hearing (Fourcin, 1976). Contrasts due to

nasalisation, which is associated with primarily low frequency spectral features,

will not present an especial perceptual difficulty in early development.

Increasing skill in the interpretation of the acoustic signal will enable the

position of F2 to disambiguate Fl information for all the vowels. The

diphthongs, which are characterized by relatively slow spectral changes, will

also be differentiated by this extra spectral information.

Consonant contrasts are all carried by a combination of spectral and relatively

rapid temporal differences. The shorter duration of their distinctive elements

introduces a variety of difficulties. First, they are more easily masked by

external acoustic events since their transient nature reduces the redundancy

which is associated with repetition. Second, in the nature of speech production,

variability from utterance to utterance, even for a single speaker, is unavoidable

and this makes the individual token less well-defined. Third, the sensory

processing is handicapped by additional masking, both forward and backward

(Elliot, 1971), in time. For example, the initial burst in a voiceless plosive-vowel

combination could, in forward masking, reduce the perceptibility of the F2

transition; and in backward masking, the same transition could be masked by

the relatively high voice energy in the F2 of the vocalic part. Fourth, the nature

of the transitions which characterize consonants will necessarily vary as a

function of their context so that their defining patterns and the normalizing

processes which are necessary for their retrieval are inevitably more complex

than is the case for tone and vowel distinctions. Little has been done to

elucidate the perceptual mechanisms which operate at this crucial stage of

speech processing (Verbrugge et al., 1976) but the experiments which have been

performed (eg Fourcin, 1968) show very large changes in the interpretation by

child and adult subjects of identical consonantal stimuli purely as a function of

the subjects’ inference of the characteristics of the speech sound source. When a

child produces a phonetically acceptable consonant-vowel combination he is

necessarily using normalization processing either in order to monitor his output

or to set up the original reference from adult models. His processing may not,

however, be as complete as that employed by a competent adult. At first, the

needs of a limited set of phonological oppositions may be served only by

attention to Fl and nasal formant transitions. At a later stage, as greater auditory

skill is acquired, both Fl and F2 pattern elements could be used and,

subsequently, F3 and the fricative formant transitions could be employed in

perception and normalization to provide the basis for an essentially complete

speech sound inventory. These acoustic auditory pattern considerations do not

explicitly include the articulatory constraints which determine ease of

production and govern coarticulation and assimilation but their examination in
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isolation reveals an aspect of speech development which may prove to be of

equal consequence. The child who cannot perceive the relations between the

acoustic pattern elements of speech is shut out from ordinary communication.

NORMAL CONSONANT DEVELOPMENT

The way in which speech productive skill is acquired by the normally communicating

child in an English speaking environment has been studied by a number of

investigators both in Britain (for example: Sheridan, 1948; Morley, 1957; Fry, 1966;

Waterson, 1978; Anthony, Bogle, Ingrain and Mclsaacs, 1971) and in the U.S.A.

(for example: Templin, 1957; Poole, 1934; Wellman, 1931; Menuyk, 1972). A

classic phonetic transcription of the material has been employed in all cases and

the adult investigators have, of course, applied adult criteria in their

categorization of the children’s utterances. Although little has been reported in

respect of vowel development, each study has yielded results with regard to

consonant acquisition and overall there is a useful, and interesting, consensus of

opinion.

Fig. 6. Consonant acquisition

This summary of English consonant developmental studies is based on a convenient

representation introduced by Sander (1972). The left-hand bar for each closed box

corresponds to the age at which 50% of the children studied use the sound (ideally this

should be a contrastive use); the right hand bar corresponds to the 90% age. Initial,

medial and final position occurrences have been averaged, /h/ has been omitted;

grouping follows phonetic class.
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Sander (1972) has summarized some of the American work (Wellman and

Templin, 1931) and his graphical representation is basic to Figure 6. All workers

both in Britain and the U.S.A. find that the voiced and voiceless fricatives and

affricates occur towards the end of development and are ahead only of cluster

production. [h] is an exception to this rule; in the U.S.A. this is found to occur

very early but in the U.K. it is amongst the last observed. The later stages have

been omitted from figure 6 since the ordering of acquisition within the fricative

class as a whole is not well defined - at least in published reports. The plosives

and nasal continuants not only precede the fricatives but also have a fairly well-

defined order within themselves. Labials tend to occur before alveolars and

these tend to be used contrastively before velars. /w/ occurs with the labials but

/I/ and /r/ follow the velars. Only an incomplete definition and only a partial

understanding of the factors which lead to this developmental ordering are

available at present. Four obvious sources of influence are: speech sound

environment; use in communication; ease of production; ease of perception. To

an important extent these four appear to fall into two pairs, since the use of

speech in the child’s environment will be directed towards communication with

him and we can expect that early sounds must be readily produced and

perceived.

The pressure of sound environment for an English speaking family arises partly

from the mere frequency of occurrence of sound types and their contrastive use.

The probability of occurrence of sounds in English (Denes, 1963) has been

combined in Figure 7 with their median age appearance, using the data on

which Figure 6 is based. [t], [n], [d] and [s] are by far the most frequently

occurring sounds and their minimal pairs (contrasts such as day-say) also occur

most often. It is significant that these alveolar contrasts are so much more

frequent in English speech since, even if subsequent work shows that they are

not so common in the environment of baby and young child, this result will

indicate an important modification of normal speaking habit. The sounds [m],

[w], [b], [p] which occur so early are of far lower frequency of occurrence. This

fact of early acquisition is not explained in terms of normal environmental

pressure on communicative convenience. There is no simple correspondence

between the acquisition orders of Figure 6 and the occurrence probability of

Figure 7.
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Fig. 7. Probability of consonant occurrence in the normal speaking

environment, against age of (50%) acquisition

/t/, /n/, /s/, /d/ occur most frequently in adult speech and provide the most common

minimal contrasts (Denes, 1963). This functional pressure does not appear to influence

age of acquisition since it can be seen that these and other probable occurrences in

developed speech are not necessarily amongst those which are earliest acquired. At

present it seems more likely that relative ease of perceptibility is more important in early

development than phonological pressure.

In early production consonants occur most frequently in initial rather than in

final position. For the voiced plosive consonants this requires a moderate

degree of coordination between laryngeal and vocal tract controls to be exerted

by the speaker. The speaker's soft palate must be raised so that an oral pressure

increase can be established, the vocal folds approximated to their position for

free vibration and then the airstream can be initiated. No fine adjustment is

needed and the baby's early sucking and crying abilities are directly applicable

to this speech skill. For the production of [m] the control sequence is simpler

since the closure is maintained instead of being released rapidly as for [b]. [w] is

obtained by using the controls for [b] but associating them with a much slower

movement and an incomplete vocal tract closure. These bilabials are the

simplest consonants in productive terms and their simplicity may well have a

bearing on their early appearance in the young child's speech. An important

difficulty arises in the case of the voiceless bilabial [p], which requires a much

greater degree of productive skill in the simultaneous control of vocal tract and

vocal folds so that oral pressure is built up and released before the onset of

vocal fold vibration (Stevens, 1971 ; Kewley-Port and Preston, 1974). In spite of

this considerable additional complexity [p] occurs before the productively

simpler [d]. When the potential ease of perception of these different consonants'

acoustic patterns is considered a complementary explanation is found which

goes some way towards resolving this dilemma. For initial [b] the burst of

acoustic energy which accompanies the release of articulatory closure occurs
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essentially together with the voicing excitation of the formants. Fl, as for all

initial voiced plosive consonants, starts from a low value and increases quite

rapidly to its value for the accompanying vowel. This pattern of change in Fl is

a primary acoustic trait for this consonant class. F2 also increases to the vowel

value, from a lower frequency which, when taken in conjunction with the set of

Fl and F2 frequencies characteristic of the particular speaker, can be found from

an inferable locus - a concept given its first quantitative definition in work at the

Haskins Laboratories (Delattre, et al., 1955). This pattern of change in F2 can be

regarded as a secondary trait, of relevance only for distinguishing [b] from [d]

and [g]. If a young child has a greater facility for the processing of low rather

than high frequency information in a stimulus having several formant peaks,

then he is more likely to be able to perceive formant patterns which have F2 in

the low end of the frequency spectrum than in the high.

Fig. 8. Schematic Formant-Time Patterns

The early development of bilabial consonants

may be influenced both by visibility and

auditory clarity. Simplicity of consonant

acoustic patterning in general, however,

appears to be related to ease of acquisition. It

may prove to be of considerable significance

that the alveolar and velar patterns are

acquired later, not merely because of their

relative lack of visual cues but also because of

their relative acoustic pattern complexity.

(These consonant patterns could be associated

with a front open vowel produced by the child

of Fig. 5.)



14

In Figure 8 the formant patterning for initial [b] is drawn in a highly

schematized way but it is clear that the F2 for [b] will be less masked than that

for either [d] or [g]. This greater sensory clarity of the [b] pattern may be

important in the early stages of speech perception in enabling the contrasts

between [b], [m] and [w] to be established primarily on the basis of Fl changes

in time and secondarily with the aid of F2 as a source of reinforcement.

Production of these sounds will then be facilitated by the auditory feedback

made possible by a simple set of pattern references which require little

cognitive elaboration for their successful application to a wide range of speech

sources of different vocal tract dimensions. In this way, at this first level

(Fourcin, 1971; Lisker and Abramson, 1964) and first developmental stage of

speech processing, normalization can be established as the joint result of

perception and associated production. For initial [d] the formant patterning in

Figure 8 shows a falling transition for both F2 and F3 and, as greater auditory

skill is acquired this reinforcing F2-F3 alveolar fall may be contrasted with the

reinforcing bilabial rise in F2-F3 which typifies [b]. This is a much simpler

opposition in acoustic pattern terms than that between [b] and [g] or [d] and [g],

since F2 and F3 for velars tend to move in opposite directions. From a purely

auditory-acoustic pattern point of view this makes it quite likely that [d] and its

associated nasal [n] will be next employed contrastively with each other and

with the previously acquired bilabials. For initial [p], although the skilled adult

may make use of more than a dozen different acoustic traits, the very young

child is likely only to be influenced by the most evident pattern change.

Following the release burst for [p] there is typically an interval in which no

voicing occurs and only aspiration excites the speaker’s vocal tract. The

aspiration gives relatively less energy to Fl than to F2 and F3 compared with

vocal fold excitation, and the F2, and possibly the reinforcing F3, transitions

may be utilisable by the child as a secondary trait. The gross trait of lack of

initial voicing dominates for [p], [t] and [k] and is a primary characteristic. At

the beginning of speech acquisition when attention is directed essentially to the

Fl region the voicing gap provides a simple way of including [p] in the family of

contrasting bilabials. With increasing auditory skill the secondary F2-F3

information can be utilized and, depending on individual circumstance and

vowel environment, the difference in burst frequency, which exists between

bilabial and alveolar initial plosives, may be utilized. In acoustic pattern terms

initial [k] is most confusable with initial [t] (and this confusion will be greatest

for a high F2 front close vowel environment). With the increasing auditory skill,

which comes with the gradual approach to speech maturity, however, the more

complex F2-F3 patterns from the velars will be re solved and the family of velar

contrasts will be added more consistently to the alveolars and bilabials. This

brief discussion of the possible relevance of acoustic pattern forms to the

ordering of speech sound acquisition has concentrated on only the most

obvious facts. It is evident, however, that the correspondence between the



15

ordering implied by the pattern sequence of Figure 8 and that of Figure 6 is far

greater than that implied by the occurrence probability structure of Figure 7. It

is not possible using either the standard techniques of transcriptive phonetic

analysis or distinctive feature categories (Chomsky and Halle, 1968) to examine

the way in which children’s speech development is influenced by these acoustic

pattern forms. It is feasible, however, to use processes of acoustic analysis to

measure the evolution of productive skill and to use speech synthesis

techniques to assess children's ability to perceive acoustic pattern differences

which have speech significance. Both of these methods have been employed in

this department (University College London) for normal children (Simon,

Simon and Fourcin) and for the deaf child. The first results of this work indicate

that the stages of speech development and the influence of auditory disability

are better understood when acoustic pattern description is allied with phonetic

analysis. The phonetician necessarily applies an analysis which reflects his

ability to hear whole pattern forms; he is intrinsically unable as the result of his

training to attend to the pattern elements which may dominate a child's

perception of particular contrasts and which give rise to such phonetically

strange contrasts in the young child's speech repertoire. The following example

is concerned with what phonetically is termed the 'voiced-voiceless contrast.

PATTERN PERCEPTUAL DEVELOPMENT

The acoustic pattern forms corresponding to a particular example of this

voiced-voiceless contrast are shown in Figure 9. The voiceless extreme (V-) is on

the right, the voiced (V+) is at the lower left. Acoustically, a large number of

factors underlie this simple phonetic opposition (e.g. for V+, an initial upward

step in Fx; a rising Fl, a lower intensity burst which occurs close to the onset of

voicing; and for V- an initial turbulent excitation following the burst which is

often described as a delay in voicing, an initial downward fall in Fx with an

initial breathy excitation, an effective initial absence of Fl and an initially greater

burst intensity). Other factors can be listed particularly as a function of vocalic

environment but only two of all those possible are explicitly dealt with in the

figure. The first arises from the delay in voicing - this is called voice onset time,

VOT (Lisker and Abramson, 1964). The second arises from the normally rising

Fl for V+. In the top part of the figure a flat Fl is shown for V+; this is not a

naturally produceable pattern form but for the deaf listener with high

frequency loss it can be used to elicit a V- response (Simon, Simon and Fourcin).

This type of listener cannot respond to patterning associated with the burst and

can only contrast Fl pattern forms.
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Fig. 9. Synthetic pattern extremes for : [g] and [k]

These patterns are particular examples of stimuli which can be used in a controlled way

to examine a listener’s ability to make contrastive use of particular components in

speech. The left hand patterns represent 'goat' , the right-hand pattern 'coat' . The flat

Fl onset stimuli cannot be produced naturally but it proves to be an acoustic pattern

feature which can be employed perceptually in speech sound discrimination by the deaf -

to infer lack of initial voicing; [k] labels are then given both to these flat Fl stimuli as

well as those of the form shown on the right. In the next two figures, average responses

to these rising Fl transition stimuli are shown by squares, the crosses represent

responses to flat Fl and large voice onset time delays.
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Fig. 10. Voice-voiceless perception by English children
The ability to discriminate between initial [g] and [k] is only acquired, on average,
gradually. At first the pattern features which are most obvious guide the child’s
labelling and, for the three year-old children, there is little distinction between formant
shapes, only the degree of periodic excitation is of real importance. With increasing age
there is increasing skill both in labelling and in the ability to reject non speech-like
patterning, the cross stimuli are not, in consequence, often put in the [g] category.

In Figure 10, (Simon & Fourcin) , the rising Fl stimulus responses are shown by

squares and for the 14-year old children it can be seen these stimuli evoke a

sharp categorical response. The average responses to the flat Fl stimuli in the

same VOT range are shown by crosses, these are not well categorized. The 3-

year-old children, however, categorize both of these stimulus types in

essentially the same way; they are responsive to VOT and do not make any

special use of the rising Fl information. This is not the case for the 5 year-old

children who are in an intermediate state of development. These results show

how two acoustic traits can be used differently as perceptual development

proceeds. The learning is gradual and it can be easily interpreted in terms of

acoustic pattern salience but not at all in classic phonetic or distinctive feature

terms. In consequence a child could make consistent contrasts which are not

understandable with normal analytic techniques.
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Fig. 11. Voice-voiceless perception by French children

French does not rely on the presence or absence of aspiration, and the associated delay in

voicing onset, to provide a basis for the voiced-voiceless distinction. Pre-voicing, before

release, characterizes the voiced sounds. This provides a quite different perceptual bias,

as compared with English, and the French children of all ages are not markedly

influenced by Fl shape but are progressively more skilled in using the onset timing of

periodic excitation.

In Figure 11 (Simon, and Simon & Fourcin), the results are shown from the

same type of experiment performed with French children. The speech

environment of these children does not employ the post-burst turbulence used

in English and the presence of a rising Fl is not a useful contrastive trait. This is

reflected in the uniformity of response by the 11-year-old children to both rising

and flat Fl stimuli. The same similarity of response is found with the 5-year-old

children. It is evident from these two language different experiments that

response is influenced by the models afforded by the speaking environment

and that categorization skill may be acquired quite slowly. The greatest future

value of speech pattern tests may come, however, from the quantitative

information which they provide concerning individual ability and development

- both normal and handicapped.
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DISCUSSION

The work which has been described has all been concerned with a study of

various aspects of speech communication, as opposed to mere discrimination. It

appears quite likely that the acoustic auditory description, and definition, of

prominent aspects of speech sound combinations will be of real help in

understanding the increase in skill which is basic to the developmental process

underlying the progression from the first cry to the complete mastery of

phonological oppositions.

At each stage of development, prominent acoustic traits will be used by the

individual listener both in assessing his own production and that of other

speakers. His processing of other source outputs will depend on his ability to

normalize, and his ability to use sounds contrastively will depend on his ability

to categorize. Rules of acoustic pattern processing are needed for both of these

aspects of perception and, in due course, we must be able to formulate

grammatical systems for these pattern relations both to understand the process

of speech acquisition more fully and to be able more adequately to describe

normal adult usage. An outstanding apparent anomaly exists, however. Work,

especially by Eimas (1975) has shown that the very young infant can

discriminate speech sounds in ways which appear to reflect an innate

predisposition to categorization. The discriminations, however, are sensory

rather than phonetic.

The work described here shows only a gradual accumulation of speech

processing ability. The experiments that Eimas has performed depend on the

baby’s sensory ability to discriminate between sound patterns presented in

sequence. Later on it seems likely, from the present discussion, that a ready

ability to normalize on the basis of only a little prior experience will also be

found. It does not follow, however, that the ability to categorize speech sounds

contrastively, so that communication ability is achieved in a particular language

environment, can be innate. This is a higher skill which must be learnt from

experience, and which could well in part depend on an innate auditory ability

to process prominent acoustic pattern traits.

We must expect, for example, that the categorization of VOT differences will

partly depend simply on the peripheral hearing mechanism's response to

transient stimulation (a 20-30 ms minimum stimulus duration is required for

accurate pitch assessment and this corresponds to the VOT labelling transition).

In consequence, elementary VOT discrimination will be possible for all animals

having similar cochlear characteristics.

Similarly, the critical band response characteristics of the cochlea will make a

major contribution to the sensory evaluation of formant energy concentrations
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and, in consequence, partly determine the ability to detect formant transitions,

by both man and animal. These are innately determined characteristics.

Normalization and phoneme categorization abilities will be acquired from

experience, however. This first without difficulty, by animals as well as infants,

since only elementary pattern processing is needed. The second with increasing

difficulty as the degree of pattern complexity becomes greater (e.g. in going

from labials to velars).

A practical application of speech pattern descriptors is beginning to be made in

the remediation of speech productive disability (Fourcin, 1974; Abberton and

Fourcin, 1975) and in the assessment of hearing for speech (Fourcin, 1976). It

seems possible that future work based on the acoustic analysis of speech, in

terms which are of auditory significance, will be a major source of knowledge of

both normal speech development and of means for its encouragement.
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